Fermion polarisation probes MSSM w/o CP conservation at LC.

- ♦ Introduction.
- \Diamond τ polarisation in $\tilde{\tau}$ decays at e^+e^- colliders: CP conserving case.
- \uparrow $\tau(t)$ polarisation in $\tilde{\tau}(\tilde{t})$ decays at the e^+e^- colliders: CP violating case.
- ♦ CP mixing induced in the Higgs sector due to CP violation in soft SUSY breaking parameters.
- \diamondsuit Probing CP violation in the Higss sector through au polarisation at $\gamma\gamma$ colliders.
- Conclusions.

Some of the refs:

- S. Kraml, D. Miller, M. Krawczyck and R. Godbole Contribution to the LHC/LC studies, [arXiv:hep-ph/0404024].
- M. Guchait, D.P. Roy and R.G. (Manuscript in preparation)
- S. Kraml, T. Gadosijk, R.G., JHEP **0409**, 051 (2004) [arXiv:hep-ph/0405167].
- S. Kraml, R.K. Singh and R.G. [arXiv:hep-ph/0409199], Talk given at International Conference on Linear Colliders (LCWS 04), Paris, France, 19-24 Apr 2004, (Manuscript in preparation.)

Introduction

Why study τ /(t) polarisation?

- Large mass of the third generation fermions means large coupling to a Higgs. Third generation fermions useful to probe Higgs physics.
- $f\bar{f}$ pair produced via gauge interactions will have opposite handedness, produced via Yukawa interactions will have the same handedness. A correlation between polarisation of f and \bar{f} can be a probe of Higgs contribution.
- τ (t) polarisation probes chirality structure of $\tau(t)$ production process, may it be Higgs physics, new physics : eg. $H^{\pm} \to \tau \nu_{\tau}$ decay Vs $W \to \tau \nu_{\tau}$. τ 's produced in the former(latter) are right(left) handed, modulo m_{τ} effects, CP violation in the Higgs sector will reflect in the decay τ /(t) polarisation.

- Large mass of the top $\Rightarrow t$ decays before hadronisation. The decay l can retain the memory of the t polarisation.
- au has hadronic decay modes. The energy distribution of the π produced in the decay, $au \to \nu_{\tau}\pi$ as well as those in $au \to \rho\nu_{\tau}, au \to A_1\nu_{\tau}$ depends on the handedness of the au. Thus au polarisation can be determined using decay au energy distribution. K. Hagiwara, A.D. Martin and D. Zeppenfeld, PLB **235** 198 (1990), B.K.Bullock, K.Hagiwara and A.D.Martin, PRL **67**, 3055 (1991), NPB **395**, 499 (1993).
- If $m_h < 2m_t$ then τ is the only fermion whose polarisation can be determined and into which a Higgs decays may be somewhat substantial.
- \diamondsuit Thus t and τ polarisation are a very good probe for new and Higgs physics.

 τ (t) produced in stau/stop decay. M. Nojiri, PRD 51 (1995) 6281 [hep-ph/9412374]

- \square In MSSM mass eigenstates \tilde{f} -sleptons/squarks $(\tilde{f}_1,\tilde{f}_2)$, mixtures of \tilde{f}_L and \tilde{f}_R , f=t, au.
- \square Mixing affects Gauge couplings of $ilde{f}_i, i=1,2$ and hence the production rates.
- \square The $\tilde{\chi}_i^{\pm}, j=1,2$, $\tilde{\chi}_i^0, j=1,4$ are mixtures of Higgsinos and Gauginos.
- ☐ Couplings of sfermions with Higgsinos flip chirality whereas those with gauginos do not.
- \square Net helicity of produced f in the decay $\tilde{f}_i \to \tilde{\chi}_j^0 f$ AND $\tilde{f}_i \to \tilde{\chi}_j^\pm f'$ depends on the $L\!-\!R$ mixing in the sfermion sector and gaugino-higgsino mixing.

- A lot of analyses of τ polarisation and hence of the MSSM parameter determination at LC exist. Use the $\tau \to \rho/A\nu_{\tau}$ (multiprong) mode.
- Our New work: (M. Guchait, D.P. Roy and R.G.) Developed a new variable for τ polarisation analysis.
- Look at $R = \frac{E_{\pi}}{E_{iet}}$. and study

$$\xi = \frac{\#(0.2 < R < 0.8)}{\#total}$$

• ξ a good discriminator of τ polarisation, hence of SUSY models.

Top :Distribution in R. Different curves for values of polarisation $p_{\tau} = -1, -.5, 0.5, 1.0$. Bottom: ξ as a function of P_{τ} , band: theoretical uncertainty, obtained using Tauola.

 Detailed application of this variable to MSSM parameter analysis in progress.

- \square Polarisation of f(f') produced in $\tilde{f}_i \to f \tilde{\chi}_j^0$, $\tilde{f}_i \to \tilde{\chi}_j^\pm f'$, depends on L-R mixing and Guagino/higgsino content
- \diamondsuit CP-violating phases of A_f, μ, M_i in MSSM affect $L\!-\!R$ mixing and Guagino/higgsino content
- \square Polarisation of f, f' can carry information on CPV phases as well.
- ♦ NOTE: polarisation itself is a CP-even variable
- \bullet Our study:Kraml, T. Gadosijk, R.G JHEP 0409, 051 (2004) How well does the P_f probe the CPV phases?

ullet An example for $ilde{ au}_1
ightarrow au ilde{\chi}_1^0$

$$P_f = \frac{Br(\tilde{f}_1 \to \tilde{\chi}_1^0 f_R) - Br(\tilde{f}_1 \to \tilde{\chi}_1^0 f_L)}{Br(\tilde{f}_1 \to \tilde{\chi}_1^0 f_R) + Br(\tilde{f}_1 \to \tilde{\chi}_1^0 f_L)}$$

- Take A_f, M_2, M_1, μ complex. Safe to choose μ real \Leftarrow (EDM CONSTRAINTS).
- \Diamond P_f sensitive to CPV and nonzero even if ONLY one phase (either in sfermion sector or gaugino sector) is nonzero. $m_{\tilde{f}}$ not relevant for predictions of P_f .
- Effects large for larger Yukawa Couplings and enhanced if $\tilde{\chi}_1^0$ is a guagino-higgsino mixed state.
- \square P_t has significant dependence on the phases even when $\mu \simeq M_2$
- \Diamond P_f can be used to extract information on phases ONLY in conjunction with other observabels which will give info. on μ, M_2, M_1 etc.
- ♦ Polarisation information need be included in a global analysis of MSSM parameter determination at ILC.

Some Results:

Average polarisation for τ for $\theta_{\tilde{\tau}}=130^\circ$ and $\tan\beta=10$: in a) as a function of M_2 for $|\mu|=150$ GeV, in b) as a function of $|\mu|$ for $M_2=300$ GeV. The full, dashed, dotted, dash-dotted, and dash-dot-dotted lines are for $(\phi_1,\,\varphi_{\tilde{\tau}})=(0,\,0),\,(0,\,\frac{\pi}{2}),\,(\frac{\pi}{2},0),\,(\frac{\pi}{2},\,\frac{\pi}{2})$, and $(\frac{\pi}{2},\,-\frac{\pi}{2})$.

Average polarisation of top for $\theta_{\tilde{t}}=130^\circ$, and $\tan\beta=10$: in a) as a function of ϕ_1 for $M_2=225$ GeV and $|\mu|=200$ GeV; in b) as a function of $\varphi_{\tilde{t}}$ for $|\mu|=200$ GeV and M_2 adjusted such that $m_{\tilde{\chi}_1^0}=100$ GeV. The full, dashed, dotted, and dash-dotted lines are for $\varphi_{\tilde{t}}$ (ϕ_1) = $0, \frac{\pi}{2}, -\frac{\pi}{2}, \pi$ in a (b).

MSSM $\mathscr{D}P$ phases $\Rightarrow \mathscr{D}P$ in the Higgs sector:

CP conserving MSSM Three Neutral Higgses h,H A CP-even CP-odd

CP violation : $\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,$

$$m_{\phi_1} < m_{\phi_2} < m_{\phi_3}$$

The h, H, A now all mix and share the couplings with vector boson pair VV. Will affect production rates.

$$g^{VV\phi_1} < g^{VVH_{SM}} \Rightarrow \sigma(e^+e^- \to Z^* \to Z\phi) < \sigma(e^+e^- \to Z^* \to ZH_{SM})$$

May escape detection at e^+e^- collider, but can still be produced at a $\gamma\gamma$ collider.

Predictions in terms of SUSY P phases in the MSSM for this mixing.

<u>Tools</u>

CPSuperH

Lee, Pilaftsis, Carena, Choi, Drees, Ellis & Wagner http://theory.ph.man.ac.uk/~jslee/CPsuperH.html

FeynHiggs

Hahn, Heinemeyer, Hollik & Weiglein http://www.feynhiggs.de

low energy parameters → masses, BR's, couplings...

RG improved effective potential for masses & couplings

leading log approx for one-loop

leading log approx for $O(\alpha_s \alpha_t, \alpha_t^2)$, but full phase dependence

Feynman-diagrammatic approach for masses & couplings

full one-loop

full $O(\alpha_s \alpha_t, \alpha_t^2)$ but approx phase dependence

 $O(\alpha_s \alpha_t)$ has $(\alpha_s \tan \beta)^n$ resummation and full complex phase dependence

CPX Scenario [Carena, Ellis, Pilaftsis & Wagner, Phys. Lett. B495 (2000) 155]

"designed to showcase the effects of CP violation in the MSSM"

$$M_{\tilde{Q}_3}=M_{\tilde{U}_3}=M_{\tilde{D}_3}=M_{\tilde{L}_3}=M_{\tilde{E}_3}=M_{\rm SuSy}$$

$$\mu=4M_{\rm SuSy}, \quad |A_{t,b,\tau}|=2M_{\rm SuSy}, \quad |M_3|=1TeV, \; |M_1|=|M_2|=200GeV$$

Allow the following parameters to vary:

$$aneta, \qquad M_{H^\pm}, \quad M_{\sf SuSy}, \ \{\Phi_{A_t}, \Phi_{A_b}, \Phi_{A_ au}\}, \quad \Phi_3, \quad \Phi_\mu$$

What have we done?

Kraml, R.Singh, R.G, [arXiv:hep-ph/0409199]

au pair production as a probe of the Higgs contribution and CP structure of its coupling. Studied

$$\gamma\gamma \to \phi \to \tau^+\tau^-$$

.

The Higgs contribution treated in a model independent way.

$$\mathcal{V}_{\tau^{+}\tau^{-}\phi} = -ie\frac{m_{\tau}}{M_{W}} \left(S_{\tau} + i\gamma^{5} P_{\tau} \right),$$

$$\mathcal{V}_{\gamma\gamma\phi} = \frac{-i\sqrt{s}\alpha}{4\pi} \left[S_{\gamma}(s) \left(\epsilon_{1}.\epsilon_{2} - \frac{2}{s} (\epsilon_{1}.k_{2})(\epsilon_{2}.k_{1}) \right) - P_{\gamma}(s) \frac{2}{s} \epsilon_{\mu\nu\alpha\beta} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu} k_{1}^{\alpha} k_{2}^{\beta} \right].$$

 $\{S_{\tau}, P_{\tau}, S_{\gamma}, P_{\gamma}\}$ depend upon the MSSM parameters.

Combinations of form-factors that appear in the helicity amplitude.

Combinations	Aliases	CP-property	Combinations	Aliases	CP-property
$S_ au\Re(S_\gamma)$	x_1	even	$S_{ au}\Re(P_{\gamma})$	y_1	odd
$S_{\tau}\Im(S_{\gamma})$	x_2	even	$S_{ au}\Im(P_{\gamma})$	y_2	odd
$P_\tau\Re(P_\gamma)$	x_3	even	$P_ au\Re(S_\gamma)$	y_3	odd
$P_{ au}\Im(P_{\gamma})$	x_4	even	$P_{ au}\Im(S_{\gamma})$	y_4	odd

QED background: P, CP and chirality conserving.

Higgs exchange diagram violates these symmetries,

 $\{x_i, y_j\} \neq 0 \Rightarrow$. Chirality flipping interaction, $\Rightarrow \tau$ -polarisation affected.

Polarisation of τ :

$$P_{\tau}^{IJ} = \frac{N_{+}^{IJ} - N_{-}^{IJ}}{N_{+}^{IJ} + N_{-}^{IJ}}$$

I,J=+,-,U Polarisation of parent e^+/e^- beam. $N_+^{IJ}=\#$ of τ_R , $N_-^{IJ}=\#$ of τ_L .

- \diamondsuit $P_{\tau}^{U}=\mathbf{0}$: for QED contribution.
- $\diamondsuit\ P_{\tau}^{U}=$ 0 : even with Higgs contribution, if $y_{j}=$ 0; i.e. Higgs is a CP eigenstate.
- \square $P_{\tau}^{U} \propto m_{\tau} \Rightarrow \text{small even with CPV}.$
- \square P_{τ}^{U} a 'poor' but 'pure' probe of CPV in the Higgs sector.

Move to polarised photons:

• $P_{\tau}^{++}, P_{\tau}^{--}$: finite for QED diagrams alone.

$$P$$
 invariance of QED $\Rightarrow P_{\tau}^{++} = -P_{\tau}^{--} \Rightarrow P_{\tau}^{++} + P_{\tau}^{--} = 0$

 $P_{\tau}^{++} + P_{\tau}^{--} \neq 0 \Rightarrow \text{signal of } P \text{ In case of } C \text{ invariance } \Rightarrow \text{signal of } CP \text{ violation.}$

- $\bullet P_{\tau}^{++}$: modified by the Higgs contribution.
- $P_{\tau}^{++} (P_{\tau}^{++})^{QED} \neq 0$ even if ϕ is CP eigenstate, \Rightarrow probe of chirality flipping amplitude.

Observables	Interaction probed		
$P_{ au}^{U}$	CP-violating interaction		
$\delta P_{\tau}^{CP} = P_{\tau}^{++} + P_{\tau}^{}$	CP-violating interaction		
$\delta P_{\tau}^{+} = P_{\tau}^{++} - (P_{\tau}^{++})^{QED}$	Chirality flipping interaction		
$\delta P_{\tau}^{-} = P_{\tau}^{} - (P_{\tau}^{})^{QED}$	Chirality flipping interaction		

 $\delta P_{\tau}^{+}, \delta P_{\tau}^{CP}$ as a function of E_{b} $m_{\phi_{1}}{=}120~{\rm GeV}~{\rm for}~{\rm a~chosen~CP~violating}$ MSSM point.

Ideal back-scattered photons, $x_c = 4.8$.

 $\delta P_{\tau}^{+}, \delta P_{\tau}^{CP}$ peak for $E_b \approx (m_h/2)/f$ where 0.75 < f < 0.83. This is the grey region.

Beam energy can be chosen to maximise the sensitivity

Main contribution from off-shell Higgs \Rightarrow large statistics available.

Contribution from ϕ_2, ϕ_3 may be important if they are close to ϕ_1 in mass.

- Contribution from all the three ϕ_i included. Over the scanned region of the parameter space the degeneracy of the three states not high,i.e. $\delta m = m_{\phi_i} m_{\phi_j} \gg \Gamma_{\phi_i} + \Gamma_{\phi_2}$
- δP_{τ}^{CP} is sensitive to some part of region. δP_{τ}^- is sensitive to most of the region. Only two of the three P_{τ}^X linearly indpendent.
- If sensitivity of $P_{ au}^{IJ}\approx 0.001$, the observables can probe all the OPAL allowed region of the MSSM parameter space.

Conclusions:

- \bullet τ/t polarisation a very useful probe of different aspects of Higgs physics.
- Fraction of events in the inIcusive pion spectrum with 0.2 < R < 0.8 where $R = \frac{E_{\pi}}{E_{jet}}$, is corrected nicely with τ polarisation. This is a new observable to measure the τ polarisation.
- ullet CP violating phases in the MSSM affect the CP-even polarisation of au(t) produced in stau/stop/sbottom decays. Effects larger for the t due to larger Yukawa coupling. Effects larger when $ilde{\chi}^0_j, ilde{\chi}^\pm_i$ is a mixed gaugino-higgsino state. Determination of CP phases requires combining the polarisation information with knowledge of magnitudes of MSSM parameters from other observables.
- Program of global determination of SUSY parameters at the ILC should include polarisation information.
- Have constructed probes of CP violation and chirality flipping interactions in $\gamma\gamma \to \tau^+\tau^-$.
- \diamond δP_{τ}^- requires one measurement, δP_{τ}^{CP} requires two measurements. Both cover large regions of the OPAL allowed MSSM parameter space in CPX scenario.

 \diamond τ polarisation as a probe of CP properties of neutral Higgs holds promise