Automatic Calculation of SUSY Particle Production with GRACE/SUSY/1LOOP

Fujimoto, J. ,Ishikawa, T. (KEK, Tsukuba),Jimbo, M. (Tokyo Management Coll.),Kon, T. (Seikei Univ.)& Kuroda, M. (Meiji Gakuin Univ.)

Introduction
 Tree level system
 1-loop level system
 Outlook

The 7th ACFA Workshop

on Physics & Detector at the Linear Collider

NTU, Taipei, Taiwan, 10 November, 2004

1. Introduction

Automatic calculation of amplitudes

important @ HE colliders LHC & ILC
 * many body final states
 * possible many new particles

Systems of automatic calculation

GRACE (Ours)	Prog. Theor. Phys. Suppl. 138 (2000) 18 Comput.Phys.Commun. 153 (2003) 106
CompHEP	hep-ph/0205020, hep-ph/0111291, hep-ph/0101232 Bélanger et al. MicroOmega, hep-ph/0210327
Feyn series	Hahn, Comput.Phys.Commun. 140 (2001) 418; 143 (2002) 54

MADGRAPH/MADEVENT

Maltoni and Stelzer, JHEP 0302 (2003) 027

2. Tree level system (GRACE/SUSY)

Model: MSSM

particle	variable name			
photos	pluton			
$W^{\pm}(W^{\pm})$	W-plus (W-minus)			
7.	2			
elu.m	gluon			
$\nu_t(\overline{\mathcal{R}})$	nu-e (nu-e-bar)			
1.50	electron (position)			
15. (15.1)	nu-mu inu-mu-bari			
$\mu^+ \mu^+$	acon (anti-suon)			
$\nu_p \langle \overline{\nu_{r}} \rangle$	F nu-tau (nu-tau-tar)			
niintii	539 (AFC1-139)			
iii)	u u-bar)			
$l(\vec{a})$	d (d-her)			
c(ci	< (c-bar)			
(8)	= s-per(
N.L.	t t-bar)			
5(6)	b (b-har)			
h ⁰	Higgsl			
Ma	Haggs2			
40	Wiggs 3			
$H^+(H^-)$	Hyggs-Slug (Higgs-strug)			

_	
particle	outilde same
17(16)	charginoi (auti-charginoi)
$i_{f}(i_{1})$	corgin2 (oti-thrgan2)
¥î,	neutralizzii
$\hat{\mathbf{x}}_{a}^{(i)}$	neutralino2
\vec{c}_{π}^{2}	Contletion 2
$T_{k}^{\prime\prime}$	neutralines
$\overline{\theta_{i}(\overline{\theta_{i}})}$	mure (estimate)
Sulley !!	mm-mu(anti-sum-si)
$\mathcal{A}_{\mathcal{C}}(\overline{\mathcal{A}})$	anu-tae (ant -anu-tau)
$e_1(\vec{n})$	miecturni (unti-selectroni)
$c_2(t_1)$	selection) (intr-selectron)
117(47)	(moon1(mit)-muon1)
$\hat{\mu_{x}^{*}}(\hat{\mu_{1}^{*}})$	Encomercian (School)
$\widehat{\tau_{k}}\left\{ \tau_{k}^{*}\right\}$	stunt (anti-stars)
$r_2^-(r_b^+)$	stau2 (enti-stau2)
$(G_1(\overline{W_1}))$	mit (0051-mil)
$\hat{H}_{L}(\overline{\mathcal{H}_{L}})$	and (00011-001)
$d_1(d^*)$	off (most-will)
A.Ca.	att2 (anr.iatt2)
extent .	mit (an:1-ac.)
$\langle i(\overline{r_0}) \rangle$	10.2 (ddi.1-10.7)
$\widehat{w_i}(\widehat{w_i})$	sal (anti-mal)
$k_{f_{1}}^{2}(\overline{\sigma_{1}})$	m2(aci-cal)
$\mathcal{E}_{1}\{t_{1}\}$	stl (anti-st
$\vec{I}_{i}(\vec{l}_{j})$	at2 (auti-at2)
Milli	m1 (90:1-99.1
107	

Input parameters:

Higgs & Gauginos

 $\alpha_e,\alpha_s,M_W,M_Z,\tan\beta,M_{A^0},\mu,M_1,M_2,M_3.$

Sfermions

sfermion movees	$300_{H_{1}} = 30_{H_{2}} + 10_{h_{1}}$	ammu(1,13.amsa(2,15.amsu/3,1)
	$m_{\rm L}$, $m_{\rm L}$, $m_{\rm m}$	ano((1,1): acod(2,3); acod(3,1)
	$m_{k_{p-1}}m_{k_{k_{p}}}$, $m_{p_{p}}$	anaw(1), anaw(2), anay(3)
	$m_{\mu_{1}}$, $m_{\mu_{1}}$, $m_{\mu_{1}}$	am(((;)) ans((2;)); am((0;))
fermion + dth	$\Gamma_{0i}, \ I_{2i}, \ \Gamma_{ij}$	$\operatorname{mgnw}(1,1),\operatorname{mgnu}(2,1),\operatorname{mgnu}(3,1)$
	$\Gamma_{\Xi_{i}}$, $\Gamma_{i_{1}}$, $\Gamma_{i_{2}}$	aged(1,1) aged(2,1), aged(3,1)
	Par Tila - Tax	agen(1) sgen(2) ages(3)
	$\Gamma_{X_0} : \Gamma_{X_0} : \Gamma_{X_0}$	age(11.1) age((2.5), age(10.5)
star-broading	$m_u A_w \ m_e A_i, m_e A_i$	xoud(1), xoud(2), xoud(3)
[MAX081818	made made made	<pre>xadq(1). madq(2). madq(3)</pre>
	$m_r A_r, m_\mu A_\mu, m_\tau A_\tau$	walpfth salp(0) waln(30
-Direction maximiz	$\sin \theta_{\mu} = \sin \theta_{\mu} \ \operatorname{angles} = \sin \theta_{j}$	nhuq(1), nhuq(2); nhuq(3)
	$\cos \theta_{i}, \cos \theta_{i}, \cos \theta_{i}$	chaq(1)_chuq(2)_chuq(3)
	$+\mathrm{in}\theta_{\tilde{g}},+\mathrm{in}\theta_{\tilde{g}},+\mathrm{in}\theta_{\tilde{g}}$	mbdq(1), mbdq(2), shdq(3)
	config rouge config	chaq(1), chaq(2), chaq(3)
	$\sin \theta_{d,r} \sin \theta_{d,1} \cos \theta_{l}$	milp(1), ship(2), ship(3)
	$\cdots = \theta_k \cdots \mapsto \theta_{\mu_1} \cdots = \theta_{\tau}$	cnip(1), cnip(v), cnip(3)

M. Kuroda, Complete Langarian of MSSM, hep-ph/9902340 J. Fujimoto et al., Comput.Phys.Commun. 153 (2003) 106

Example

 $e^-e^+ \rightarrow \gamma \tilde{\chi}_1^+ \tilde{\chi}_1^-$

Input file 'in.prc'

Model="mssm.mdl":
Process;
ELWK=3;
QCD=0;
<pre>Initial={electron, positron};</pre>
<pre>Final ={photon,chargino1,anti-chargino1}</pre>
Kinem="2302"
Pend;

Feynman diagrams generated by 'grc'

Fortran codes generated by 'grcfort'

Feynman diagrams drawn by 'gracefig'

<u>Gauge invariance check</u>

 $R_{\rm E}$ gauge, quadruple-precision at 1-point in phase space

ans1 = 0.139175455829902 covariant gauge ans2 = 0.139175455829902 unitary gauge <u>ans1/ans2 - 1 = -2.220446049250313E-016</u>

Integration by 'bases'

Convergency Behavior for the Integration Step <- Result of leach iteration -> <-Omfloriw Res It -> < CPU _time > IT Eff R_Neg Estimate Acc % Estimate(+- Error)creer Acc % (H: M. Sec 145F-01 0 514 1 145749C+-0 0058873F-01 0 514 0 00 8º 0 37 68 0 00 1 1545-01 0.549 1.149243()-0.004311)6-01 0.375 0: 0:44.35 1 1435-01 0.515 1.147259(+-0.003478)8-01 0.303 0:0.51 01 0.00 1 1975-01 0.524 1.144273(+-0.002472)E-01 0.260 0:0.57.66 1 135E 01 0.485 1.142009(+ 0.002015)E 01 0.229 0: 1 4 33 KRANNE END OF BASES ARRENARE << Computing Time Information >>> (1) For SASES H: M: Sec Ove head 0: 0: 0.00 Geid Optim Step ... 0. 0.31 00 Integration Step : 0: 0:33.33 50 line for all 0. 1. 4.23 (2) Expected event generation time Expected live for 1000 events : 1.10 Sec

GRACE/SUSY (tree-level) system is COMPLETED!

> We have checked the gauge invariance with quadruple-precision

SUSY processes with up to 6 external particles

582,102 processes

The system can be obtained at

http://minami-home.kek.jp/

3. 1-loop level system (GRACE/SUSY/1LOOP)

Renormalization scheme of the MSSM

On mass-shell renormalization

Gauge-boson sector: (conventional approach) Renormalization constants of wavefunctions -> Unmixed bare states Mass counterterms -> Mixed mass eigenstates

Higgs-boson sector:

Renormalization constants of wavefunctions —> Unmixed bare states

Chargino sector and Neutralino sector:

Renormalization constants of wavefunctions —> Unmixed bare states

M. Kuroda, in Research report to the Ministry of Education, Science and Culture, Japan, the Grant-in-Aid for Scientific Research C (No.08640391), (1999) 127
T. Fritzsche and W. Hollik, Eur. Phys. J. C24 (2002) 619

Matter-fermion sector and Sfermion sector: Renormalization constants of wavefunctions → Mixed mass eigenstates K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys. Suppl. 73 (1982) 1

<u>Example</u>

$$e^-e^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$$

Refs. M. A. Diaz, S. F. King and A. Ross, Nucl. Phys. B529 (1998) 23, hep-ph/0008117
T. Blank and W. Hollik, hep-ph/0011092
W. Öller, H. Eberl, W. Majerotto and C. Weber, hep-ph/0304006

* Full Electroweak correction

→ <u>1935</u> 1-loop level diagrams × <u>7</u> tree-level diagrams

Feynman diagrams printed to ps-files by 'grcplot'

How you can believe the numbers produced by an automated system?

UV finiteness

Check \rightarrow varing the UV constant ($C_{\rm UV}$)

IR finiteness

Check \rightarrow varing the fictitious photon mass (λ) [1-loop + soft poton]

gauge invariance

Check \rightarrow varing the non-linear gauge parameters $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}, \widetilde{\varepsilon}, \widetilde{\kappa})$

* Checking GRACE with the non-linear gauge has already been done in the SM

G. Bélanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato and Y. Shimizu, LAPTH-982-03, KEK-CP-138 (2003) hep-ph/0308080

Non-linear gauge in MSSM

- Numerator structure is the same as Feynman gauge $\mathbf{g}^{\mu\nu}$ (for $\xi = 1$)
- Vertices modified $\widetilde{\alpha} = 1 \implies \text{no AWG}$
- New vertices (ghost sector) appear

Non-linear gauge fixing terms $F_{W^{*}} = (\partial_{\mu} \pm i e \tilde{\alpha} A_{\mu} \pm i g c_{W} \tilde{\beta} Z_{\mu}) W^{=\mu}$ $\pm i \xi_{W} \frac{g}{2} (v + \tilde{\delta}_{\mu} H^{0} + \tilde{\delta}_{h} h^{0} \pm i \tilde{\kappa} G^{0}) G^{\pm}$ $F_{Z} = \partial_{\mu} Z^{\mu} + \xi_{Z} \frac{g_{Z}}{2} (v + \tilde{\epsilon}_{H} H^{0} + \tilde{\epsilon}_{h} h^{0}) G^{0}$ $F_{y} = \partial_{\mu} A^{\mu}$

2.9534974780222292111693636042692019e-0002)

IR check (for selected graphs) $\lambda = 10^{-18}$ ANS = -8.482168085150522e-0002 $\lambda = 10^{-24}$ (9 digits)

ANS = -8.482168087342838e-0002

[Ommited e-e-scalar]

gauge invariance check NLG parameters alpha _____ <<selected graph>>42 IU no. T : $@ = ^2, # = ^3$ RV a^3 a^2 a^4 a^1 a^0 226V | -0.2651979e-07 | 0.2651979e-07227V 0.9541715e-07 | -0.9541715e-07 228V | 0.9308935e-07 | -0.9308935e-07 229V | 0.3661252e-08 | -0.3661252e-08 230V | -0.2651979e-07 | 0.2651979e-071931S $0.3902432e-15 \mid 0.2084935e-$ 14 1932SQ -0.5294619e-50 0.1057452e-49 0.5338774e-50 -0.3820339e-49 0.2758471e-49 0 250 cnt 1 0.20977e-01 0.20977e-01 tot 0.20977e-01 0.20977e-01 0.20977e-01 0.65123e-34 -0.47138e-34 -0.32167e-33 -0.77400e-15 0.20977e-01 sum1 0.42898e-34 0.22914e-34 0.21894e-33 0.81660e-03 0.12824e-01 max

beta					
< <selec< th=""><th>ted graph>>41</th><th></th><th></th><th>B</th><th></th></selec<>	ted graph>>41			B	
IU no. 7 RV	IU no. T : $@ = ^2, # = ^3$ RV				
I	a^4	l a^3	l a^2	l a^1	l a^0
158V				-0.1404845e-07	0.2651979e-07
159V				0.4166858e-07	-0.9541715e-07
160V				0.3906425e-07	-0.9308935e-07
161V				0.1964962e-08	-0.3661252e-08
166V				-0.1404845e-07	-0.4044929e-08
1931S 4 1932SQ	l -0.2759842e-5	2 -0.1103847e-52	• • • • • • • • • • • • • • • • • • •	∣-0.5221061e-15 1∣0.5519367e-52	5 0.2084935e- 0.2758471e-49
		0	0	20	
ot	0.18567e-01	0.18567e-01	0.18567e-01	0.18567e-01	0.18567e-01
sum1	-0.15159e-34	-0.41344e-34	0.67172e-34	0.10355e-14	0.18567 e-01
max	0.61753e-35	0.13166e-34	0.19059e-34	0.96369e-03	0.12824 e-01

epsln1 < <selected graph="">>47</selected>		\sim		\sim
		E		
IU no. T RV	$C: @ = ^2, # = ^3$			h^0
I	a^4	a^3	l a^2	l a^1 l a^0
 132V				0.4131154e-17 -0.9419811e-07
133V				0.2199380e-18 0.3210661e-04
150V				0.4131154e-17 -0.9419811e-07
151V				0.2199380e-18 0.3210661e-04
276V				-0.5827019e-15 0.2976493e-15
			•	
			•	
			•	
1931S@			0.2161744e-1	5 0.5510489e-16 0.2084935e-14
1933S				-0.6013497e-14 0.7254471e-13
1934S@			-0.3242617e-1	5 0.1240086e-13 -0.4383777e-12
cnt	0	0	4	43
tot	0.38631e-03	0.38631e-03	0.38631e-03	0.38631e-03 0.38631e-03
sum1	0.23510e-37	0.10777e-37	-0.10394e-36	<u>-0.37361e-37</u> 0.38631e-03
max	0.23510e-37	0.11755e-37	0.32426e-15	0.50786e-13 0.32229e-03

4. Outlook

More processes

decays, final 2-bodies, 3-bodies, ...

e.g.
$$e^-e^+ \rightarrow \gamma \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

25126 1-loop level diagrams X 22 tree-level diagrams!