# Neutral Pion-like Resonances at Photon Colliders



7th ACFA 2004

Kingman Cheung, Hsin-Wu Tseng (hep-ph/0410231)

## Outline

- What so unique about  $\gamma\gamma$  collisions in probing new physics
- Highlights from large extra dimensions and Randall-Sundrum scenarios
- Techni-Pions of TC model

## What so unique of $\gamma\gamma$ Collisions

- The SM  $\gamma\gamma \to \gamma\gamma$  amplitude only goes through box diagrams, so highly suppressed.
- Any new physics that involves tree-level exchanges would be easily seen over the SM background.
- In particular, those with anomaly-type couplings to  $\gamma\gamma$ .
- Examples are low-scale gravity, the radion of RS model, techni-pions, ...





The size of the extra dimensions can be as large as  $R \lesssim 1$  mm.

$$\mu_c \equiv R^{-1} \gtrsim 10^{-4} \text{ eV} \ll M_{\text{EW}}$$

$$M_{\rm Pl}^2 \sim M_D^{n+2} R^n$$
 (Gauss)



6



#### Randall Sundrum Model: Radion



The RS model has a 4D massless scalar, radion, about the background metric

$$ds^{2} = e^{-2k\phi T(x)}g_{\mu\nu}(x) dx^{\mu} dx^{\nu} - T^{2}(x)d\phi^{2}$$

T(x) is the modulus field describing the distance between the two branes.

A stabilization mechanism (GW) using a bulk scalar field to generate a potential.

The radion acquires a O(0.1 - 1TeV) mass with a coupling strength 1/TeV.

Interactions of the Radion:

$$\mathcal{L}_{\mathrm{int}} = \frac{\phi}{\Lambda_{\phi}} T^{\mu}_{\mu}(\mathrm{SM}) ,$$

#### RS Radion

8

The radion coupling to a pair of gluons (photons) has a contribution from the trace anomaly.

$$T^{\mu}_{\mu}(\mathrm{SM})^{\mathrm{anom}} = \sum_{a} \frac{\beta_a(g_a)}{2g_a} F^a_{\mu\nu} F^{a\mu\nu} .$$

where  $\beta_{\rm QCD}/2g_s = -(\alpha_s/8\pi)b_{\rm QCD}$  and  $b_{\rm QCD} = 11 - 2n_f/3$ 



where

$$B = b_2 + b_Y - (2 + 3y_W + 3y_W(2 - y_W)f(y_W)) + \frac{8}{3}y_t(1 + (1 - y_t)f(y_t)), y_i = 4m_i^2/2p_1 \cdot p_2.$$





### Higgs-Radion Mixing

Gauge and Poincare invariance do not forbid the mixing between the gravity scalar and the Higgs boson:

$$S_{\xi} = \xi \int d^4x \sqrt{g_{\mathrm{vis}}} R(g_{\mathrm{vis}}) \hat{H}^{\dagger} \hat{H} ,$$

where  $R(g_{vis})$  is the Ricci scalar on the visible brane.

 $\star$  A nonzero  $\xi$  will induce some triple couplings

$$h - \phi - \phi$$
,  $h_{\mu\nu}^{(n)} - h - \phi$ ,  $\phi - \phi - \phi$ ,  $h_{\mu\nu}^{(n)} - \phi - \phi$ 





The corresponding analogs at  $e^+e^-$  and hadronic machines:

$$e^+e^- \to G^{(n)}_{\mu\nu} \to h\phi, \qquad pp \to G^{(n)}_{\mu\nu} \to h\phi$$

have been performed (Cheung, Kim, Song PRD03, PRD04)

### Neutral Techni-Pions

Because of the anomaly type coupling (like  $\pi^0$ - $\gamma$ - $\gamma$ ), we can use  $\gamma\gamma$  collision to probe neutral-pion-like resonances.

Technicolor Straw Man model (TCSM, Lane 99):

- techni-isospin is a good symmetry
- the lightest techni-mesons are constructed solely from the lightest techni-fermion doublet  $(T_U, T_D)$ . They form isotriplet, isosinglet:

pseudoscalar:  $\pi_T^{0,\pm}$ ,  $\pi_T^{\prime 0}$ , vector:  $\rho_T^{0,\pm}$ ,  $\omega_T^0$ 

#### Consider two models of technicolor

### Rescaled QCD model:

• A simple rescaling by the  $v/f_{\pi^0}$ .  $\pi_T^0$  couples to  $\gamma\gamma$ ,  $\gamma Z$ , ZZ only.

#### Low-scale technicolor model:

- It is a multi-scale technicolor models. Quark and lepton masses are generated by broken extended technicolor gauge interactions in the walking technicolor model.
- There are two types of techni-fermions. One set condense at high scale set by v = 246 GeV. One set condense at low scale set by  $f_{\pi_T} = v/\sqrt{N_D}$ .
- Techni-pions will couple to normal quarks and leptons through Yukawa-type couplings.

$$\pi_T^0 \to b \bar b, \ t \bar t$$

•  $\pi_T^0$  couples to  $\gamma\gamma$ ,  $\gamma Z$ , ZZ, gg,  $b\bar{b}$ .

### The Anomaly Vertex

The anomaly coupling to  $\pi_T^0$  -  $G_1$  -  $G_2$ :

$$\mathcal{M} = N_{TC} \mathcal{A}_{G_1 G_2} \frac{g_1 g_2}{2\pi^2 f_{\pi_T}} \epsilon_{\nu} \epsilon_{\lambda} \epsilon^{\nu \lambda \alpha \beta} P_{1\alpha} P_{2\beta} ,$$

with

$$\mathcal{A}_{G_1G_2} = Tr[T^a(\{T_1, T_2\}_L + \{T_1, T_2\}_R)]$$

 $T_i$ 's are the generators with the gauge boson  $G_i$ , and  $T^a$  is the axial current associated with the techni-pion

$$j^{\mu 5a} = \bar{\psi} \gamma^{\mu} \gamma^5 T^a \psi$$

$$\gamma\gamma \to \pi_T$$



$$\mathcal{A}_{\gamma\gamma} = Tr(T^aQ^2)$$
 with  $Q = \begin{pmatrix} Q_u & 0 \\ 0 & Q_d \end{pmatrix}$ ,

|           | $Q_u$ | $Q_d$ |
|-----------|-------|-------|
| rescaled  | 2/3   | -1/3  |
| low-scale | 4/3   | 1/3   |

## $\pi_T^0$ Production

$$\hat{\sigma}(\gamma\gamma \to \pi_T^0) = \frac{\pi m_{\pi_T}}{64} \left( N_{TC} \mathcal{A}_{\gamma\gamma} \frac{e^2}{\pi^2 f_{\pi_T}} \right)^2 \delta^{(0)}(\sqrt{\hat{s}} - m_{\pi_T})$$

Fold with photon luminosity function:

$$\sigma(\gamma\gamma \to \pi_T^0) = \frac{m_{\pi_T}^2}{2^5 s \pi^3} (\frac{N_{TC} \mathcal{A}_{\gamma\gamma} e^2}{f_{\pi_T}})^2 \int_{x_{min}}^{x_{max}} \frac{1}{x} F_{\gamma/e}(x) F_{\gamma/e}(\frac{m_{\pi_T}^2}{sx}) dx$$

where

$$F_{\gamma/e}(x_i) = \frac{1}{D(\xi)} \left[ 1 - x_i + \frac{1}{1 - x_i} - \frac{4x_i}{\xi(1 - x_i)} + \frac{4x_i^2}{\xi^2(1 - x_i)^2} \right]$$

$$\pi_T^0$$
 Decay

#### Rescaled model:

$$\Gamma_{total} = \frac{1}{2^4 \pi m_{\pi_T}} \left[ \frac{c^2 m_{\pi_T}^4}{2^2} + \frac{c_1^2 (m_{\pi_T}^2 - m_Z^2)^3}{(m_{\pi_T}^2 + m_Z^2)} + c_2^2 (m_{\pi_T}^2 - 4m_Z^2)^2 \right]$$

$$B(\pi_T^0 \to \gamma \gamma) = \frac{\Gamma_{\gamma \gamma}}{\Gamma_{total}}$$

#### Low-scale model:

Additional contribution to the total width

$$\Gamma(\pi_T^0 \to b\bar{b})\Big|_{\text{low-scale}} = \frac{1}{16\pi f_{\pi_T}^2} N_b P_b C_{1b}^2 (m_b + m_b)^2$$

$$\pi_T^0$$
 Decay:  $B(\pi_T^0 \to \gamma \gamma)$ 





Rescaled model

low-scale model

# $\gamma\gamma \to \pi_T^0 \to \gamma\gamma$ production





$$\sqrt{s_{ee}} = 0.5 \text{ TeV}$$

$$\sqrt{s_{ee}} = 1 \text{ TeV}$$



$$\sqrt{s_{ee}} = 1.5 \text{ TeV}$$

$$\sqrt{s_{ee}} = 2 \text{ TeV}$$

# Summary

- Light-by-light scattering and  $\gamma\gamma \to ZZ$  proceed via box diagrams in the SM.
- $\gamma\gamma \to \gamma\gamma$  is sensitive to the new physics that involves either tree-level couplings or anomaly-type couplings.
- Low scale gravity, RS radion are interesting examples.
- Neutral techni-pions of many technicolor models have anomalous couplings with photons. Photon colliders are unique in probing these kind of resonances.