Theoretical review on $\sin 2\beta(\phi_1)$ from $b \to s$ penguins

Chun-Khiang Chua

Department of Physics, Chung-Yuan Christian University, Taiwan 32023, Republic of China

Recent theoretical results of the standard model expectations on $\sin 2\beta_{\text{eff}}$ from penguin-dominated $b \rightarrow s$ decays are briefly reviewed.

I. INTRODUCTION

Possible New Physics beyond the Standard Model is being intensively searched via the measurements of time-dependent CP asymmetries in neutral B meson decays into final CP eigenstates defined by

$$\frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = S_f \sin(\Delta m t) + \mathcal{A}_f \cos(\Delta m t), \qquad (1)$$

where Δm is the mass difference of the two neutral B eigenstates, S_f monitors mixing-induced CP asymmetry and \mathcal{A}_f measures direct CP violation. The CP-violating parameters \mathcal{A}_f and \mathcal{S}_f can be expressed as

$$\mathcal{A}_f = -\frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}, \qquad \mathcal{S}_f = \frac{2\operatorname{Im}\lambda_f}{1+|\lambda_f|^2}, \qquad (2)$$

where

$$\lambda_f = \frac{q_B}{p_B} \frac{A(\overline{B}^0 \to f)}{A(B^0 \to f)}.$$
(3)

In the standard model $\lambda_f \approx \eta_f e^{-2i\beta}$ for $b \to s$ penguin-dominated or pure penguin modes with $\eta_f =$ 1 (-1) for final *CP*-even (odd) states and β (or ϕ_1) = $\arg(-V_{cd}V_{cb}^*/V_{td}V_{tb}^*)$. Therefore, it is expected in the Standard Model that $-\eta_f S_f \approx \sin 2\beta$ and $\mathcal{A}_f \approx 0$.

The mixing-induced CP violation in B decays has already been observed in the golden mode $\overline{B}^0 \rightarrow J/\psi K_S$ for several years. The current world average the mixing-induced asymmetry from tree $b \rightarrow c\bar{c}s$ transition is [1]

$$\sin 2\beta = 0.681 \pm 0.025 \,. \tag{4}$$

Results of the time-dependent CP-asymmetries in the $b \rightarrow sq\bar{q}$ induced two-body decays such as $\overline{B}^0 \rightarrow (\phi, \omega, \pi^0, \eta', f_0)K_S$ are shown in Fig. 1 and 2 [1]. In the SM, CP asymmetry in all above-mentioned modes should be equal to $S_{J/\psi K}$ with a small deviation at most $\mathcal{O}(0.1)$ [2]. As discussed in [2], this may originate from the $\mathcal{O}(\lambda^2)$ truncation and from the subdominant (color-suppressed) tree contributions are sensitive to high virtuality, New Physics beyond the SM may contribute to S_f through the heavy particles in the loops. In order to detect the signal of New Physics

unambiguously in the penguin $b \to s$ modes, it is of great importance to examine how much of the deviation of S_f from $S_{J/\psi K}$,

$$\Delta S_f \equiv -\eta_f S_f - S_{J/\psi K_S},\tag{5}$$

is allowed in the SM [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

The decay amplitude for the pure penguin or penguin-dominated charmless B decay in general has the form

$$M(\overline{B}^0 \to f) = V_{ub}V_{us}^*F^u + V_{cb}V_{cs}^*F^c + V_{tb}V_{ts}^*F^t.$$
(6)

Unitarity of the CKM matrix elements leads to

$$M(\overline{B}^{0} \to f) = V_{ub}V_{us}^{*}A_{f}^{u} + V_{cb}V_{cs}^{*}A_{f}^{c}$$
$$\approx A\lambda^{4}R_{b}e^{-i\gamma}A_{f}^{u} + A\lambda^{2}A_{f}^{c}, \quad (7)$$

where we use $A_f^u \equiv F^u - F^t$, $A_f^c \equiv F^c - F^t$ and $R_b \equiv |V_{ud}V_{ub}/(V_{cd}V_{cb})| = \sqrt{\bar{\rho}^2 + \bar{\eta}^2}$. The first term

FIG. 1: Experimental results for $\sin 2\beta_{\text{eff}}$ from $b \to s$ penguin decays [1].

FIG. 2: Experimental results for $\sin 2\beta_{\text{eff}}$ and \mathcal{A}_f from $b \to s$ penguin decays [1].

in the above expression is suppressed by a factor of λ^2 relative to the second term. For a pure penguin decay such as $\overline{B}^0 \to \phi K_S$, it is naively expected that A_f^u is in general comparable to A_f^c in magnitude. Therefore, to a good approximation we have $-\eta_f S_f \approx \sin 2\beta \approx S_{J/\psi K}$. For penguin-dominated modes, such as $\omega K_S, \rho^0 K_S, \pi^0 K_S, A_f^u$ also receives tree contributions from the $b \to u \bar{u}s$ tree operators. Since the Wilson coefficient for the penguin operator is smaller than the one for the tree operator, it is possible that A_f^u is larger than A_f^c . As the $b \to u$ term carries a weak phase γ, S_f may be subjected to a significant "tree pollution".

To quantify the deviation, it is known that [5, 17]

$$\Delta S_f = 2|r_f|\cos 2\beta \sin \gamma \cos \delta_f, \ \mathcal{A}_f = 2|r_f|\sin \gamma \sin \delta_f,$$

with $r_f \equiv (V_{ub}V_{us}^*A_f^u)/(V_{cb}V_{cs}^*A_f^c)$ and $\delta_f \equiv \arg(A_f^u/A_f^c)$ and only terms up to the first order in r_f are shown. Hence, the magnitude of the CP asymmetry difference ΔS_f and direct CP violation are both governed by the size of A_f^u/A_f^c . For the aforementioned penguin-dominated modes, the tree contribution is color suppressed and, hence, in practice, the deviation of S_f is expected to be small [2]. It is useful to note that ΔS_f is proportional to the real part of A_f^u/A_f^c as shown in the above equation.

Below I will briefly review the results of the SM expectations on ΔS_f from the SU(3)_F approach, shortdistance and long-distance calculations.

II. ΔS_f FROM THE SU(3)_F APPROACH

I briefly review the underlying reasoning of the $SU(3)_F$ approach (using [5] as an example) and summarize the present results. Recent reviews of results obtained from the $SU(3)_F$ approach can be found in [18, 19].

For a $\Delta S = 0$ decay, such as $\overline{B}^0 \to f'$ decay, the decay amplitude is given by

$$A(\overline{B}^0 \to f') = V_{ub} V_{ud}^* B_{f'}^u + V_{cb} V_{cd}^* B_{f'}^c.$$
(8)

Note that comparing with the $\Delta S = 1$ amplitude, we have s replaced by d in the CKM matrices, resulting an opposite hierarchy of tree and penguin amplitudes. Hence, ratio of (tree dominated) $\Delta S = 0$ and (penguin dominated) $\Delta S = 1$ amplitudes may provide information on r_f .

Through $SU(3)_F$ symmetry, one can obtain

$$A_f^{u(c)} = \sum_{f'} C_f^{f'} B_{f'}^{u(c)}, \tag{9}$$

where $C_f^{f'}$ are some SU(3) Clebsch-Gordan coefficients. Consequently, a suitable sum of $\overline{B}{}^0 \to f'$ amplitudes gives

$$A'(\overline{B}^0 \to f) \equiv \sum_{f'} C_f^{f'} A(\overline{B}^0 \to f')$$
$$= V_{ub} V_{ud}^* A_f^u + V_{cb} V_{cd}^* A_f^c, \quad (10)$$

which is identical to $A(\overline{B}^0 \to f)$, except with $V_{us,cs}$ replaced by $V_{ud,cd}$. Note that $A'(\overline{B}^0 \to f)$ is not a $\Delta S = 1$ decay amplitude, but a sum of several $\Delta S = 0$ amplitudes. The absolute value of the ratio of $A'(\overline{B}^0 \to f)$ and $A(\overline{B}^0 \to f)$ with a suitable CKM factor, gives

$$\xi_f \equiv \left| \frac{V_{us} A'(\overline{B}^0 \to f)}{V_{ud} A(\overline{B}^0 \to f)} \right| = \left| \frac{r_f + V_{us} V_{cd} / V_{ud} V_{cs}}{1 + r_f} \right|,\tag{11}$$

which can be used to constrain r_f . There are two comments: (i) From the above expression, we see that the bound on r_f cannot be better than $|V_{us}V_{cd}/V_{ud}V_{cs}| = \mathcal{O}(\lambda^2)$. (ii) If no assumption on phases of $\overline{B}^0 \to f'$ amplitudes is made, the above ratio is bounded by

$$\xi_f \le \sum_{f'} |V_{us}/V_{ud}| |C_f^{f'}| \sqrt{\frac{\mathcal{B}(\overline{B}^0 \to f')}{\mathcal{B}(\overline{B}^0 \to f)}}, \qquad (12)$$

which is, however, a rather conservative bound. The bounds work better for modes with less $(\Delta S = 0)$ $\overline{B}^0 \to f'$ modes involved in the sum.

Present results on the bounds are briefly summarized, while more detail discussions can be found in recent reviews [18, 19]. Bounds on various ξ_f are found to be: $\xi_{\eta' K_s} < 0.116$ [18, 20], $\xi_{K^+K^-K^0} < 1.02$

TABLE I: ΔS_f from various short-distance calculations.

ΔS_f	QCDF	pQCD	SCET	Expt
ϕK_S	0.02 ± 0.01	0.03 ± 0.03	0.01	-0.29 ± 0.17
ωK_S	0.13 ± 0.08	$0.16\substack{+0.04 \\ -0.07}$	$-0.18^{+0.06}_{-0.07}$ 0.12 ± 0.03	-0.20 ± 0.24
$\rho^0 K_S$	$-0.08\substack{+0.08\\-0.12}$	$-0.18\substack{+0.10\\-0.07}$	$0.17^{+0.05}_{-0.06} \\ -0.12^{+0.03}_{-0.04}$	$-0.07\substack{+0.25 \\ -0.27}$
$\eta' K_S$	0.01 ± 0.01		-0.02 ± 0.01 -0.01 ± 0.01	-0.07 ± 0.08
ηK_S	$0.10\substack{+0.11 \\ -0.07}$		-0.03 ± 0.17 +0.07 \pm 0.14	
$\pi^0 K_S$	$0.07\substack{+0.05\\-0.04}$	$0.06^{+0.02}_{-0.03}$	0.08 ± 0.03	-0.30 ± 0.19
$f_0 K_S$	0.02 ± 0.00			$+0.17\pm0.07$
$a_0 K_S$	0.02 ± 0.01			
$\bar{K}_0^{*0}\pi^0$	$\begin{array}{c} 0.00^{+0.03}_{-0.05} \\ 0.02^{+0.00}_{-0.02} \end{array}$			

and $\xi_{K_SK_SK_S} < 0.31$ [16]. Other results on $\eta'K_S$ and $\pi^0 K_S$ modes can be found in [20]. These bounds can be improved by measuring relevant $\Delta S = 0$ modes as much as possible. For example, measurements of $\pi^0 \eta^{(\prime)}$ and $\eta^{(\prime)} \eta^{(\prime)}$ rates can improve the $\xi_{\eta'K_S}$ bound (see [21] for recent update on the data).

III. ΔS_f FROM SHORT-DISTANCE CALCULATIONS

A. ΔS_f in two-body modes

There are several QCD-based approaches in calculating hadronic B decays [22, 23, 24]. ΔS_f from calculations of QCDF [9, 10], pQCD [11], SCET [12, 13] are summarized in Table 1. The QCDF calculations on PP, VP modes are from [9] [32], while those in SPmodes are from [10]. The SCET calculations on PPmodes are from [12], while those on VP modes are from [13]. It is interesting to note that (i) ΔS_f are predicted to be small and positive in most cases, while experimental central values for ΔS_f are all negative, except the one from f_0K_S ; (ii) In most cases, QCDF and pQCD results agree with each other, since the main difference of these two approach is the (penguin) annihilation contribution, which hardly affects S_f ; (iii) The SCET results involve some non-perturbative contributions fitted from data. These contributions affect ΔS_f . In some modes results different from other short distance calculations are obtained.

It is instructive to understand the size and sign of ΔS_f in the QCDF approach [9], for example. Recall that ΔS_f is proportional to the real part of A_f^u/A_f^c , which we shall pay attention to. We follow [9] to de-

note a complex number x by [x] if $\operatorname{Re}(x) > 0$. In QCDF the dominant contributions to A_f^u/A_f^c are basically given by [9, 25]

$$\begin{split} \frac{A^u_{\phi K_S}}{A^c_{\phi K_S}} &\sim \frac{\left[-(a^u_4 + r_\chi a^u_6)\right]}{\left[-(a^c_4 + r_\chi a^c_6)\right]} \sim \frac{\left[-P^u\right]}{\left[-P^c\right]}, \\ \frac{A^u_{\phi K_S}}{A^c_{\omega K_S}} &\sim \frac{+\left[a^u_4 - r_\chi a^u_6\right] + \left[a^u_2 R\right]}{+\left[a^c_4 - r_\chi a^c_6\right]} \sim \frac{+\left[P^u\right] + \left[C\right]}{+\left[P^c\right]}, \\ \frac{A^u_{\rho K_S}}{A^c_{\rho K_S}} &\sim \frac{-\left[a^u_4 - r_\chi a^u_6\right] + \left[a^u_2 R\right]}{-\left[a^c_4 - r_\chi a^c_6\right]} \sim \frac{-\left[P^u\right] + \left[C\right]}{-\left[P^c\right]}, \quad (13) \\ \frac{A^u_{\pi^0 K_S}}{A^c_{\pi^0 K_S}} &\sim \frac{\left[-(a^u_4 + r_\chi a^u_6)\right] + \left[a^u_2 R'\right]}{\left[-(a^c_4 + r_\chi a^c_6)\right]} \sim \frac{\left[-P^u\right] + \left[C\right]}{\left[-P^c\right]}, \\ \frac{A^u_{\eta' K_S}}{A^c_{\eta' K_S}} &\sim \frac{-\left[-(a^u_4 + r_\chi a^u_6)\right] + \left[a^u_2 R''\right]}{-\left[-(a^c_4 + r_\chi a^c_6)\right]} \sim \frac{\left[-P^u\right] - \left[C\right]}{\left[-P^c\right]}, \end{split}$$

where a_i^p are effective Wilson coefficients [33], $r_{\chi} = O(1)$ are the chiral factors and $R^{(\prime,\prime\prime)}$ are (real and positive) ratios of form factors and decay constants.

From Eq.(8), it is clear that $\Delta S_f > 0$ for ϕK_S , ωK_S , $\pi^0 K_S$, since their $\operatorname{Re}(A_f^u/A_f^c)$ can only be positive. Furthermore, due to the cancellation between a_4 and $r_{\chi}a_6$ in the ωK_S amplitude, the corresponding penguin contribution is suppressed. This leads to a large and positive $\Delta S_{\omega K_S}$ as shown in Table I. For the cases of $\rho^0 K_S$ and $\eta' \check{K}_S$, there are chances for ΔS_f to be positive or negative. The different signs in front of [P] in $\rho^0 K_S$ and ωK_S are originated from the second term of the wave functions $(u\bar{u} \pm d\bar{d})/\sqrt{2}$ of ω and ρ^0 in the $\overline{B}^0 \to \omega$ and $\overline{B}^0 \to \rho^0$ transitions, respectively. The [P] in $\rho^0 K_S$ is also suppressed as the one in ωK_S , resulting a negative $\Delta S_{\rho^0 K_S}$. On the other hand, [-P] in $\eta' K_S$ is not only unsuppressed (no cancellation in the a_4 and a_6 terms), but, in fact, is further enhanced due to the constructive interference of various penguin amplitudes [26]. This enhancement is responsible for the large $\eta' K_S$ rate [26] and also for the small $\Delta S_{\eta' K_S}$ [9, 14].

B. ΔS_f in *KKK* modes

 $\overline{B}{}^0 \to K^+ K^- K_S$ and $\overline{B}{}^0 \to K_S K_S K_S$ are penguindominated and pure penguin decays, respectively. They are also used to extracted $\sin 2\beta_{\text{eff}}$ with results shown in Fig. 1 and 2.

Three-body modes are in general more complicated than two-body modes. A factorization approach is used to study these KKK modes [15]. For a review on charmless three body modes, one is referred to [31]. Results of CP asymmetries for these modes are summarized in Table II.

To study ΔS_f and \mathcal{A}_f , it is crucial to know the size of the $b \to u$ transition term (A_f^u) . For the purepenguin $K_S K_S K_S$ mode, the smallness of $\Delta S_{K_S K_S K_S}$ and $\mathcal{A}_{K_S K_S K_S}$ can be easily understood. For the

Modes \mathcal{S}_{f} ΔS_f Expt $\mathcal{A}_f(\%)$ Expt $\begin{array}{lll} K^+K^-K_S & 0.728 \substack{+0.001 + 0.002 + 0.009 \\ -0.002 - 0.001 - 0.020 \\ K_SK_SK_S & 0.719 \substack{+0.000 + 0.000 + 0.008 \\ -0.000 - 0.000 - 0.019 \end{array}$ $0.041^{+0.028}_{-0.033}$ $4.63^{+1.35+0.53+0.40}_{-1.01-0.54-0.34}$ 0.05 ± 0.11 -7 ± 8 $0.69^{+0.01+0.01+0.05}_{-0.01-0.03-0.07}$ $0.039\substack{+0.027\\-0.032}$ -0.10 ± 0.20 14 ± 15 $\begin{array}{c} 0.729 \substack{+0.000 + 0.001 + 0.009 \\ -0.000 - 0.001 - 0.020 \\ 0.718 \substack{+0.001 + 0.017 + 0.008 \\ -0.001 - 0.007 - 0.018 \end{array}$ $0.049^{+0.027}_{-0.032}$ $0.28\substack{+0.09+0.07+0.02\\-0.06-0.06-0.02}$ $K_S \pi^0 \pi^0$ -1.20 ± 0.41 -18 ± 22 $4.94_{-0.02-0.05-0.40}^{+0.03+0.03+0.32}$ $0.038\substack{+0.031\\-0.032}$ $K_S \pi^+ \pi$

TABLE II: Mixing-induced and direct CP asymmetries for various charmless 3-body B decays [15, 31]. Experimental results are taken from [1].

 $K^+K^-K_S$ mode, there is a $b \to u$ transition in the $\langle \overline{B}{}^0 \to K^+K_S \rangle \otimes \langle 0 \to K^- \rangle$ term. It has the potential of giving large tree pollution to $\Delta S_{K^+K^-K_S}$.

It is useful to note that the $K^+K^-K_S$ final state in the $b \rightarrow u$ transition is not CP self-conjugated. This can be easily seen by noting that the K^- meson from the $\langle \overline{B}{}^0 \to K^+ K_S \rangle \times \langle 0 \to K^- \rangle$ term is produced from the virtual W^- meson. Therefore, the *CP* conjugated term, $\langle \overline{B}{}^0 \to K^- K_S \rangle \times \langle 0 \to K^+ \rangle$ is missing in the weak decay amplitude. Hence, the $b \rightarrow u$ transition term should contribute to both CP-even and *CP*-odd configurations with similar strength. Consequently, information in the CP-odd part can be used to constrain its size and impact on ΔS_f and \mathcal{A}_f . Indeed, it is found that the *CP*-odd part is highly dominated by ϕK_S , where other contributions (at $m_{K^+K^-} \neq m_{\phi}$) are highly suppressed [1]. Since the $\langle \overline{B}{}^0 \to K^+ K_S \rangle \times \langle 0 \to K^- \rangle$ term favors a large $m_{K^+K^-}$ region, which is clearly separated from the ϕ -resonance region, the result of the *CP*-odd configuration strongly constrains the contribution from this $b \rightarrow u$ transition term. Therefore, the tree pollution is constrained and the $\Delta S_{K^+K^-K_S}$ should not be large.

IV. FSI CONTRIBUTIONS TO ΔS_f

It was realized recently that long distance FSI may play indispensable role in B decays [27]. The possibility of final-state interactions in bringing in possible tree pollution sources to S_f are considered in [14]. Both A_f^u and A_f^c will receive long-distance tree and penguin contributions from rescattering of some intermediate states. In particular, there may be some dynamical enhancement on light *u*-quark loop. If tree contributions to A_f^u are sizable, then final-state rescattering will have the potential of pushing S_f away from the naive expectation. Take the penguin-dominated decay $\overline{B}^0 \to \omega \overline{K}^0$ as an illustration. It can proceed through the weak decay $\overline{B}^0 \to K^{*-}\pi^+$ followed by the rescattering $K^{*-}\pi^+ \to \omega \overline{K}^0$. The tree contribution to $\overline{B}^0 \to K^{*-}\pi^+$, which is color allowed, turns out to be comparable to the penguin one because of the absence of the chiral enhancement characterized by the a_6 penguin term. Consequently, even within

the framework of the SM, final-state rescattering may provide a mechanism of tree pollution to S_f . By the same token, we note that although $\overline{B}^0 \to \phi \overline{K}^0$ is a pure penguin process at short distances, it does receive tree contributions via long-distance rescattering. Note that in addition to these charmless final states contributions, there are also contributions from charmful $D_s^{(*)} D^{(*)}$ final states, see Fig. 3. These finalstate rescatterings provide the long-distance *u*- and *c*-penguin contributions.

An updated version [28] of results in [14] are shown in Table III. Several comments are in order. (i) ϕK_S and $\eta' K_S$ are the theoretical and experimental cleanest modes for measuring $\sin 2\beta_{\text{eff}}$ in these penguin modes. The constructive interference behavior of penguins in the $\eta' K_S$ mode is still hold in the LD case, resulting a tiny $\Delta S_{\eta' K_S}$. (ii) Tree pollutions in ωK_S and $\rho^0 K_S$ are diluted due to the LD *c*-penguin contributions. (iii) In general, in this approach, the main contributions to decay amplitudes are charming-penguin like and do not sizably affect S_f .

Recent measurements on $K\pi$ direct CP violations show a more than 5 σ deviation (known as the $K\pi$ puzzle) between $\mathcal{A}(B^- \to K^-\pi^0)$ and $\mathcal{A}(\overline{B}{}^0 \to K^-\pi^+)$ [1]. The data indicates the needs of other

FIG. 3: Final-state rescattering contributions to the $\overline{B}{}^0 \to \phi \overline{K}{}^0$ decay.

Final State	ΔS_f			$\mathcal{A}_f(\%)$		
	SD	SD+LD	Expt	SD	SD+LD	Expt
ϕK_S	$0.02^{+0.01}_{-0.02}$	$0.04\substack{+0.01+0.01\\-0.02-0.02}$	-0.29 ± 0.17	$0.8^{+0.5}_{-0.2}$	$-2.3^{+0.9+2.2}_{-1.0-5.1}$	1 ± 12
ωK_S	$0.12^{+0.06}_{-0.05}$	$0.02\substack{+0.03+0.03\\-0.04-0.02}$	-0.20 ± 0.24	$-6.8^{+2.4}_{-4.0}$	$-13.5^{+3.5+2.4}_{-5.7-1.5}$	20 ± 19
$ ho^0 K_S$	$-0.08\substack{+0.03\\-0.10}$	$-0.04\substack{+0.07+0.10\\-0.10-0.12}$	$-0.07\substack{+0.25\\-0.27}$	$7.8^{+4.5}_{-2.0}$	$48.9^{+15.8+5.8}_{-13.7-12.5}$	-2 ± 29
$\eta' K_S$	$0.01\substack{+0.01\\-0.02}$	$0.00\substack{+0.01+0.00\\-0.02-0.00}$	-0.07 ± 0.08	$1.7^{+0.4}_{-0.3}$	$2.1_{-0.5-0.4}^{+0.2+0.1}$	9 ± 6
ηK_S	$0.07\substack{+0.03\\-0.03}$	$0.07\substack{+0.03+0.00\\-0.03-0.01}$	_	$-5.7^{+2.0}_{-5.5}$	$-3.9^{+1.8+2.5}_{-5.0-1.6}$	_
$\pi^0 K_S$	$0.06\substack{+0.03\\-0.03}$	$0.04^{+0.01+0.02}_{-0.02-0.02}$	-0.30 ± 0.19	$-3.2^{+1.1}_{-2.3}$	$3.7^{+1.9+1.7}_{-1.6-1.7}$	-14 ± 11

TABLE III: Direct CP asymmetry parameter \mathcal{A}_f and the mixing-induced CP parameter $\Delta \mathcal{S}_f^{SD+LD}$ for various modes. The first and second theoretical errors correspond to the SD and LD ones, respectively [14].

sub-leading contributions, such as long distance FSI and charming penguins and so on (see, for example [29, 30]). It is found that in cases where the $K\pi$ direct CP data are reproduced, these sub-leading contributions do not sizably affect the magnitudes of ΔS_f [29], but some of the signs are different from the short-distance expectations [30].

V. CONCLUSIONS

Various theoretical approaches and results on ΔS_f are briefly reviewed. Considerable progress has been made. From these results we see that the prediction on signs of ΔS_f are more or less fluctuating and may be subjected to change when more hadronic contributions are taken into account, on the contrary, the predictions on the sizes of ΔS_f should be more robust. Since the predictions on sizes of ΔS_f , which are not sizable in most cases, have better agreement among various approaches. At the same time for modes with small $\Delta S_f (\leq 5\%)$, we do not expect sizable direct CPviolations. Measurements on direct CP violations, some $\Delta S = 0$ rates and three-body rates and spectra can provide useful information that can be used to improve our theoretical predictions on ΔS_f . To further improve the theoretical accuracy more works are needed to effectively reduce the hadronic uncertainties.

Acknowledgments

I am grateful to the organizers of FPCP2008 for inviting me to the exciting conference and to Hai-Yang Cheng and Amarjit Soni for very fruitful collaboration.

- E. Barberio *et al.*, [Heavy Flavor Averaging Group (HFAG)], arXiv:hep-ex/0603003; http://www.slac.stanford.edu/xorg/hfag/; J Ocariz, talk given in this conference.
- [2] D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
- [3] Y. Grossman and M.P. Warah, Phys. Lett. B 395, 241 (1997).
- [4] Y. Grossman, G. Isidori, and M.P. Warah, Phys. Rev. D 58, 057504 (1998).
- [5] Y. Grossman, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 68, 015004 (2003).
- [6] M. Gronau, Y. Grossman, and J.L. Rosner, Phys. Lett. B 579, 331 (2004).
- [7] M. Gronau, J.L. Rosner, and J. Zupan, Phys. Lett. B 596, 107 (2004).
- [8] M. Gronau and J. L. Rosner, Phys. Rev. D 71, 074019 (2005).
- [9] M. Beneke, Phys. Lett. B 620, 143 (2005).
- [10] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006).
- [11] H. n. Li, S. Mishima and A. I. Sanda, Phys. Rev. D

72, 114005 (2005); H. n. Li and S. Mishima, Phys. Rev. D **74**, 094020 (2006) [arXiv:hep-ph/0608277].

- [12] A. R. Williamson and J. Zupan, arXiv:hep-ph/0601214.
- [13] W. Wang, Y. M. Wang, D. S. Yang and C. D. Lu, arXiv:0801.3123 [hep-ph].
- [14] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 72, 014006 (2005).
- [15] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 72, 094003 (2005). Phys. Rev. D 76, 094006 (2007) [arXiv:0704.1049 [hep-ph]].
- [16] G. Engelhard and G. Raz, Phys. Rev. D 72, 114017 (2005); G. Engelhard, Y. Nir and G. Raz, Phys. Rev. D 72, 075013 (2005).
- [17] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989); Y. Grossman, A.L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).
- M. Gronau, Nucl. Phys. Proc. Suppl. 156, 69 (2006);
 J. Zupan, In the Proceedings of 5th Flavor Physics and CP Violation Conference (FPCP 2007), Bled, Slovenia, 12-16 May 2007, pp 012 [arXiv:0707.1323 [hep-

ph]].

- [19] M. Artuso *et al.*, arXiv:0801.1833 [hep-ph].
- [20] M. Gronau, J. L. Rosner and J. Zupan, Phys. Rev. D 74, 093003 (2006) [arXiv:hep-ph/0608085].
- [21] W. Ford, talk given in this conference.
- M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B 591, 313 (2000); *ibid.* B 606, 245 (2001).
- [23] Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
- [24] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001).
- [25] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
- [26] M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003).

- [27] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005).
- [28] C. K. Chua, In the Proceedings of 4th Flavor Physics and CP Violation Conference (FPCP 2006), Vancouver, British Columbia, Canada, 9-12 Apr 2006, pp 008 [arXiv:hep-ph/0605301].
- [29] C. K. Chua, arXiv:0712.4187 [hep-ph].
- [30] M. Pierini, talk given at The 2007 Europhysics Conference on High Energy Physics (EPS2007), 19-25 July 2007, Manchester, England; M. Ciuchini et al., in preparation, some results are given in [19].
- [31] H. Y. Cheng, talk given in this conference; arXiv:0806.2895 [hep-ph].
- [32] Results obtained agree with those in [14].
- [33] In general, we have $\text{Re}(a_2) > 0$, $\text{Re}(a_6) < \text{Re}(a_4) < 0$.