CP Violation in the B_s^0 System at the Tevatron

Derek Strom Northwestern University On Behalf of the CDF and DØ Collaborations

Flavor Physics & CP Violation Conference National Taiwan University, Taipei, Taiwan May 5, 2008

Introduction to CPV in B_{s}^{0} Decays

CPV studies in B_s^o decays aim to understand the source of CP Violation.

One of the last remaining places to search for New Physics!

The success of the *B*-factories has shown that large (>~10%) contributions of NP are excluded from tree-level B^+ and B^0 decays.

 B_s^{o} decays are much less constrained and even if the B_s^{o} mixing measurement constrains the strength of NP, current experimental knowledge does not exclude large (up to π) phases from NP.

CP Violation in B_s^{o} is an excellent place to search for NP since it is predicted to be small in the SM. A measurement of a large CP phase is a clear indication of NP.

The Tevatron at Fermilab

Proton on antiproton collisions at 1.96 TeV energy

Collider Experiments CDF and DØ

Tevatron running with peak luminosity \sim 315 x 10³⁰ cm⁻² s⁻¹

~3.9 fb⁻¹ delivered, ~3.4 fb⁻¹ recorded per experiment

Run II Integrated Luminosity 19 April 2002 - 27 April 2008 4.0 3.8 3.90 3.6 3.4 3.2 3.0 2.8 2.6 2.4 **Continuosity (/fb)** 2.2 2.0 1.8 1.6 1.4 J/ W()= 1.2 1.0 0.8 — Delivered 0.6 0.4 Recorded 0.2 0.0 Apr- Jul-Apr-Jul- Oct-Jan. Apr.

A lot of data already collected and waiting to be analyzed!

FPCP Taipei Taiwan May 5 - 9, 2008

Derek Strom

Relevant for B physics

CDF Tracker: mass resolution, vertexing Silicon & L00 Large radii drift chamber excellent momentum resolution dE/dx and particle id Triggered Muon Coverage: |η| < 1 Time of flight, particle ID

DØ Tracker: coverage, vertexing Silicon & scintillating fiber Small radii, |n| < 2 New layer 0 silicon on beam pipe Improves impact parameter res. Triggered Muon Coverage: |n| < 2 Single muon Di-muon

$$B_{s}^{\ 0} - \overline{B}_{s}^{\ 0} \text{ Mixing}$$
Flavor eigenstates propagate according to the Schrodinger Eq

$$i \frac{d}{dt} \begin{pmatrix} B_{s}(t) \\ \overline{B}_{s}(t) \end{pmatrix} = \left(\begin{bmatrix} m & M_{12}^{s} \\ M_{12}^{s*} & m \end{bmatrix} - \frac{i}{2} \begin{bmatrix} \Gamma & \Gamma_{12}^{s} \\ \Gamma_{12}^{s*} & \Gamma \end{bmatrix} \right) \begin{pmatrix} B_{s}(t) \\ \overline{B}_{s}(t) \end{pmatrix}$$

Diagonalizing gives two physically observed "Heavy" and "Light" mass eigenstates

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

$$\begin{split} & \text{Observables} \\ & \Delta M_{s} = M_{H} - M_{L} \approx 2|M_{12}| \\ & \Delta \Gamma^{CP} = \Gamma_{even} - \Gamma_{odd} \approx 2|\Gamma_{12}| \\ & \Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}| \cos(\phi_{s}) \qquad \phi_{s} = \arg(-M_{12}/\Gamma_{12}) \end{split}$$

CP Violation in the
$$B_s^0$$
 System
CKM Matrix $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$
SM accommodates CPV by introducing a single complex phase in the CKM matrix
 B_s^0 unitary condition $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$
 Im
 $V_{ts} >> V_{ub}$
 $V_{ts}V_{tb}^*/V_{cs}V_{cb}^*$
 $V_{us}V_{ub}^*/V_{cs}V_{cb}^*$
 I
 Re
 Re

Derek Strom

CP Violation in the B_{s}^{o} System

How could new physics affect these phases?

$$2\beta_s^{SM} \rightarrow 2\beta_s^{SM} - \phi_s^{NP}$$

$$\phi_s^{SM} = \arg[-M_{12}/\Gamma_{12}] \rightarrow \phi_s^{SM} + \phi_s^{NP}$$

$$\sim 0.004$$

Both CDF and DØ measure the phase responsible for CP violation in $B_s^0 \rightarrow J/\psi \phi$ decays

$$\phi_s^{J/\psi\phi} = -2\beta_s^{J/\psi\phi} \approx \phi_s^{NP}$$
 DØ CDF If large

Topics Covered in this Talk

Semileptonic Asymmetry

Mixing and Decay $B_{s}^{0} \rightarrow J/\psi \varphi$

DØ, 1.3 fb⁻¹ PRL 98, 151801 (2007)

DØ, 1.0 fb⁻¹ PRD 74, 092001 (2006)

Combined: PRD 76, 057101 (2007)

CDF, 1.6 fb⁻¹ CDF note 9015

DØ, 1.1 fb⁻¹ PRL 98, 121801 (2007)

DØ, 2.8 fb⁻¹ submitted to PRL

CDF, 1.35 fb⁻¹ PRL 100, 161802 (2008)

CP Violation: Semileptonic Asymmetry

CP Violation: Semileptonic Asymmetry

Measured semileptonic asymmetries

$$\begin{array}{ll} D\emptyset, \ 1.3 \ \text{fb}^{-1}, \ \text{PRL 98, 151801 (2007)} \\ N(B_s^0 \to D_s^- \mu^+ \nu) \end{array} & a_{sl}^s \equiv \frac{N(\bar{B}_s \to f) - N(B_s \to \bar{f})}{N(\bar{B}_s \to f) + N(B_s \to \bar{f})} & = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s \end{array}$$

 $N(\bar{B}^{0}_{s} \rightarrow D^{+}_{s}\mu^{-}\bar{\nu})$ +
DØ, 1 fb⁻¹, PRD 74, 092001 (2006) $N(b\bar{b} \rightarrow \mu^{+}\mu^{+}X)$ vs. $N(b\bar{b} \rightarrow \mu^{-}\mu^{-}X)$

 $a_{SL}^{s} = 0.0001 \pm 0.0090$ PRD 76, 057101 (2007)

CDF, 1.6 fb⁻¹, CDF Note 9015

$$N(b\overline{b} \to \mu^+ \mu^+ X)$$

vs.
 $N(b\overline{b} \to \mu^- \mu^- X)$
 $a_{SL}^s = 0.020 \pm 0.021 \pm 0.018$

Regular flipping of polarity of solenoid (tracking) and toroid (muons) helps control systematic uncertainties.

CP Violation in $B_{s}^{0} \rightarrow J/\psi \Phi$ decays

CP violation becomes observable in these decays due to the interference between the mixing and decay amplitudes.

 $J/\psi + \Phi$ is an admixture of states that are both CP(even) and CP(odd)

Angular analysis is used to separate the CP components and measure the lifetimes of each component

Flavor Tagging gives us useful information on the flavor of the produced B_c^o meson

$$B_{s}^{0} \rightarrow J/\psi \Phi$$

 J/ψ and ϕ are vector particles and have definite angular distributions for CP-even and CP-odd final states.

 $B_s \rightarrow V1 + V2 (J/\psi + \varphi)$ Spin $0 \rightarrow 1 + 1$ $\ell = 0, 1, 2$

Parameterized angular decay in the Transversity basis.

Angular dependencies are described in terms of polarization amplitudes:

 A_o : Both vectors longitudinally polarized ($\ell = 0,2$)CP even A_o : Transversely polarized and vectors parallel ($\ell = 0,2$)CP even A_o : Transversely polarized and vectors perpendicular ($\ell = 1$)CP odd

$$A_{\parallel}(0)|^2 + |A_{\perp}(0)|^2 + |A_0(0)|^2 = 1$$

Angular Analysis

Angles θ (transversity), φ and ψ . ψ is the angle between $\vec{p'}_{K+}$ and the *x*-axis in the rest frame of ϕ .

FPCP Taipei Taiwan May 5 - 9, 2008

Derek Strom

Differential Decay Rate and Amplitudes

$$\frac{d^{4}\Gamma\left[B_{s}^{0}(t)\rightarrow J/\psi(\rightarrow\mu^{+}\mu^{-})\phi(\rightarrow K^{+}K^{-})\right]}{d\cos\theta \ d\varphi \ d\cos\psi \ dt} \propto \\ 2\cos^{2}\psi(1-\sin^{2}\theta\cos^{2}\varphi)\cdot|A_{0}(t)|^{2} \\ +\sin^{2}\psi(1-\sin^{2}\theta\sin^{2}\varphi)\cdot|A_{\parallel}(t)|^{2} \\ +\sin^{2}\psi\sin^{2}\theta\cdot|A_{\perp}(t)|^{2} \\ +(1/\sqrt{2})\sin2\psi\sin^{2}\theta\sin2\varphi\cdot\Re(A_{0}^{*}(t)A_{\parallel}(t)) \\ +(1/\sqrt{2})\sin2\psi\sin2\theta\cos\varphi\cdot\Re(A_{0}^{*}(t)A_{\parallel}(t)) \\ -\sin^{2}\psi\sin2\theta\sin\varphi\cdot\Im(A_{\parallel}^{*}(t)A_{\perp}(t)).$$

Polarization Amplitudes

Upper sign: Time evolution of pure $\underline{B}_{s}^{0} \rightarrow J/\psi \Phi$ at t=0 Lower sign: Time evolution of pure $\overline{B}_{s}^{0} \rightarrow J/\psi \Phi$ at t=0

$$\begin{aligned} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} \left[\mathcal{T}_{+} \pm e^{-\overline{\Gamma}t} \sin \phi_{s} \sin(\Delta M_{s}t) \right], \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} \left[\mathcal{T}_{+} \pm e^{-\overline{\Gamma}t} \sin \phi_{s} \sin(\Delta M_{s}t) \right], \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} \left[\mathcal{T}_{-} \mp e^{-\overline{\Gamma}t} \sin \phi_{s} \sin(\Delta M_{s}t) \right], \\ \text{where} \\ \mathcal{T}_{\pm} &= (1/2) \left[(1 \pm \cos \phi_{s}) e^{-\Gamma_{L}t} + (1 \mp \cos \phi_{s}) e^{-\Gamma_{H}t} \right]. \\ \Re(A_{0}^{*}(t)A_{\parallel}(t)) &= |A_{0}(0)||A_{\parallel}(0)|\cos(\delta_{2} - \delta_{1})[\mathcal{T}_{+} \\ \pm e^{-\overline{\Gamma}t} \sin \phi_{s} \sin(\Delta M_{s}t)], \end{aligned}$$
$$\Im(A_{0}^{*}(t)A_{\perp}(t)) &= |A_{0}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm \sin \delta_{2}\cos(\Delta M_{s}t) \mp \cos \delta_{2}\sin(\Delta M_{s}t)\cos\phi_{s}) - (1/2) \left(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t} \right) \sin \phi_{s} \cos \delta_{2}], \end{aligned}$$

 $\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm \sin \delta_{1} \cos(\Delta M_{s}t) \mp \cos \delta_{1} \sin(\Delta M_{s}t) \cos \phi_{s}) - (1/2)(e^{-\overline{\Gamma}_{H}t} - e^{-\overline{\Gamma}_{L}t}) \sin \phi_{s} \cos \delta_{1}],$

Polarization Amplitudes (no Flavor Tagging)

Assuming equal production rate of B_s^o and \overline{B}_s^o Opposite terms vanish, but still sensitive to φ_s

$$\begin{split} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} \begin{bmatrix} \mathcal{T}_{+} \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} \begin{bmatrix} \mathcal{T}_{+} \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} \begin{bmatrix} \mathcal{T}_{-} \\ |A_{\perp}(t)|^{2} \end{bmatrix} , \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} \begin{bmatrix} \mathcal{T}_{-} \\ |A_{\perp}(t)|^{2} \end{bmatrix} , \\ \end{split}$$
where
$$\begin{aligned} \mathcal{T}_{\pm} &= (1/2) \left[(1 \pm \cos \phi_{s}) e^{-\Gamma_{L} t} + (1 \mp \cos \phi_{s}) e^{-\Gamma_{H} t} \right] . \end{split}$$

$$\Re(A_0^*(t)A_{\parallel}(t)) = |A_0(0)||A_{\parallel}(0)|\cos(\delta_2 - \delta_1)[\mathcal{T}_+],$$

$$\Im(A_{0}^{*}(t)A_{\perp}(t)) = |A_{0}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t} - (1/2)(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t})\sin\phi_{s} \cos\delta_{2}],$$

$$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t} - (1/2)(e^{-\overline{\Gamma}Ht} - e^{-\overline{\Gamma}Lt})\sin\phi_{s} \cos\delta_{1}],$$

Sensitivity to ϕ_{s} (no Flavor Tagging)

CDF

However, four-fold ambiguity reduces to two-fold after applying flavor tagging.

Flavor Tagging Measurement of B_{s}^{o} or $\overline{B_{s}}^{o}$ flavor at production Opposite Side Reconstructed (Same) Side J/ψ μ Lepton В В S K^+ Κ Jet charge Ø $\mathcal{D} \equiv \frac{N_{\rm cor} - N_{\rm Wr}}{N_{\rm cor} + N_{\rm Wr}},$ b quarks produced in pairs $N_{\rm cor} + N_{\rm Wr}$ $\varepsilon \equiv$ N_{tot} εD^2 for $B_c^0 \rightarrow J/\psi \phi$ is 4 - 5 % $\mathcal{P} \equiv \varepsilon \mathcal{D}^2.$

FPCP Taipei Taiwan May 5 - 9, 2008

Derek Strom

Derek Strom

Results with Flavor Tagging

 $2B_{2} - \Delta\Gamma$ Confidence Region

Probability of fluctuation from SM to observation is 15% (1.5σ)

FPCP Taipei Taiwan May 5 - 9, 2008

2β,

Standard model New physics models

∆r (ps

0.4

0.2

0.0

-0.2

-0.4

-0.6

∆Γ [ps⁻¹

0.4

0.2

0.0

-0.2

-0.4

Results with Flavor Tagging

Derek Strom

Summary

CP Violation is an excellent place to search for new physics beyond the Standard Model.

A large ϕ_{ϵ} would be a clear indicator of new physics.

CP studies in the B_s^o system at CDF and DØ possibly already providing hints of new physics.

A lot of data has been collected and waiting to be analyzed.

Increased datasets will shed more light on the status of CP Violation in the B_{c}^{0} system in the near future.

Backup Slides

FPCP Taipei Taiwan May 5 - 9, 2008

Derek Strom

Systematic Uncertainties

Source	$ar{ au}_s$ (ps)	$\Delta \Gamma_s ~({ m ps}^{-1})$
Acceptance	± 0.003	± 0.003
Signal mass model	-0.01	+0.006
Flavor purity estimate	± 0.001	± 0.001
Background model	+0.003	+0.02
ΔM_s input	± 0.01	± 0.001
Total	± 0.01	+0.02, -0.01

Source	$ A_{\perp}(0) $	$ A_0(0) ^2 - A_{ }(0) ^2$	ϕ_s
Acceptance	± 0.005	±0.03	± 0.005
Signal mass model	-0.003	-0.001	-0.006
Flavor purity estimate	± 0.001	± 0.001	± 0.01
Background model	-0.02	-0.01	+0.02
${oldsymbol{\Delta}} M_s$ input	± 0.001	± 0.001	+0.06, -0.01
Total	+0.01, -0.02	±0.03	+0.07, -0.02

Likelihood Profile

Likelihood profile of ϕ_s .

FPCP Taipei Taiwan May 5 - 9, 2008

Derek Strom

Combination

Derek Strom