FPCP08, Taipei, May 5, 2008

Theoretical Review on CP Violation in Rare B Decays

Cheng-Wei Chiang

National Central University & Academia Sinica

CP Violation in **B** Physics

Importance of CP Violation

Sakharov 1967

- The Sakharov conditions for the observed Universe:
 - Baryon number violation;
 - CP violation; and
 - Departure from thermal equilibrium.
- Studying and understanding the origin of CP violation in the SM is thus crucial to cosmology and discovering new physics.
- Recently, there is an attempt to connect current observations in *B* physics to cosmology by including fourth-generation fermions into the game.

KM Mechanism

The couplings between the up-type and down-type quarks are described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix within the SM.
 Cabibbo 1963; Kobayashi & Maskawa 1973

- Using the Wolfenstein parameterization, CP violation is encoded by the parameter η .
- Among the elements, V_{ub} and V_{td} carry the largest weak phases, but are difficult to extract due to their smallness.

C.W. Chiang

Unitarity Triangle

• Unitarity relation for V_{ub} and V_{td} : $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$.

It can be visualized as a triangle on a complex plane whose *area* characterizes CPV.

C.W. Chiang

CPV in B Physics

Experimental Constraints

• The state-of-art global fits for the unitarity triangle are:

C.W. Chiang

CPV in B Physics

Observed CP Violation in Rare *B* **Decays**

The *indirect* CP violation in the B system has been first established in 2001, and is now measured at a precision <5%.

- The *direct* CP violation in the *B* system has first been observed in the $B_d \rightarrow K^+\pi^-$ decay in 2004, a result of interference between tree and QCD-penguin amplitudes.
- Currently, DCPV observed at the 3σ level or more:

$\mathcal{A}_{CP}(K^+\pi^-)$	-0.097 ± 0.012	8.1σ	HFAG 2008 Spring
${\cal A}_{CP}(\pi^+\pi^-)$	0.38 ± 0.07	5.4σ	
${\cal A}_{CP}(K^{*0}\eta)$	0.19 ± 0.05	3.8σ	
${\cal A}_{CP}(ho^0 K^+)$	0.37 ± 0.11	3.4σ	
${\cal A}_{CP}(ho^{\pm}\pi^{\mp})$	-0.13 ± 0.04	3.3σ	
${\cal A}_{CP}(\eta K^+)$	-0.27 ± 0.09	3σ	

C.W. Chiang

Importance of Rare Decays

- Charmless two-body hadronic *B* decay modes are often sensitive to V_{td} (mixing) and/or V_{ub} (decay).
- Information of weak phases in the UT are often cleanly coded in their CP-averaged rates and CP asymmetries.
- These decays are thus charmful and can play a more important role in fixing the UT.
- With increasing precision on the BR's and CPA's, it is possible to provide an additional constraint on the (ρ, η) vertex and/or some hints for new physics via a global fit.

Direct CP Asymmetry

- Strong interactions contribute additional phases to decay amplitudes in a *flavor-blinded* way.
- Consider rate CP asymmetry of modes with the amplitudes:

 $A_1 + A_2$

• A sizeable CPA for experimental observation requires the interference of at least *two* comparable amplitudes with *large relative* strong and weak phases.

Difficulty in Perturbative Approach

- The program of studying CP-violating phases is partly impeded by the lack of full dynamical understanding in hadronic physics (including both See QCDF, pQCD & SCET talks on 5/6 morning strong phases and hadronic ME's).
- Strong phases originating from short-distance physics are known to be small.
- Large strong phases are usually obtained from model calculations of final-state rescattering effects.

Chua, Hou & Yang 2003; Cheng, Chua & Soni 2005

 An alternative (non-perturbative) approach is to employ flavor SU(3) symmetry principle to relate / reduce hadronic parameters.

> Zeppenfeld 1981; Chau & Cheng 1986, 1987, 1991; Savage & Wise 1989; Grinstein & Lebed 1996; Gronau et. al. 1994, 1995, 1995

C.W. Chiang

Bander, Silverman & Soni 1979

Flavor SU(3) Symmetry

- Treat (*u*,*d*,*s*) as a triplet of the group.
- Except for weak couplings, the underlying strong dynamics should not distinguish u, d, and s in diagrams with the same flavor topology.
- Relate two types of rare decay amplitudes and associated strong phases using the symmetry: strangeness-conserving (ΔS = 0, b→qqd); and strangeness-changing (|ΔS| = 1, b→qqs).
- Because of CKM factors, the former type is dominated by the color-allowed tree amplitude; whereas the latter type is dominated by the QCD-penguin amplitudes.

Questions

- Do the CP asymmetries along with the branching ratios of these rare *B* decays currently provide a coherent picture (instead of looking at mode by mode)?
- Is it consistent with what we have learned from other processes (*e.g.*, charmed *B* decays)?

Flavor SU(3) Global Fits

Flavor Diagrams

• The following flavor diagrams are included in our analysis.

Flavor Diagrams

• The physical amplitudes are then

$$t \equiv Y_{db}^{u}T$$

$$c \equiv Y_{db}^{u}C - (Y_{db}^{u} + Y_{db}^{c})P_{EW}$$

$$p \equiv -(Y_{db}^{u} + Y_{db}^{c})P$$

SU(3)-breaking ~
$$f_{\rm K}/f_{\pi}$$
?
 $t' \equiv Y^u_{sb}\xi_t \Gamma$
 $c' \equiv Y^u_{sb}\xi_c C - (Y^u_{sb} + Y^c_{sb})P_{EW}$
 $p' \equiv -(Y^u_{sb} + Y^c_{sb})\xi_p P$

where $Y_{qb}{}^{q'}=V_{q'q}V_{q'b}{}^{*}$, and each amp has its strong phase.

- The CKM factors have been explicitly pulled out.
- Unprimed amplitudes are used for strangenessconserving ($\Delta S = 0$) transitions and primed amplitudes for strangeness-changing ($|\Delta S| = 1$) ones.
- In the case of VP decays, we associate a subscript P or V to indicate which meson the spectator quark ends up with.

C.W. Chiang

PP Modes

М	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}	M	ode	Flavor Amplitude	BR	\mathcal{A}_{CP}
$B^- \rightarrow$	$\pi^{-}\pi^{0}$	$-\frac{1}{\sqrt{2}}(t+c)$	5.7 ± 0.5	0.04 ± 0.05	$B^- \rightarrow$	$\pi^- \bar{K}^0$	p'	23.1 ± 1.0	0.01 ± 0.02
	$K^-\overline{K}^0$	v2 p	1.4 ± 0.3	0.12 ± 0.18		$\pi^0 K^-$	$-\frac{1}{\sqrt{2}}(p'+t'+c')$	12.8 ± 0.6	0.05 ± 0.03
	$\pi^-\eta$	$-\frac{1}{\sqrt{2}}(t+c+2p+s)$	4.4 ± 0.4	-0.19 ± 0.07		$K^-\eta$	$-\frac{1}{\sqrt{3}}(s'+t'+c')$	2.2 ± 0.4	-0.29 ± 0.11
	$\pi^-\eta'$	$\frac{1}{\sqrt{6}}(t+c+2p+4s)$	2.6 ± 0.8	0.15 ± 0.15		$K^-\eta'$	$\frac{1}{\sqrt{6}}(3p'+4s'+t'+c')$	69.7 ± 2.8	0.03 ± 0.02
$\bar{B}^0 \rightarrow$	K^+K^-	-(e + pa)	0.07 ± 0.11	-	$B^0 \rightarrow$	$\pi^{+}K^{-}$	-(p'+t')	19.7 ± 0.6	-0.098 ± 0.015
	$K^0 \overline{K}^0$	p	1.0 ± 0.2	-		$\pi^0 K^0$	$\frac{1}{\sqrt{2}}(p'-c')$	10.0 ± 0.6	-0.12 ± 0.11
	$\pi^+\pi^-$	-(t+p)	5.2 ± 0.2	0.39 ± 0.19					0.33 ± 0.21
		(* † <i>P</i>)		-0.58 ± 0.09		$K^0\eta$	$-\frac{1}{\sqrt{3}}(s'+c')$	1.2 ± 0.3	-
	$\pi^0\pi^0$	$\frac{1}{-c}(-c+p)$	1.3 ± 0.2	0.36 ± 0.32		$\bar{K}^{0}\eta'$	$\frac{1}{\sqrt{6}}(3p'+4s'+c')$	64.9 ± 4.4	-0.09 ± 0.06
	$\pi^0 n$	$\sqrt{2}$ $(2n+r)$ $-\frac{1}{2}(2n+s)$	0.60 ± 0.46	-					0.60 ± 0.08
	$\pi^{0}n'$	$\frac{\sqrt{6}(2p+3)}{1(p+2e)}$	1.2 ± 0.7		$\bar{B}^0_s \rightarrow$	K^+K^-	-(p' + t')	34 ± 9	-
	~ 7	$\frac{1}{\sqrt{3}}(p+23)$	1.2 ± 0.7	-		$K^0\overline{K}^0$	p'	-	-
	$\eta\eta$	$\frac{1}{3\sqrt{2}}(2c+2p+2s)$	< 1.2	-		$\pi^+\pi^-$	-(e' + pa')	< 1.7	-
	$\eta\eta'$	$-\frac{1}{3\sqrt{2}}(2c+2p+5s)$	< 1.7	-		$\pi^0\pi^0$	$\frac{1}{\sqrt{2}}(e' + pa')$	< 2.1	-
	$\eta'\eta'$	$\frac{1}{3\sqrt{2}}(c+p+4s)$	< 10	-		$\pi^0\eta$	$-\frac{1}{\sqrt{6}}c'$	-	-
$\bar{B}^0_s \rightarrow$	$K^+\pi^-$	-(t+p)	< 5.6	-		$\pi^0 \eta'$	$-\frac{1}{\sqrt{2}}c'$	-	-
	$K^0\pi^0$	$-\frac{1}{\sqrt{2}}(-c+p)$	-	-		$\eta\eta$	$-\frac{1}{2\sqrt{2}}(2p'-2s'-2c')$	-	-
	$\bar{K}^0\eta$	$-\frac{1}{\sqrt{3}}(c+s)$	-	-		$\eta \eta'$	$\frac{1}{2\sqrt{2}}(4p'+2s'-c')$	-	-
	$\bar{K}^0 \eta'$	$\frac{1}{\sqrt{6}}(c+3p+4s)$	-	-		$\eta'\eta'$	$\frac{1}{3\sqrt{2}}(4p'+8s'+2c')$	-	-

ICHEP 06

CPV in B Physics

Results of Fits to $\pi\pi$, $K\pi$, and KK

- Results are quite robust against SU(3) breaking. •
- Prefer f_{κ} / f_{π} for T and C, agreeing with factorization.
- Large relative size and strong phase between C and T.

CPV in **B** Physics

Preferred set

C.W. Chiang

Predictions for *B***_{u,d} Decays**

	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	$Br(\pi^+\pi^-)$	5.4 ± 1.1	5.4 ± 1.0	5.3 ± 1.0	5.3 ± 1.1
$\propto p - c$; exp: 1.31±0.21	$Br(\pi^0\pi^0)$	1.6 ± 0.4	1.6 ± 0.4	1.6 ± 0.4	1.5 ± 0.4
	$Br(\pi^-\pi^0)$	5.3 ± 1.2	5.4 ± 1.2	5.4 ± 1.2	5.4 ± 1.3
	$Br(\pi^+K^-)$	20.2 ± 1.0	20.1 ± 1.1	20.1 ± 1.1	20.3 ± 4.3
	$Br(\pi^0 \bar{K}^0)$	9.9 ± 1.0	9.9 ± 1.0	10.0 ± 0.9	10.1 ± 2.3
	$Br(\pi^-\bar{K}^0)$	23.0 ± 1.1	23.1 ± 1.1	23.1 ± 1.1	23.4 ± 4.8
	$Br(\pi^0 K^-)$	12.0 ± 1.2	12.1 ± 1.2	12.0 ± 1.1	12.2 ± 2.5
	$Br(K^+K^-)$	0	0	0	0
	$Br(K^0\bar{K}^0)$	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.2
	$Br(K^-\bar{K}^0)$	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1	1.0 ± 0.2
result of comparable amps	$\mathcal{A}(\pi^+\pi^-)$	0.32 ± 0.07	0.27 ± 0.06	0.28 ± 0.06	0.26 ± 0.06
result of comparable amps	$\mathcal{A}(\pi^0\pi^0)$	0.47 ± 0.15	0.49 ± 0.15	0.49 ± 0.14	0.50 ± 0.14
	$A_{CP}(\pi^-\pi^0)$	-0.01 ± 0.04	-0.02 ± 0.03	-0.01 ± 0.03	-0.01 ± 0.03
$\propto p' + t'; \exp(-0.097 \pm 0.012)$	$-A_{CP}(\pi^{+}K^{-})$	-0.08 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02
	$\mathcal{A}(\pi^0 K_S)$	-0.07 ± 0.03	-0.08 ± 0.02	-0.09 ± 0.03	-0.10 ± 0.03
	$A_{CP}(\pi^- \bar{K}^0)$	0	0	0	0
$\propto p' + t' + c'$: exp: 0.05+0.03	$A_{CP}(\pi^0 K^-)$	0.00 ± 0.03	0.00 ± 0.03	0.01 ± 0.04	0.02 ± 0.04
$or p + v + v, on p \cdot or ob = or ob $	$A_{CP}(K^+K^-)$	0	0	0	0
	$\mathcal{A}(K^0\bar{K}^0)$	0	0	0	0
or n a large S predicted	$A_{CP}(K^-\bar{K}^0)$	0	0	0	0
$\propto p - c$, large S_{CP} predicted	$\mathcal{S}(\pi^+\pi^-)$	-0.580 ± 0.130	-0.585 ± 0.130	-0.584 ± 0.130	-0.565 ± 0.141
	$\mathcal{S}(\pi^0\pi^0)$	0.814 ± 0.109	0.812 ± 0.108	0.810 ± 0.106	0.786 ± 0.113
$\propto p' - c'; \exp(0.38 \pm 0.19)$	$\mathcal{S}(\pi^0 K_S)$	0.851 ± 0.042	0.850 ± 0.041	0.861 ± 0.041	0.858 ± 0.042
	$S(K^0\overline{K}^0)$	-0.000 ± 0.014	-0.000 ± 0.014	-0.000 ± 0.014	-0.000 ± 0.015
C.W. Chiang	CPV in E	3 Physics	BR in units	of 10 ⁻⁶	

Predictions for *B***_s Decays**

$\propto e' + na'$					
$\propto c + pa$	Observable	Scheme 1	Scheme 2	Scheme 3	Scheme 4
$exp: (0.55 \pm 0.51) \times 10^{\circ}$	$Br(\pi^+\pi^-)$	0	0	0	0
	$Br(\pi^0\pi^0)$	0	0	0	0
exp: $(5.27 \pm 1.27) \times 10^{-6}$	$Pr(\pi^+K^-)$	5.0 ± 1.0	5.0 ± 1.0	5.0 ± 1.0	5.0 ± 1.0
	$Br(\pi^0 K^0)$	1.5 ± 0.3	1.5 ± 0.3	1.5 ± 0.3	1.4 ± 0.3
exp: $(24.4 \pm 4.8) \times 10^{-6}$	$Pr(K+K^-)$	18.9 ± 1.0	18.8 ± 1.0	18.8 ± 1.0	19.0 ± 4.0
	$Br(K^0\bar{K}^0)$	20.0 ± 1.0	20.2 ± 1.0	20.1 ± 1.0	20.4 ± 4.2
$\propto p'$: test SU(3)	$\mathcal{A}(\pi^+\pi^-)$	0	0	0	0
	$\mathcal{A}(\pi^0\pi^0)$	0	0	0	0
$\propto t + n$	$A_{CP}(\pi^+K^-)$	0.32 ± 0.07	0.27 ± 0.06	0.28 ± 0.06	0.26 ± 0.06
$\propto i + p$,	$\mathcal{A}(\pi^0 K_S)$	0.47 ± 0.15	0.49 ± 0.15	0.49 ± 0.14	0.50 ± 0.14
exp: 0.39±0.17	$\mathcal{A}(K^+K^-)$	-0.08 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02	-0.09 ± 0.02
	$\mathcal{A}(K^0\bar{K}^0)$	0	0	0	0
$\propto p-c$, related	$S(\pi^+\pi^-)$	0	0	0	0
to $B_d \rightarrow \pi^0 \pi^0$	$\mathcal{S}(\pi^0\pi^0)$	0	0	0	0
	$\mathcal{S}(\pi^0 K_S)$	0.340 ± 0.202	0.365 ± 0.194	0.359 ± 0.193	0.308 ± 0.201
$\propto t' + p'$, related	$\mathcal{S}(K^+K^-)$	0.147 ± 0.022	0.199 ± 0.028	0.198 ± 0.028	0.211 ± 0.035
to $B_{1} \rightarrow \pi^{+} K^{-}$	$\mathcal{S}(K^0\bar{K}^0)$	-0.043 ± 0.004	-0.044 ± 0.004	-0.044 ± 0.004	-0.043 ± 0.004
u					

BR in units of 10⁻⁶

C.W. Chiang

CPV in B Physics

Lessons Learned From Other Modes

- The following are some major conclusions that will not be reviewed in detail here:
- To explain the *PP* modes involving η or η' (particularly the large BR's of $\eta' K$), one needs to introduce a sizeable singlet-penguin contribution *S* (with $|S/P_{\rm EW}| \sim 4$ and about same strong phase) to interfere with *P*.
- A sizeable singlet-penguin amplitude S_V (but not S_P) is also required for *VP* modes (particularly for the large BR's of ηK^*).
- Such large singlet-penguin amplitudes are also difficult to accommodate in the perturbative picture.
- The strong phases of P_P and P_V must differ by about 180° in order to have the right interference pattern in data.

C.W. Chiang

Examination of Flavor Symmetry

Simple Test

- We can examine the flavor SU(3) principle by paying attention to closely related decay modes.
- A simple test of the SU(3) assumption can be done by comparing |p| from $B^0 \rightarrow K^0 \underline{K}^0$ and $B^+ \rightarrow K^+ K^0$ with |p'|from $B^+ \rightarrow K^0 \pi^+$, one gets $|p/p'| = 0.23 \pm 0.02$, consistent with $|V_{cd}/V_{cs}|$.
- This partly justifies our use of SU(3)_F as the working assumption and that f_K / f_π is not preferred when relating p to p'.

The
$$B_{u,d,s} \rightarrow K \pi$$
 Modes

- Employing U-spin symmetry, one has $\left(\tilde{\lambda} \equiv \left| \frac{V_{us}}{V_{ud}} \right| \simeq 0.2317 \right)$ $A(B^+ \to K^0 \pi^+) = P,$ $A(B^0 \to K^+ \pi^-) = T e^{i(\delta_d + \gamma)} + P,$ $\xi A(B_s \to K^- \pi^+) = \frac{1}{\tilde{\lambda}} T e^{i(\delta_s + \gamma)} - \tilde{\lambda} P,$
 - where the SU(3)-breaking factor according to factorization

$$\xi \equiv \frac{f_K F_{B^0 \pi}(m_K^2)}{f_\pi F_{B_s K}(m_\pi^2)} \frac{m_{B^0}^2 - m_\pi^2}{m_{B_s}^2 - m_K^2} = 0.97^{+0.09}_{-0.11}$$

corresponding to exact symmetry.

• It has been proposed to extract the weak phase γ from these modes if one assumes the same relative strong phase $\delta_d = \delta_s$. Gronau & Rosner 2000; Chiang & Wolfenstein 2000

Test Flavor Symmetry

Chiang, Gronau & Rosner 2008

- Given the facts that γ has been constrained using other method (*e.g.*, *DK* modes) and that the last mode is not measured until recently by CDF, we turn the argument around to test the flavor symmetry assumption.
- Current data on these modes (BR in units of 10⁻⁶):

Observable	Exp. Value	Ref.	
$BR(B^+ \to K^0 \pi^+)$	23.1 ± 1.0	HFAG	•
$BR(B^0 \rightarrow K^+ \pi^-)$	19.4 ± 0.6	HFAG	agree with our flavor
$A_{CP}(B^0 \to K^+ \pi^-)$	-0.097 ± 0.012	HFAG	symmetry predictions of
$BR(B_s \to K^- \pi^+)$	5.27 ± 1.17	CDF <	(5.0±1.0)×10 ⁻⁶ and
$A_{CP}(B_s \to K^- \pi^+)$	0.39 ± 0.17	CDF	0.28 ± 0.06 (JHEP2006)

Observables

• Consider ratios of the CP-averaged rates and DCPA's: $R_d = 1 + r^2 + 2r \cos \gamma \cos \delta_d = 0.899 \pm 0.048$,

$$\xi^2 R_s = \tilde{\lambda}^2 + \left(\frac{r}{\tilde{\lambda}}\right)^2 - 2r\cos\gamma\cos\delta_s = 0.260 \pm 0.059 ,$$

 $R_d A_{CP}(B^0 \to K^+ \pi^-) = 2r \sin \gamma \sin \delta_d = 0.087 \pm 0.012 ,$ $\xi^2 R_s A_{CP}(B_s \to K^- \pi^+) = -2r \sin \gamma \sin \delta_s = -0.101 \pm 0.050 .$

• The last two equations imply a simple relation between the strong phases

 $\frac{\sin \delta_d}{\sin \delta_s} = -\frac{A_d}{\xi^2 A_s} = -\frac{R_d A_{CP} (B^0 \to K^+ \pi^-)}{\xi^2 R_s A_{CP} (B_s \to K^- \pi^+)} = 0.96 \pm 0.54 \ .$

meaning that the two should be roughly the same.

• But the B_s branching ratio is inconsistent with this.

Solving All 4 Eqs.

- Left plot always has large SU(3) breaking in δ 's.
- Right plot gives reasonable solution for large BR's of $B_{\rm s}$.

Figure 3: Behavior of solutions as a function of $\mathcal{B}(B_s \to K^-\pi^+)$, assuming r < 0. There are two sets of solutions (left and right) when δ_d and δ_s are treated as independent parameters. The solid, dashed and dash-dotted curves represent γ , δ_d and δ_s , respectively. The vertical dotted line indicates the current central value of $\mathcal{B}(B_s \to K^-\pi^+)$.

Possible Solution

• The $B_{\rm s}$ branching ratio is extracted by CDF using the following relation

 $\frac{f_s}{f_d} \frac{BR(B_s \to K^- \pi^+)}{BR(B^0 \to K^+ \pi^-)} = 0.071 \pm 0.010 \text{(stat.)} \pm 0.007 \text{(sys.)} ,$

with world averages (HFAG): $f_s = (10.4 \pm 1.4)\%$, $f_d = (39.8 \pm 1.0)\%$.

 Solutions with smaller SU(3) breaking, such as those which would result if the BR(B_s) were at least 42% larger than its nominal value, would be suggested if recent evaluations of b quark fragmentation had overestimated the fraction of b quarks ending up as B_s.

The $K\pi$ Puzzle

The Old $K\pi$ **Puzzle**

$$\begin{array}{rcl} A(B^+ \to K^0 \pi^+) &=& P' \\ \sqrt{2}A(B^+ \to K^+ \pi^0) &=& -(P' + T' + C' + P'_{EW}) \\ A(B^0 \to K^+ \pi^-) &=& -(P' + T') \\ \sqrt{2}A(B^0 \to K^0 \pi^0) &=& P' - C' - P'_{EW} \end{array}$$

• Consider the following quantities:

$$R_{c} \equiv \frac{2\overline{\Gamma}(B^{+} \to K^{+}\pi^{0})}{\overline{\Gamma}(B^{+} \to K^{0}\pi^{+})} = \left|\frac{p+t+c}{p}\right|^{2} = 1.15 \pm 0.12 \to 1.12 \pm 0.07 ,$$

$$R_{n} \equiv \frac{1}{2} \frac{\overline{\Gamma}(B^{0} \to \pi^{-}K^{+})}{\overline{\Gamma}(B^{0} \to \pi^{0}K^{0})} = \left|\frac{p+t}{p-c}\right|^{2} = 0.78 \pm 0.10 \to 0.98 \pm 0.07 .$$

• The old puzzle is disappearing. However, it is claimed that there is a more serious new puzzle because it occurs in the CP asymmetries...

C.W. Chiang

CPV in B Physics

The New $K\pi$ **Puzzle**

• The $K^+\pi^0$ and $K^+\pi^-$ modes have quite different DCPA's:

 $\Delta A = A_{CP}(K^+\pi^0) - A_{CP}(K^+\pi^-) = 0.147 \pm 0.028$

- The difference is normally expected to be small in the SM. However, this is not true if C or P_{EW} are sizeable.
- This leads to two possible explanations:

(1) Sizeable *C* with large strong phase relative to *T*, as found in the flavor SU(3) framework [this is also partly favored by the large BR($\pi^0\pi^0$)]; or Chiang et. al. 2004

Li, Mishima & Sanda 2005

(2) Sizeable new physics contribution with a new weak phase entering through the EWP loop.

Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008

Large Color-Suppress Amplitude

- From global fits, we observe a large C, with the ratio
 |C/T| = 0.63±0.08 and a sizeable relative strong phase of (-56±10)° between them.
- The relative strong phase between T and P is $(19\pm3)^{\circ}$.
- Pictorially,

New Physics Interpretation

Add one new amplitude to C (EWP-like)

Chiang & Zhou 2006

$$c' \to Y^u_{sb} \xi_c C - (Y^u_{sb} + Y^c_{sb}) P_{EW} + N$$

with $N = |N| \exp\left[i(\phi_N + \delta_N)\right]$

- The value of χ^{2} min reduces from ~ 16 to ~4.
- We obtain $|N| \sim 18 \text{ eV}$ (1/3 of the QCD-penguin amplitude), $\phi_{\rm N} \sim 90^{\circ}$, and $\delta_{\rm N} \sim -15^{\circ}$.
- Conclusion: The new K π puzzle poses challenges for theorists to understand better the strong dynamics (whether C is indeed large and possesses a sizeable strong phase relative to T) as well as to explore new physics possibilities.

Extraction of γ from Charmless Modes

C.W. Chiang

CPV in B Physics

Using Charmed Modes

• Methods have been proposed to determine γ using the DCPA resulted from interference between different amplitudes in $B \rightarrow D^{(*)} K$ decays.

Gronau & Wyler 1991 Gronau & London 1991 Atwood et. al. 1997

- Such early proposals are not completely free from hadronic uncertainties.
- Recently, a Dalitz plot analysis is used to simultaneously determine γ and other hadronic parameters.

Giri et. al. 2003; Belle 2004

- BaBar obtains $\gamma = (92 \pm 41 \pm 11 \pm 12)^{\circ}$ (from *DK*⁻ & *D*^{*}*K*⁻);
- Belle obtains $\gamma = (53^{+15}_{-18} \pm 3 \pm 9)^{\circ}$ (from *DK*⁻, *D*^{*}*K*⁻ & *DK*^{*-}).

Using the $K\pi$ Modes

• Rates and asymmetry of some $K\pi$ modes can be used to extract the weak phase γ :

$$\begin{split} R &\equiv \frac{\overline{\Gamma}(B^0 \to K^+ \pi^-)}{\overline{\Gamma}(B^+ \to K^0 \pi^+)} = 1 - 2r \cos \gamma \cos \delta + r^2 = 0.816 \pm 0.058 \ , \\ A_{CP}^{K^+ \pi^-} &= -2r \sin \gamma \sin \delta / R = -0.109 \pm 0.019 \ . \end{split}$$

• Use r = |T'/P'| = 0.166 [with |T'| from $B \rightarrow \pi l \nu$ decay by SU(3)_F], and obtain $\gamma \le 80^\circ$ at 1σ level.

The $K^*\pi$ and ρK **Modes**

Chiang 2005

- With accumulating data it is now possible to consider an alternative method, which employs the $K^*\pi$ and ρK decays to constrain γ .
- A distinction between the VP system and the PP system is that there are *two types of amplitudes for each topology* in the former case, depending upon whether the spectator quark in B ends up in the P or V meson in the final state.
- The flavor amplitude decomposition and data are given by:

	Mode	Amplitudes	BR (× 10^{-6})	A_{CP}
$B^+ \rightarrow$	$K^{*0}\pi^+$	P'_P	10.7 ± 0.8	-0.085 ± 0.057
	$ ho^+ K^0$	P_V^{\prime}	8.0 ± 1.5	0.12 ± 0.17
$B^0 \rightarrow$	$K^{*+}\pi^-$	$-(P_P'+T_P')$	9.8 ± 1.1	-0.05 ± 0.14
	$ ho^- K^+$	$-(P_V'+T_V')$	15.3 ± 3.6	0.22 ± 0.23

Some Details

• With
$$r_1 \equiv |T'_P / P'_P|$$
, we have:
 $A(K^{*+}\pi^-) = -P'_P \left[1 - r_1 e^{i(\delta_P + \gamma)}\right]$,
 $R(K^*\pi) \equiv \frac{\overline{\Gamma}(K^{*+}\pi^-)}{\overline{\Gamma}(K^{*0}\pi^+)} = 1 - 2r_1 \cos \delta_P \cos \gamma + r_1^2 = 0.99 \pm 0.13$,
 $\mathcal{A}_{CP}^{K^{*+}\pi^-} = -2r_1 \sin \delta_P \sin \gamma / R(K^{*+}\pi^-) = -0.05 \pm 0.14$.
• With $r_2 \equiv |T'_V / P'_V|$, we have:
 $A(\rho^-K^+) = P'_V \left[1 + r_2 e^{i(\delta_V + \gamma)}\right]$,
 $R(\rho^-K^+) \equiv \frac{\overline{\Gamma}(\rho^-K^+)}{\overline{\Gamma}(\rho^+K^0)} = 1 + 2r_2 \cos \delta_V \cos \gamma + r_2^2 = 2.06 \pm 0.61$,
 $\mathcal{A}_{CP}^{\rho^-K^+} = 2r_2 \sin \delta_V \sin \gamma / R(\rho^-K^+) = 0.22 \pm 0.23$.

• There are 4 observables in terms of 5 parameters.

C.W. Chiang

Value of γ

• Instead of treating r_1 and r_2 independently, one may employ the factorization assumption and get (depending upon form factor models)

$$\frac{r_2}{r_1} = \frac{|T_V'|}{|T_P'|} \frac{|P_P'|}{|P_V'|} = \frac{f_K A_0^{B\rho}(m_K^2)}{f_{K^*} F_1^{B\pi}(m_{K^*}^2)} \left| \frac{P_P'}{P_V'} \right| \simeq 0.6 \sim 1.1$$

- This number can be compared with the result of 0.7 ± 0.1 obtained from a global fit. Chiang et. al. 2004
- There are now four parameters for the four observables in the above-mentioned equations.
- Solving them exactly becomes possible and gives $\gamma = (65^{+10}_{-8})^{\circ}$ for $r_2/r_1 = 0.6$; and $\gamma = (68^{+9}_{-7})^{\circ}$ for $r_2/r_1 = 1.1$.

Summary

- Global fitting to current rare PP and VP decays of the B mesons within the framework of flavor symmetry is generally good.
- The new K π problem can be accommodated with either
 (1) a large C with a sizeable strong phase relative to T, or
 (2) a sizeable new physics amplitude with nontrivial strong and weak phases.
- If the large *C* explanation is taken, then the strong dynamics needs to be better understood. The same comment applies to the singlet-penguin amplitude as well.

Summary

- Examination of the $B_{u,d,s} \rightarrow K\pi$ modes indicates that the flavor symmetry is respected only if BR($B_s \rightarrow K^-\pi^+$) is at least 42% larger or, equivalently, the SU(3)-breaking factor is bigger than 1.2.
- It is possible to constrain the weak phase γ using the BR's and CPA's of a set of $K^*\pi$ and ρK modes with only a mild assumption of factorization for the tree amplitudes.

Backup Slides / Details

SU(3) Global Fits to Rare Decays

• Advantages:

(1) it is less sensitive to statistical fluctuations of individual observables (particularly for rare processes);
(2) it helps finding out which observable deviates from theory and how serious that is (leading to new physics); and

(3) it tests the flavor symmetry assumption by making predictions for unseen modes.

Fitting First 3 Eqs. With $\delta_d = \delta_s \equiv \delta$

- Behavior of solutions as functions of BR($B_s \rightarrow K^-\pi^+$), assuming r < 0 and same strong phase.
- No perfect solution for BR($B_s \rightarrow K^-\pi^+$)<7.5×10⁻⁶.

SU(3) Breaking

- Suppose *T* and *P* are allowed to scale independently and differently from the factorization prediction.
- Use $\gamma = (67.6 \pm 4.5)^{\circ}$ obtained from other methods as well.
- No perfect solution for $\delta_s \delta_d < 20^\circ$
- When $\delta_{s} \delta_{d} > 20^{\circ}$, (r, γ , δ_{d}) become fixed at (-0.182, 67.6°, 15°).

