Time-dependent CP violation in rare B decays

LPNHE – IN2P3, Paris Universities 6 and 7

On behalf of the BABAR and Belle Collaborations

ocariz@in2p3.fr

Outline

- Rare penguin *B* decays : rationale and motivation
- Time-dependent study of radiative $b \rightarrow s(d)\gamma$ decays
 - B⁰ \rightarrow K*(K⁰_s π^0) γ , B⁰ \rightarrow η K⁰_s γ , B⁰ \rightarrow $\rho^0\gamma$
- Time-dependent study of penguin-dominated b→qqs decays
 - A selection from the 9-mode list :
 - $B^0 \rightarrow \eta' K^0_s$, $B^0 \rightarrow K^0_s \pi^+ \pi^-$, $B^0 \rightarrow K^0_s K^+ K^-$
 - The global picture

Perspectives and conclusions

Time-dependent CP Violation in rare B decays : Motivation

- FCNC processes are an excellent probe for BSM tests
 - Occur via loop-mediated amplitudes
 - Non SM amplitudes could contribute significantly
- We will discuss here two such processes
 - Radiative $b \rightarrow s(d)\gamma$ decays
 - Penguin-dominated charmless b→qqs decays
- We concentrate in time-dependent CP studies

Time-dependent study of b→sγ decays : Motivation

Radiated photon is almost completely polarised

- "flavour-specific decay" : $b \rightarrow s\gamma_L \text{ and } \overline{b} \rightarrow \overline{s}\gamma_R$
- $B^0 \leftrightarrow \overline{B}^0$ interference can occur only through helicity flip
- Time-dependent CP asymmetry :

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to Xs\gamma_{L}) - \Gamma(B^{0}(\Delta t) \to Xs\gamma_{R})}{\Gamma(\overline{B}^{0}(\Delta t) \to Xs\gamma_{L}) + \Gamma(B^{0}(\Delta t) \to Xs\gamma_{R})} = S\sin\Delta m\Delta t - C\cos\Delta m\Delta t$$

- SM : S,C predicted to be very small
 - S sensitive to right/left polarisation rate $S \sim -2m_s/m_b^* sin(2\beta) \sim -0.04$
- A large CP asymmetry would be a clear indication of non-SM physics !
- Available modes : $B^0 \rightarrow K^*(K_s \pi^0) \gamma$ (BABAR and Belle), $B^0 \rightarrow \eta K_s \gamma$ (BABAR, new)
- Related mode : $B^0 \rightarrow \rho^0 \gamma$ (Belle)

May 5, 2008 - FPCP

 $\bar{b} \rightarrow \bar{s} \gamma_{R}$

h→sγ

B⁰

mixing

- Extrapolate K_s flight to the beam spot
- Fit $\Upsilon(4S) \rightarrow B\overline{B}$ with kinematical constraint

• Validate using $B^0 \rightarrow J/\psi K_s$ control sample

Well-established technique Used in many neutral modes with one, two, three K_s

May 5, 2008 - FPCP

José Ocariz - IN2P3 Paris-Diderot University

Belle : Time-dependent study of $B^0 \rightarrow K_s \pi^0 \gamma$

BABAR : Time-dependent study of $B^0 \rightarrow K_s \pi^0 \gamma$

Variation of CP asymmetries along $m(K_s\pi^0)$ **expected small Check inside/outside the** K*(892) **range**

HFAG averages taking (S,C) correlations into account Measurements compatible with CP conservation hypothesis

BABAR : Time-dependent study of $B^0 \rightarrow \eta K_s \gamma$ (new)

- Combines $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Beam-spot technique for $\eta \rightarrow \gamma \gamma$ events
- Signal significance : 3.9σ
- Uses the complete, final $\Upsilon(4S)$ sample
- Simultaneous control analysis : $B^+ \rightarrow \eta K^+ \gamma$

José Ocariz - IN2P3 Paris-Diderot University

- Photon polarisation suppresses $B^0 \leftrightarrow \overline{B}^0$ interference : expect *S* small
- •S further suppressed by CKM cancellation (V_{td}) of mixing phase

Summary : Time-dependent CP asymmetries in b→(s,d)γ

• Time-dependent analyses of three $b \rightarrow (s,d)\gamma$ modes have been performed by BABAR and/or Belle

• $B^0 \rightarrow K^*(K^0{}_s\pi^0)\gamma$, $B^0 \rightarrow \rho^0\gamma$, $B^0 \rightarrow \eta K^0{}_s\gamma$

• Measurements compatible with CP conservation

• All measurements limited by statistics

- Other modes could be added
- Excellent physics case for SuperB and/or Belle upgrade
- Belle has also studied $B_s \rightarrow \phi \gamma$ (BR only)

b→sqq penguins : loop-dominance

Selected sample of b→sqq penguins : B⁰→η'K⁰

- Experimentally clean : largest BR among the b→s penguin modes kinematical identification of η' $\eta' K_1$ adds 50% more events
- Theoretically clean : non-penguin contributions expected to be small
- First $b \rightarrow sq\bar{q}$ mode to establish CP violation; result agrees with $b \rightarrow sc\bar{c}$

b→sqq penguins : the time-dependent Dalitz analyses

- Time-dependent amplitude analyses of $B^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$ and $B^0 \rightarrow K^0_{\ S} K^+ K^-$
 - Technically challenging :
 - 3-D signal decay amplitude (DP + time)
 - several intermediate modes contribute
 - Weak phase $\beta_{\rm eff}$ directly extracted from isobar phases
 - counting-rate analyses access only to S=sin2 β_{eff}
 - trigonometry ambiguities resolved by interference
 - intermediate modes related to $\beta_{\rm eff}$ include
 - ϕK_S and $f_0 K_S$ in $B^0 \rightarrow K^0_S K^+ K^-$
 - f_0K_S and ρ^0K_S in $B^0 \rightarrow K^0_S \pi^+\pi^-$
 - Analyses yield several other interesting results
 - structrure of K π S-wave , exotic $\pi\pi$ signal ("f_X" modes)
 - constraint on (ρ,η) via phases in $B \rightarrow K^*(892)\pi$ modes
 - CPS, Phys. Lett. **B645**, 201 (2007)
 - GPSZ, Phys. Rev. **D75**, 014002 (2007)

b→sqq penguins : the time-dependent Dalitz analyses

May 5, 2008 - FPCP

Page 15/17

José Ocariz - IN2P3 Paris-Diderot University

b→sqą **penguins : summary**

- Nine modes in the $b \rightarrow sq\overline{q}$ family studied
- CP violation established in $B^0 {\rightarrow} \eta' K_S$
- Direct CP asymetries Compatible with zero
- •Global agreement with golden $b \rightarrow sc\overline{c}$
- Most values of S below $b \rightarrow sc\overline{c}$ value
- Theoretical calculations predict opposite trend ...
- To be followed ...

Time-dependent CP Violation in rare B decays : Conclusions

- Radiative $b \rightarrow s(d)\gamma$ decays
 - Excellent probes for SM tests
 - CP asymmetries predicted small in the SM
 - B-factories are producing the first TD-analyses
 - Only accessible in a B-factory environment !
- Penguin-dominated charmless b→qqs modes
 - Intense activity ongoing
 - CP violation established in $B^0 \rightarrow \eta' K_S$
 - Dalitz analyses are challenging and promising
 - Interesting evolution of trends
 - Theory/experiment interplay required
- All these modes dominated by statistical uncertainties

Spare Slides

Spare Slides

B Meson Reconstruction

Exploit kinematics of $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ for signal selection

A few diagrams

PDFs for time- and DP- dependence

Time-Dependent CP Parameters:

interference helps disentangling strong and weak phases, and thus raises the degeneracy in the time-dependent CP parameter S

b→sqq penguins : summary

b→sqą **penguins : summary**

May 5, 2008 - FPCP

José Ocariz - IN2P3 Paris-Diderot University

Asymmetric B-Factories (e.g. PEP-II)

Experimental technique: analysis

Use kinematical constraints at the Y(4S):

$$\boldsymbol{m}_{ES} = \sqrt{\boldsymbol{E}_{beam}^{*2} - \boldsymbol{p}_{B}^{*2}}$$
$$\Delta \boldsymbol{E} = \boldsymbol{E}_{beam}^{*} - \boldsymbol{E}_{B}^{*}$$

Flavour tagging algorithm

• exploits charge correlations in B decay products

$$Q = \sum_{i} \varepsilon_{i} (1 - 2\omega_{i})^{2} \sim 0.3$$

$$\sigma_{stat} \sim 1/\sqrt{Q} \qquad \substack{\varepsilon \to \text{Tagging efficiencies}\\ \omega \to \text{Mistag rate}}$$

Extract decay time difference Δt from vertexing

 $\gamma \beta \Delta t \sim \Delta z$

Perform unbinned maximum likelihood fits

- On signal-enriched samples with cuts on selection variables (Belle)
- On more inclusive samples with multivariate fits (BaBar)

b→*s penguins : experimental challenges*

Signal-to-background issues :

- (very) small branching ratios, often below 10⁻⁵
- Large backgrounds from $e^+e^- \rightarrow q \bar{q}$
 - event-shape discriminating variables for background supression
- Backgrounds from other *B* decays may be significant
 - Use WA measurements to estimate contamination
 - Add B-background information in ML fit

Vertexing issues :

B decav

qq background

Spare Slides

- More data is needed to test phase differences for CP asymmetries
- CKM constraint from $K^*\pi BFs$

Gronau, Pirjol, Soni and Zupan, PRD 77, 057540 (2008) Ciuchini, Pierini, Silvestrini, PRD 74, 051301 (2006)

