Measurements of the angle φ_2 / α at B factories

FPCP 2008 Taipei, Taiwan May 5, 2008

Georges Vasseur CEA Saclay, IRFU

Outline

- Introduction
- π π modes
- p p modes
- $\rho \pi$ modes
- $a_1 \pi$ modes
- Conclusion

- The angle α can be measured from CP violating asymmetries in the interference of mixing and decays in b—u decays of the neutral B mesons.
- Dependence on $-2\beta 2\gamma \rightarrow 2\alpha$

CP violation in the interference between decay and mixing

For B decaying to f_{CP} (CP eigenstate).

$$\mathcal{A}_f(\Delta t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f}(\Delta t) - \Gamma_{B^0 \to f}(\Delta t)}{\Gamma_{\overline{B}{}^0 \to f}(\Delta t) + \Gamma_{B^0 \to f}(\Delta t)}$$

$$= S_f \sin(\Delta m \Delta t) - C_f \cos(\Delta m \Delta t)$$

$$\lambda_f = \begin{pmatrix} \underline{q} & \overline{A_f} \\ p & \overline{A_f} \\ e^{-2i\beta} & S_f \equiv \frac{2 \operatorname{Im}(\lambda_f)}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv -A_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\ e^{-2i\beta} & C_f \equiv \frac{1 - |\lambda_f|^2$$

May 5, 2008

G. Vasseur, CEA Saclay, IRFU FPCP 2008

4

CP asymmetry measurement

α and penguin pollution

$$A(B^{0}/\overline{B}^{0}) = S \sin \Delta m_{d} \Delta t - C \cos \Delta m_{d} \Delta t$$

$$Tree Diagram$$

$$Dependence on \beta$$

$$W^{+}$$

$$\overline{U}$$

$$W^{+}$$

$$W^{+}$$

$$\overline{U}$$

For single phase from CKM matrix

C = 0, $S = sin(-2(\gamma + \beta)) = sin2\alpha$

 $\succ \alpha$ extracted directly from S.

With additional weak phases $C \neq 0$, $S = \sqrt{1 - C^2} \sin 2\alpha_{eff}$

> More information needed to constraint α .

May 5, 2008

SU(2) Symmetry: Isospin analysis

Similar approaches for $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$:

Two isospin relations (one for (B^0, B^+) , one for (B^0, B^-)) *M. Gronau, D. London, PRL, 65, 3381 (1990)*

$$\mathbf{A}(B^+ \to h^+ h^0) = 1/\sqrt{2} \cdot \mathbf{A}(B^0 \to h^- h^+) + \mathbf{A}(B^0 \to h^0 h^0)$$

CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$

CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$

➤ Large direct CP violation seen by Belle.

≥2.1 σ difference between BaBar and Belle.

➤CP violation in the interference between mixing and decay seen by both experiments.

≻World average:

FPCP 2008

 $S_{+-} = -0.61 \pm 0.08$ $C_{+-} = -0.38 \pm 0.07$

BF in B $\rightarrow \pi\pi$ **modes**

383M BB

- ➤ "Large" BR for B⁰→ π⁰π⁰
 (tree diagram is color suppressed).
 ➤ Large fraction of penguin
- contamination.

➤ World averages:

 $BF(B^{0} \to \pi^{+}\pi^{-}) = (5.2 \pm 0.2) \times 10^{-6}$ $BF(B^{0} \to \pi^{0}\pi^{0}) = (1.3 \pm 0.2) \times 10^{-6}$ $C_{00} = -0.48 \pm 0.32$ $BF(B^{+} \to \pi^{\pm}\pi^{0}) = (5.6 \pm 0.4) \times 10^{-6}$ $A_{\pm 0}^{CP} = 0.06 \pm 0.05$

 BaBar: PRD 75, 012008 (2007)
 227M BB

 PRD 76, 091102 (2007)
 383M BB

 Belle: PRL 99, 121601(2007)
 449M BB

May 5, 2008

G. Vasseur, CEA Saclay, IRFU FPCP 2008 11

Isospin analysis in B $\rightarrow \pi\pi$

Solution Solution Section Section \mathbf{F}_{+-} is a specific term of the section $\pi^+\pi^-$, $\pi^+\pi^0$ and $\pi^0\pi^0$, and CP parameters C₊₋, S₊₋, and C₀₀.

≻6 observables, 6 unknown.

Ambiguities.
11° < α < 79° excluded at 95% C.L (Belle).
25° < α < 66° excluded at 90% C.L (BaBar).
SU(3) constraint on penguin amplitude

May 5, 2008

$B^0 \rightarrow \rho^- \rho^+$

Analysis more difficult:

- $\geq 2 \pi^0$ in the final state.
- \succ Wide ρ resonances.
- V-V decay: L=0,1,2 partial waves : Longitudinal: CP-even state.
 - Transverse: Mixed CP states.
- > Analysis based on ρ polarization.

Eventually a very efficient mode:

- \succ BF~ 5 times larger than for B→ $\pi\pi$.
- > Penguin pollution smaller than in $\pi\pi$.
- $\geq \rho$ are ~100% longitudinally polarized.
- > Almost a pure CP-even state!

Helicity Frame

CP asymmetries in $B^0\!\!\rightarrow\rho^+\,\rho^-$

➢Good agreement between BaBar and Belle.

≻World average:

$$S_{+-} = -0.05 \pm 0.17$$

 $C_{+-} = -0.06 \pm 0.13$

> For isospin analysis, need also BF for $B^+ \rightarrow \rho^+ \rho^0$:

$$BF(B^+ \to \rho^+ \rho^0) = (18.2 \pm 3.0) \times 10^{-6}$$
$$f_L^{+0} = 0.912 \pm 0.045$$

Babar: PRL 97, 261601 (2006)232M BBBelle: PRD 67, 032003 (2003)85M BB

May 5, 2008

$B^0 \rightarrow \rho^0 \rho^0$

First measurements of timedependent CP asymmetries in $B^0 \rightarrow \rho^0 \rho^0$:

Small BF for B⁰→ ρ⁰ ρ⁰
 In contrast to π⁰π⁰, decay vertex can be reconstructed (ρ⁰→ π⁺π⁻).
 Time-dependent analysis feasible.
 Measurement of C_L⁰⁰ and S_L⁰⁰

S 30 35 30 25 30 25 20 15 10 5 5.245 5.25 5.25 5.26 5.26 5.27 5.27 5.28 5.285 5.29 m_{Fs} (GeV/c²)

427M BB

 $85 \pm 28 \pm 17$ signal events 3.6 σ (syst. included)

Preliminary arXiv: 0708.1630

May 5, 2008

$$\begin{aligned} \mathsf{BF}(\rho^{0}\rho^{0}) &= (0.84 \pm 0.29 \pm 0.17) \times 10^{-6} \\ f_{L}^{00} &= 0.70 \pm 0.14 \pm 0.05 \\ C_{L}^{00} &= 0.4 \pm 0.9 \pm 0.2 \\ S_{L}^{00} &= 0.5 \pm 0.9 \pm 0.2 \end{aligned}$$

 $B^0 \rightarrow \rho^0 \rho^0$

657M BB

New result from Belle:

➢ BF (B⁰→ ρ⁰ρ⁰) <
1.0 10⁻⁶ @ 90% C.L.
➢ Not inconsistent with BaBar result.
➢ Non resonant 4π and ρππ decays.
➢ Watch for further measurements.

Isospin analysis in B $\rightarrow \rho \rho$

> If we take $B^0 \rightarrow \rho^0 \rho^0$ timedependent analysis from Babar, can perform a full isospin analysis.

Solution SL⁰⁰ is solved and SL⁰⁰ in $\Delta \alpha$ Measurement of CL⁰⁰: see four ambiguities

> Measurement of C_L^{00} and S_L^{00} \Rightarrow Overconstrained isospin relations

 \Rightarrow Favor one solution

Preliminary arXiv: 0708.1630

May 5, 2008

SU(3) approach in $B \rightarrow \rho \rho$

Beneke et al., Phys.Lett.B 638, 68 (2006)

Constrain the penguin contribution in $B^0 \rightarrow \rho^+ \rho^-$ using flavor SU(3) symmetry:

> Experimental constraints from $B^+ \rightarrow K^{*0} \rho^+$ assuming penguins in the two modes are related.

> Three unknowns: α , r = |P/T| et δ . > $A(\rho^+\rho^-) = Te^{i\gamma} + Pe^{i\delta}$

> The method gives a good constaint: $83.3 < \alpha < 105.8^{\circ}$ at 68% CL.

> SU(3) breaking effects taken into account.

 $BF(B^+ \to \rho^+ K^{*0}) = (9.2 \pm 1.5) \times 10^{-6}$ $f_L = 0.48 \pm 0.08$

Babar: PRL 97, 201801 (2006)232M BB Belle: PRL 95, 141801 (2005) 275M BB

May 5, 2008

B^0 → (ρπ)⁰→ π⁺π⁻π⁰

Dominant decay B⁰→ρ⁺π⁻ is not a CP eigenstate
 Two-body Isospin analysis not viable: 5 amplitudes need to be considered
 B⁰→ ρ⁺π⁻/ρ⁻π⁺/ρ⁰π⁰ and B⁺→ ρ⁺π⁰/ρ⁰π⁺ Isospin Triangle ⇒ Isospin Pentagon.
 Better approach: Time-dependent Dalitz analysis assuming Isospin symmetry:

$$\begin{array}{l}
A(B^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}A(\rho^{+}\pi^{-}) + f_{-}A(\rho^{-}\pi^{+}) + f_{0}A(\rho^{0}\pi^{0}) \\
\overline{A}(\overline{B}^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}\overline{A}(\rho^{+}\pi^{-}) + f_{-}\overline{A}(\rho^{-}\pi^{+}) + f_{0}\overline{A}(\rho^{0}\pi^{0})
\end{array} f_{k} \text{ lineshape}$$

30 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ (kin.) A. Snyder and H. Quinn, interference regs. Phys. Rev. D, 48, 2139 (1993) 25 ➤ Interference at equal masses-squared 20 gives information on strong phases m²(π⁻π⁰) between resonances. $0^+\pi^ 0^0\pi^0$ 10 \oplus 5 $0^{-}\pi^{+}$ 0 0 5 10 15 20 25 30 $m^2(\pi^+\pi^0)$ 20 May 5, 2008 G. Vasseur, CEA Saclay, IRFU **FPCP 2008**

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

≻World average:

 $A^{+^{-}} = -0.13 \pm 0.04$

PRD 76, 012004 (2007) 375M BB

PRD 77, 072001 (2008) 449M BB

G. Vasseur, CEA Saclay, IRFU FPCP 2008 21

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

> $B \rightarrow a_1 \pi$ decay: same quark diagram as $B \rightarrow \pi \pi / \rho \rho / \rho \pi$ > High branching fraction: $BR = (33.2 \pm 3.8 \pm 3.2) \ 10^{-6}$ *PRL 97, 051802 (2006)* $BR = (29.8 \pm 3.2 \pm 4.26) \ 10^{-6}$

BELLE

> similar to B→ρπ
> Not a CP eigenstate
> Quasi-2 body approach

 $A^{+-} = -0.07 \pm 0.07 \pm 0.02$ $C^{+-} = -0.10 \pm 0.15 \pm 0.09$ $S^{+-} = 0.37 \pm 0.21 \pm 0.07$ $\Delta C^{+-} = 0.26 \pm 0.15 \pm 0.07$ $\Delta S^{+-} = -0.14 \pm 0.21 \pm 0.06$

hep-ex 0706.3279

23

SU(3) symmetry : $B \rightarrow a_1 \pi / K_1 \pi / a_1 K$

Set an upper bound on α - α_{eff} or extract true α value.

► Use SU(3) symmetry ($\pi \leftrightarrow K$ and $a_1 \leftrightarrow K_1$) to extract information from $B \rightarrow K_1 \pi$ and $B \rightarrow a_1 K$ decays.

Gronau and Zupan, PRD 73, 057502 (2006)

 $> B \rightarrow a_1 K$ modes have been measured.

 $> B \rightarrow K_1 \pi$ modes are being measured. >K₁ is a mixture of K₁(1270) and $K_1(1400)$

> First bounds on α - α_{eff} are coming.

$$BF(B^{0} \to a_{1}^{-}K^{+}) = (16.3 \pm 2.9 \pm 2.3) \times 10^{-6}$$
$$BF(B^{+} \to a_{1}^{+}K^{0}) = (34.9 \pm 5.0 \pm 4.4) \times 10^{-6}$$

PRL 100, 051803 (2008)

May 5, 2008

G. Vasseur, CEA Saclay, IRFU **FPCP 2008**

383M BB

5.28 5.28

5.29

 $B \rightarrow a_1 K_s^0$

 241 ± 32

Summary on α

> The decay modes $B \rightarrow \pi\pi / \rho\pi / \rho\rho$ give consistent and complementary measurements of α .

 $> \rho \pi$ (Dalitz): disfavors mirror solution.

 \triangleright ρρ: efficient mode, improved with the measurement of C₀₀ and S₀₀ (to be confirmed).

- > New result from $B \rightarrow a_1 \pi$ is coming.
- ➤ The combined average is in good agreement with global CKM fits.

May 5, 2008