

Theoretical tools --Perturbative QCD approach

Cai-Dian Lu (呂才典) IHEP, Beijing

1

Outline

- Theoretical framework /comparison
- Direct /mixing induced CP asymmetry
- Next-to-leading order calculations
- Bs decays
- Summary

Factorization

- Factorization is essential for hadronic B decays
 Different 4-quark
- Is process dependent part calculable? operators
- $A(B \rightarrow M_1 M_2) \propto f_{M2} F^B \rightarrow M_1 a_i$
- The kinematics (a_i) for different processes are perturbative, factorizable from hadronic inputs

Factorization assumption vs factorization theorem

- Naïve F.A.
- of process
- $A(B \rightarrow M_1 M_2) \propto f_{M2} F^B \rightarrow M1$

Factorizable: Nonfactorizable: **F.T.**

- of dynamics
- $\bullet \phi_{R} \otimes_{\mathbf{X}} \phi_{M1} \otimes_{\mathbf{X}} \phi_{M2} \otimes_{\mathbf{X}} H$
- Vacuum $\rightarrow M_2$, $B \rightarrow M_1$ Nonpert perturb

in the above form not in the above form

Collinear and k_T factorization

- Collinear Fac
 BBNS SCET
 pQCD
- There are two kinds of expansion series:
- One is α_s , one is power expansion $1/m_B$
- α_s expansion is controllable,
- 1/m_B expansion is not controllable , annihilation, charming penguin ...

$$k_{2} = m_{B}(y, 0, \underline{k}_{2}^{T}), \qquad k_{1} = m_{B}(0, x, \underline{k}_{1}^{T})$$
$$k_{2} \cdot k_{1} = k_{2}^{+} k_{1}^{-} - k_{2}^{T} \cdot k_{1}^{T} \approx m_{B}^{2} xy$$

Endpoint Singularity

The gluon propagator

- $\overline{(k_1 k_2)^2} \approx \overline{-2xym_B^2}$ $x,y \text{ are integral variables from } 0 \rightarrow 1,$ singular at endpoint
- In fact, transverse momentum at endpoint is not negligible
 i then no

$$\frac{l}{(k_1 - k_2)^2} = \frac{l}{-2xym_B^2 - (k_1^T - k_2^T)^2}$$

singularity

Soft collinear effective theory (SCET)

B $\rightarrow \pi$ form factor

- $F^{B \pi} = \zeta^{B \pi} + \zeta^{B \pi}_{J}$
- $\zeta^{B\pi}$: nonfactorizable (soft, with singularity)
- $\zeta_J^B \pi$: factorizable (hard)
- In SCET, ζ^{B π} and ζ^{B π} are at the same order
- In QCDF, $\zeta_J^B \pi$ is negligible
- In PQCD (k_T factorization), Both $\zeta B \pi$ and $\zeta J^R \pi$ are factorizable, same order in α_s

Penguin over tree

- $B^0 \rightarrow K^+ \pi^-$ and $B^0 \rightarrow \pi^+ \pi^-$ are dominated by penguin (P) and tree (T) operators, respectively
- In leading power,
- $|P/T| \sim |f_K/f_\pi| * |V_{ts}/V_{ub}| * |a4/a1|$ =158/132 * 41.61/3.96 * 0.045/1.05 = 0.54 Exp: $B(B^0 \rightarrow K + \pi -)/B(B^0 \rightarrow \pi + \pi -) = 18.2/4.6 = 4$

Penguin over tree

- (V-A)(V+A) operator O₆ can be chirally enhanced when doing Fierz transformation in QCDF and pQCD.
- a_6 only slightly larger than a_4 , QCDF needs very large chiral factor $m_0 = m_K^2/m_s$, small m_s .
- pQCD has additional chirally enhanced space like penguin contribution O₆, does not need small m_s
- SCET/BPRS without a₆, needs very large charming penguin

Charming penguins in SCET

- has the same topology as chiral enhanced penguin
- Charming penguin appear always together with chiral enhanced penguin

Importance of power corrections

- Most of the branching ratios agree well with experiments – leading power
- Difficult to distinguish between approaches
- but CP / polarization, suppressed channels require strong phase, sensitive to weak phase, power corrections will be different

CD Lu

QCD corrections are at a s order, strong phase too small

annihilation penguin can provide a large strong phase

pseudo-scalar B requires spins in opposite directions, namely, helicity conservation

Annihilation suppression $\sim 1/m_B \sim 10\%$

No suppression for O₆

- Space-like penguin (annihilation)
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)

Calculable in pQCD approach

No suppression for O₆

- Space-like penguin (annihilation)
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)

Calculable in pQCD approach

Large transverse component in $B \rightarrow \phi K^*$ decays

Annihilation can enhance transverse contribution: $R_L = 59\%$ (exp:50%)

and also right ratio of $R_{=,}R_{\perp}$ and right strong phase $\phi_{=,}\phi_{\perp}$, charming penguin in SCET

H-n Li, **Phys. Lett. B622, 68, 2005**

Charming penguins in SCET

- Play the similar role at SCET, but not calculable

SCET

- χ^2 Fit from experiments requires a large charming penguin, it even become the most important contribution in $B \rightarrow K \pi$ decays
- It is essential to provide a large strong phase for direct CP asymmetry

Williamson, Zupan, Phys.Rev.D74:014003,2006, Wang²,Yang,Lu, arXiv:0801.3123

Comparison

	charm loops	leading annihilation
BBNS/ QCDF	perturbative	nonperturbative model parameters, large phases
pQCD	perturbative	perturbative, large phases
BPRS/ SCET	nonperturbative fit parameters, large phases	perturbative

$B \rightarrow K\pi$ puzzle

- K⁺π⁻ and K⁺π⁰ differ by subleading amplitudes P_{ew} and C. Their CP are expected to be similar.
- Their data differ by 5σ! A puzzle!

$$A_{CP}(K^{+}\pi^{-}) = (-9.7 \pm 1.2)\%$$
$$A_{CP}(K^{+}\pi^{0}) = (5.0 \pm 2.5)\%$$

Amplitude parametrization

$$\begin{split} & - A(B^+ \to K^0 \pi^+) = P', \\ & A(B^0_d \to K^+ \pi^-) = -P' \left(1 + \frac{T'}{P'} e^{i\phi_3} \right), \\ & \sqrt{2}A(B^+ \to K^+ \pi^0) = -P' \left[1 + \frac{P'_{ew}}{P'} + \left(\frac{T'}{P'} + \frac{C'}{P'} \right) e^{i\phi_3} \right], \\ & \sqrt{2}A(B^0_d \to K^0 \pi^0) = P' \left(1 - \frac{P'_{ew}}{P'} - \frac{C'}{P'} e^{i\phi_3} \right), \\ & \frac{T'}{P'} \sim \lambda, \quad \frac{P'_{ew}}{P'} \sim \lambda, \quad \frac{C'}{P'} \sim \lambda^2 \\ & & \uparrow \\ & & (\mathsf{C}_2/\mathsf{C}_4)(\mathsf{V}_{us}\mathsf{V}_{ub}/\mathsf{V}_{ts}\mathsf{V}_{tb}) \sim (1/\lambda^2)(\lambda^5/\lambda^2) \sim \lambda \end{split}$$

Direct CP violation

Explanation 1

- Large K⁺π⁻ CP implies large δ₁
 (predicted by PQCD in 2000)
- Large P_{EW} to cancel its effect (Buras et al.; Yoshikawa) in K⁺π⁰ new physics?

Explanation 2

 Or large C to cancel its effect (Charng and Li; He and McKellar) in K⁺π⁰) mechanism missed in SM calculation?

 $A_{CP}(K^+\pi^-) = -0.097 \pm 0.012$ spectator d

difference = 5σ

 $A_{CP}(K^+\pi^0) = 0.046 \pm 0.026$ spectator *u*

 $A(K^{+}\pi^{-}) = P + T + \dots \quad \sqrt{2}A(K^{+}\pi^{0}) = P + T + C + \dots \text{ (next)}$ This would be a puzzle if $|C| \ll |T|$ but not if $|C| \sim |T|$ QCD calc. and SU(3) fits (excl. these asym.) find $|C| \sim |T|$ NO PUZZLE

Implication of 2 different asymmetries: Arg(C/T) < 0 large seems like a difficulty for QCD-factorization/SCET

NLO direct CP asymmetry

Mode	Data [1]	$_{\rm LO}$	+NLO
$B^{\pm} \rightarrow \pi^{\pm} K^{0}$	0.009±0.025	-0.01	$0.00 \pm 0.00 (\pm 0.00)$
$B^{\pm} \rightarrow \pi^0 K^{\pm}$	0.050±0.025	-0.08	$-0.01^{+0.03}_{-0.05}(+0.03)$
$B^0 \to \pi^{\mp} K^{\pm}$	-0.097±0.012	-0.12	$-0.09^{+0.06(+0.04)}_{-0.08(-0.06)}$
$B^0 \rightarrow \pi^0 K^0$		-0.02	$-0.07^{+0.03}_{-0.03}(+0.01)$
$B^0 \rightarrow \pi^{\mp} \pi^{\pm}$	0.38±0.07	0.14	$0.18^{+0.20(+0.07)}_{-0.12(-0.06)}$
$B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$	0.06 ± 0.05	0.00	$0.00 \pm 0.00 (\pm 0.00)$
$B^0 ightarrow \pi^0 \pi^0$	0.48 ± 0.32	-0.04	$0.63^{+0.35(+0.09)}_{-0.34(-0.15)}$

and the state

Tendency of exp. data is against th.?!

Measured values of $\Delta S_{b \rightarrow s}$ are mostly *negative* while many theoretical models predict them *positive*!

In the case of $\ensuremath{\mathsf{pQCD}}$ and $\ensuremath{\mathsf{QCDF}}$

$$\Delta S \simeq 2\epsilon_{KM}\cos 2\phi_1\sin\phi_3\cos\delta|\frac{A_f^u}{A_f^c}|$$

- The perturbative computation, δ is relatively small and $A_f^u/A_f^c \simeq 1 \text{tree/penguin}$
- The sign and size of -tree/penguin $B \rightarrow \phi K_S$: zero $B \rightarrow \eta' K_S$: negligible
 - $B \rightarrow \pi K_S$: large positive
 - $B \rightarrow \omega K_S$: large positive
 - $B \rightarrow \rho K_S$: large negative

CD Lu

Mixing Induced CP

- $B \rightarrow \pi^+ \pi^-$, ϕK , $\eta' K$, $KKK \dots$
- **Dominant by the B-B bar mixing**
- Most of the approaches give similar results
- Even with final state interactions

For Example:

 $\Delta S_{\pi^0 K_S}$ in Factorization-related methods

(From Yossi Nir)

$\Delta S_{\pi^0 K_S}$	Method	$\mathrm{hep} ext{-}\mathrm{ph}/$	Authors
$+0.06 \pm 0.04$	NF	0503151	Buchalla, Hiller, Nir, Raz
$+0.04\pm0.03$	NF+model	0502235	Cheng, Chua, Soni
$+0.07\pm0.04$	QCDF	0505075	Beneke
$+0.06\pm0.03$	\mathbf{PQCD}	0508041	Li, Mishima, Sanda
$+0.08 \pm 0.16$	SCET+SU(3)	0510241	Bauer, Rothstein, Stewart
CD Lu			33

Bs decays

- Good test for SU(3) symmetry, U-spin symmetry
- CP asymmetry study
- CKM angle measurements
- ... LHCb

hep-ph/0703162, PRD76:074018,2007

SCET QCDF PQCD EXP CDF $B_{s} \rightarrow K^{-} pi^{+} 4.9 \pm 1.8 \quad 10 \pm 6 \quad 7.6 \pm 3.3 \quad 5.0 \pm 1.3$ $B_{s} \rightarrow K^{-} K^{+} 18 \pm 7 23 \pm 27 14 \pm 9 24 \pm 5$ $B_s \rightarrow phi phi$ 22 ± 30 35 ± 19 $14 \not = 8$ Previous 34

First measurement of CP asymmetry in B_s decays

 $B_s \rightarrow K^- pi^+$

SCET QCDF PQCD EXP 20 ± 26 -6.7 ± 16 30 ± 6 $39 \pm 15 \pm 8$

pQCD agree with EXP in CP

1

$$R_3 = \frac{|A(B_s \to \pi^+ K^-)|^2 - |A(B_s \to \pi^- K^+)|^2}{|A(B_d \to \pi^- K^+)|^2 - |A(\bar{B}_d \to \pi^+ K^-)|^2} = -1$$

$$\Delta = \frac{A_{CP}^{dir}(\bar{B}_d \to \pi^+ K^-)}{A_{CP}^{dir}(\bar{B}_s \to \pi^+ K^-)} + \frac{BR(B_s \to \pi^+ K^-)}{BR(\bar{B}_d \to \pi^+ K^-)} \cdot \frac{\tau(B_d)}{\tau(B_s)} = \mathbf{0}$$

Results from pQCD

 $R_3 = -1.00^{+0.04+0.03+0.09}_{-0.04-0.04-0.08}, \quad \Delta = -0.00^{+0.03+0.03+0.03+0.06}_{-0.03-0.02-0.04},$

Experimental data

 $R_3 = -0.84 \pm 0.42 \pm 0.15 \quad \Delta = 0.04 \pm 0.11 \pm 0.08$

 \mathbf{R}_3 vs Δ

CD Lu

Bs $\rightarrow \rho^0 K_s$

- If tree dominant (V_{ub}), good for gamma measuremnt.
- However, Color suppressed tree is comparable with QCD penguin contribution
- Direct CP large
 - QCDF PQCD
 - $25 \pm 60 \%$ 97 ± 30 %
- Not good for gamma measurement

Summary / Comment

- Factorization approaches are systematic tools, sometimes have to be used for data fitting (Scenario 1,2,3,4 in QCDF, charming penguin in SCET)
- SCET is encouraging, counting rules consistent with pQCD, but need more parameters
- NLO, 1/m_B corrections not yet fully studied, important for certain channels

Annihilation Penguin

- The direct CP measurements need a large contribution from annihilation penguin (or charming penguin), with large strong phase
- The large BRs of B→ VP modes also need such annihilation penguin
- Similar in the polarization of $B \rightarrow VV$ modes
- Only pQCD approach can predict its size by calculation

Thank you!

Threshold resummation

The radiative corrections of hard part result in double logarithms. The resummation of them give out a jet function

$$S_t^{LL}(x) = -\exp\left(\frac{\pi}{4}\alpha_s C_F\right) \int_{-\infty}^{+\infty} \frac{dt}{\pi} (1-x)^{s^t} \sin\left(\frac{1}{2}\alpha_s C_F t\right) \exp\left(-\frac{\alpha_s}{4\pi} C_F t^2\right)$$

Sudakov factor

The soft and collinear divergence produce double logarithm $ln^2 Pb$,

Summing over these logs result a Sudakov factor. It suppresses the endpoint region

Sudakov factor

Exponential suppression at endpoint

