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Can the SM Fit that 
data?

• w/o some theory input enough free 
parameters to fit the data.

• To test the SM we need some theory input to 
reduce number of degrees of freedom in the 
fit. 
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Parameter Counting

SCET imposes strong constraints on the SM, 
but how confident are we that a violation of 

the resulting predictions implies the existence 
of new physics?



SCET and Factorization
• Factorization implies the disentangling of fields 

with differing kinematics. i.e. B is soft,  pions 
are collinear, in different directions.

• This is accomplished by showing that the 
various types of fields do not couple at the 
level of the LAGRANGIAN.

• Couplings between fields are various types do 
couple but only perturbatively in Λ/mb

L0 = Ln + Ln̄ + Ls



Two relevant hard scales

mb >
√

Λmb > Λ

Step one:     Integrate out 
hard modes in two steps:

αs(mb)mb : All matching coefficients ~

Can generate strong phases perturbatively

(1 + Cαs(mb)) O4



Annihilation:
Cαs(mb)O6

C is real at leading order, complex at 
higher orders in αs(mb)

Off-shell by ~mb



q2 ∼ Λmb

Step two:

Jet function is real 

“Jet function” 

A =
GF m2

B√
2

[{
fM1

∫ 1

0
du dz T1J(u, z)ζBM2

J (z)φM1(u) + fM1ζ
BM2

∫ 1

0
du T1ζ(u)φM1(u)

}
+

{
1↔ 2

}
+λ(f)

c AM1M2
cc̄

]

Leading order (in        ) Factorization 
formula

C(αs(mb))

Λ/mb

identical to form factor
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Schematically

In SCET Factorization is manifest at the 
level of the ACTION, allows one to 

systematically include power 
corrections



Λ

√
Λmb

mb

SCETI

SCETII

Does P.T. work here?
√

ΛmB ∼ 2mc

Beneke + Jager %40 corrections

Stop here, make no 
assumptions regarding 

PT in this region

Working in this Lagrangian approach allows us to 
get a handle on scale to evaluate       (in most 

cases, ahhilation?)
αs



• Note that in SCET power counting there is no 
reason to expect C<<T.     Both start at        

•
ζJ ∼ ζ

C2 + (1 +
1
ū

)C1/Nc

piece is proportional toζJ

αs(
√

mbΛ)



So where are the strong 
phases hiding? Charming 

PenguinsSoft 
Gluons

In general would expect this to have a 
phase at leading order

Also, for VV not necessarily Transveresly 
polarized.

NRQCD power 
counting ~ v~.5

αs(mc)F ((2mc/mb))v

Nearly on shell charm 
quarks



9 uknown parameters in 
(ζBπ + ζJ

Bπ, βπζJ
Bπ, Aππ

cc )

(ζBπ + ζJ
Bπ, βKζJ

Bπ, ζBK + ζJ
BK , βπζJ

BK , Aππ
cc )

If we assume  SU(3)

(ζBπ = ζBK , βK = βπ, Aππ
cc = AπK

cc )

4 UKNOWN PARAMETERS 
IN PI-K SYSTEM (LO)

(Will not use)



Drastic increase in prediction power but are we confident 
in our power counting?

fHPQCD
+ (0) = 0.22± 0.03

Hints it may be “working”

ζBπ + ζJ
Bπ = (0.19 ± 0.01 |exp ±0.05 |th)

(
3.8× 10−3

| Vub |

)
SCET

Lattice+Data
+dispersion relations

SCET predicts 
B → Dπ, B → D!π

(NOT an HQET 
prediction due to soft 

gluons connecting 
heavy to light quarks)

δ(Dπ) = δ(D!π) [δ = Arg(A3/2A
!
1/2)]

δ(Dπ) = 30.4± 4.8

δ(D!π) = 31.0± 5.0

mantry + Stewart



In pi-pi system exract γ

γππ = 73.9+7.5
−10.3 |exp

+1.0
−2.5 |thy γππ

2 = 27.7+9.9
−7.3 |exp

+10
−4.5 |thy

γππ
CKMfit = 67.6+2.8

−4.5 γππ
UTfit = 66.7± 6.4

In rho-rho system 

γρρ = 77.57.4
28 |exp

1.0
−5.2 |thy γρρ

2 = 57.3 +2.8
−4.5 |exp

+6.7
−4.1 |thy

Disfavored  theoretically
ζ < 0



K-Pi is where things get 
interesting

1

A(B− → π−K̄0) = λ(s)
u AKπ + λ(s)

c PKπ (1)
√

2A(B− → π0K−) = −λ(s)
u (CKπ + TKπ + AKπ)

−λ(s)
c (PKπ + EWT

Kπ)
A(B̄0 → π+K−) = −λ(s)

u TKπ

−λ(s)
c (PKπ + EWC

Kπ)
√

2A(B̄0 → π0K̄0) = −λ(s)
u CKπ

+λ(s)
c (PKπ − EWT

Kπ + EWC
Kπ)

Most General SU(3) 
decomposition

At LO in SCET all real except P, which 
we treat to all orders in Λ/mb



1

A(B− → π−K̄0) (1)

= λ(s)
c PKπ

[
1− 1

2
εAe−iγeiφA

]
,

A(B̄0 → π+K−)

= −λ(s)
c PKπ

[
1+

1
2
(
εew
C eiφew

C −εT eiφT−iγ
)]

,
√

2A(B− → π0K−)

= −λ(s)
c PKπ

[
1+

1
2
(
εew
T eiφew

T −εeiφ−iγ
)]

,
√

2A(B̄0 → π0K̄0)

= λ(s)
c PKπ

[
1− 1

2
(
εeweiφew−εCeiφC−iγ

)]
,

1

A(B̄0 → π−K̄0) = λ(s)
c PKπ , (1)

A(B̄0 → π+K−) = −λ(s)
c PKπ

[
1+

eiδ

2
(
εew
C −εT e−iγ

)]
,

√
2A(B− → π0K−) = −λ(s)

c PKπ

[
1+

eiδ

2
(
εew
T −εe−iγ

)]
,

√
2A(B̄0 → π0K̄0) = λ(s)

c PKπ

[
1− eiδ

2
(
εew−εCe−iγ

)]
,

In SCET all relative phases are equal δ

K-pi asymmetries seem to pose a problem



∆1 = (1 + R1)ACP (π0K−)
∆2 = (1 + R2)ACP (π−K+)

∆1 = −ε sin(δ) sin(γ)

∆2 = −εT sin(δ) sin(γ)

ε = εT + εC

εT = 1.4(ζBπ + ζJ
Bπ) + 0.35βKζJ

Bπ

εC = .12(ζBK + ζJ
BK) + 1.27βπζJ

BK

have same sign∆1,∆2

∆1 = −ε sin γ sinφ + O(ε2)
SCET

∆2 = −εT sin γ sinφT + O(ε2)



Belle AK+π− = −0.094± 0.018± 0.008

AK+π0 = +0.07± 0.03± 0.01

Using the charged asymmetry to as 
input we may extract a prediction (NO 

SU(3) ERRORS) 

AK+π0 = −0.18± 0.08

This error does not reflect the 
new data, will come down once 

new analysis is performed



• What are we to conclude from this?

Certainly something very interesting is 
going on

What are the possibilities?

Large complex power corrections



x ~ 1
mb

µ

M1

M2

B

c) !( )1/2

Complex in SCET as opposed to “local annihilation”

O(α2
s(

√
Λmb)

The problem is that these 
(dominantly) contribute to both 
modes identically, so will NOT 

explain the difference.

Annihilation

Due to “soft 
functions”

Arenesen et al



Chirally Enhanced 
Terms

• Certain power corrections are numerically 
(not parametrically) enhanced Λχ/Λ ∼ 3− 4

µ/mb ∼ 2
For Penguins contribute identically to 

both modes
1

M1M2 R1 R2 Rχ
1 Rχ

2

π−π+, ρ−π+ cχ
1(qfq)+ cχ

2(qfq) 0 bχ
1(qfq)+bχ

1(ufu) 0

π−ρ+ −cχ
1(qfq)− cχ

2(qfq) 0 bχ
1(qfq)+bχ

1(ufu) 0

π−π0 1√
2

ˆ
cχ
1(qfq)+cχ

2(qfq)

˜ −1√
2

ˆ
cχ
1(qfq)−

1
2cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(ufu)+bχ

1(qfq)

˜
1√
2

ˆ
bχ
1(fuu)−bχ

2(fuu)−bχ
1(qfq)

˜

ρ−π0 1√
2

ˆ
cχ
1(qfq)+cχ

2(qfq)

˜
1√
2

ˆ
cχ
1(qfq)−

1
2cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(ufu)+bχ

1(qfq)

˜
1√
2

ˆ
bχ
1(fuu)−bχ

2(fuu)−bχ
1(qfq)

˜

π−ρ0 −1√
2

ˆ
cχ
1(qfq)+cχ

2(qfq)

˜ −1√
2

ˆ
cχ
1(qfq)−

1
2cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(ufu)+bχ

1(qfq)

˜
1√
2

ˆ
bχ
1(fuu)+bχ

2(fuu)−bχ
1(qfq)

˜

π0π0 −1
2cχ

1(qfq)+
1
4cχ

2(qfq)
−1
2 cχ

1(qfq)+
1
4 cχ

2(qfq)
1
2

ˆ
bχ
1(fuu)−bχ

2(fuu)−bχ
1(qfq)

˜
1
2

ˆ
bχ
1(fuu)−bχ

2(fuu)−bχ
1(qfq)

˜

ρ0π0 −1
2 cχ

1(qfq)+
1
4cχ

2(qfq)
1
2 cχ

1(qfq)−
1
4 cχ

2(qfq)
1
2

ˆ
bχ
1(fuu)+bχ

2(fuu)−bχ
1(qfq)

˜
1
2

ˆ
bχ
1(fuu)−bχ

2(fuu)−bχ
1(qfq)

˜

K(∗)0K−, K(∗)0K̄0 −cχ
1(qfq)+

1
2cχ

2(qfq) 0 −bχ
1(qfq) 0

K0K∗−, K0K̄∗0 cχ
1(qfq)−

1
2cχ

2(qfq) 0 −bχ
1(qfq) 0

K(∗)−K(∗)+ — — — —

π+K(∗)− 0 cχ
1(qfq)+ cχ

2(qfq) 0 bχ
1(ufu)+bχ

1(qfq)

ρ+K− 0 −cχ
1(qfq)− cχ

2(qfq) 0 bχ
1(ufu)+bχ

1(qfq)

π0K(∗)− 0 1√
2

ˆ
cχ
1(qfq)+cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(fuu)−bχ

2(fuu)

˜
1√
2

ˆ
bχ
1(ufu)+bχ

1(qfq)

˜

ρ0K− 0 −1√
2

ˆ
cχ
1(qfq)+cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(fuu)+bχ

2(fuu)

˜
1√
2

ˆ
bχ
1(ufu)+bχ

1(qfq)

˜

π−K̄(∗)0 0 −cχ
1(qfq)+

1
2cχ

2(qfq) 0 −bχ
1(qfq)

ρ−K̄0 0 cχ
1(qfq)−

1
2cχ

2(qfq) 0 −bχ
1(qfq)

π0K̄(∗)0 0 −1√
2

ˆ
cχ
1(qfq)−

1
2cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(fuu)−bχ

2(fuu)

˜
− 1√

2
bχ
1(qfq)

ρ0K̄0 0 1√
2

ˆ
cχ
1(qfq)−

1
2cχ

2(qfq)

˜
1√
2

ˆ
bχ
1(fuu)+bχ

2(fuu)

˜
− 1√

2
bχ
1(qfq)

TABLE I: Hard functions for the chiraly enhanced amplitudes in Eq. (??) for B̄0 and B− decays to PP and PV channels. We
have not listed results for RJ

1,2 , but they have the same Clebsch-Gordan coefficients as R1,2 and so can be simply obtained by
the replacements cχ

1(qfq) → bχ
3(qfq) and cχ

2(qfq) → bχ
4(qfq) in the columns above.

jain et al



• There  could be (Color Suppressed) complex 
power corrections which could induce a split 
(have not been categorized). However, if this 
were truly the explaination, then this 
constitutes a breakdown of the power 
counting, and begs the question “why does the 
power counting work so well elsewhere?” 
Perhaps an alternative power counting? 



• There exists new physics (Electro-weak 
Penguins?)

• Wont be confident that its new physics until 
we see a coherent pattern of deviations from 
the SM all consistent with the power counting 
that has been assumed to hold. 

• More work needs to be done to better 
understand non-local power corrections.


