Precision Standard Model Tests with Kaons

Rainer Wanke

Institut für Physik, Universität Mainz

Flavour Physics and CP Violation 2007

Taipei, May 6, 2008

Overview

Flavour Physics ...

- lacksquare $|V_{us}|$ from Semileptonic and Leptonic K Decays
- Precise Measurement of Leptonic K Decays

• ... and \mathcal{CP} Violation

Search for Direct ${\cal CP}$ Violation in $K^{\pm}
ightarrow 3\pi$ Decays

Not covered ...

Precision Tests of ChPT in Kaon Decays

 $\pi\pi$ scattering amplitudes from K_{e4} and Cusp in $K \to 3\pi$, $K^+ \to \pi^+ e^+ e^-$, $K^+ \to \pi^+ \pi^0 \gamma$, $K^+ \to \pi^+ \gamma \gamma$, $K_S \to \gamma \gamma$, and many more!

Experiments

Flavianet Kaon Working Group

http://www.lnf.infn.it/wg/vus/

Kaon WG home			News
FlaviaNet home			Talks Acknowledgemer
Master Formulae	ISTDA+		
Branching Ratios	Oleg Yushchenko (Protvino)		
Lifetimes	Vladimir Obraztsov (Protvino)		
Form Factors		Theory:	
	KLOE:	Johan Bijnens (Lund)	
Radiative	Matthew Moulson (Frascati) web contact	<u>Vincenzo Cirigliano (Los Alamos)</u>	
Corrections	<u>Patrizia De Simone (Frascati)</u>	Juerg Gasser (Bern)	
SU(3) Breaking		<u>Claudio Gatti (Frascati)</u>	
Form Factors	KTeV:	<u>Richard Hill (FNAL)</u> Federico Mescia (Frascati) web contact	
	<u>Sasha Glazov (DESY)</u>	Jan Stern (Orsay)	
Contacts	NA 40.		
	NA48: Dainer Wanke (Uni, Maina)		
	<u>Kainer wanke (Oni, Mainz)</u> Michele Veltri (Uni, Urbino)		
	Mauro Piccini (CERN)		

$|V_{us}|$ from Semileptonic Kaon Decays

\mathbf{K}_{13} master formula:

 $(K_{l3} \equiv K \rightarrow \pi l \nu; l = e, \mu)$

 $\Gamma(\mathbf{K}_{\mathbf{l3}(\gamma)}) = \frac{\mathbf{G}_{\mathbf{F}}^{2} \mathbf{m}_{\mathbf{K}}^{5}}{192\pi^{3}} \mathbf{C}_{\mathbf{K}}^{2} \mathbf{S}_{\mathbf{EW}} |\mathbf{V}_{\mathbf{us}}|^{2} |\mathbf{f}_{+}(\mathbf{0})|^{2} \mathbf{I}_{\mathbf{K}}^{l} (1 + 2\delta_{\mathbf{SU}(2)}^{l} + 2\delta_{\mathbf{EM}}^{l})$

with: $\mathbf{C}_{\mathbf{K}}^2 = \mathbf{1}$ for K^0 , $= \frac{1}{2}$ for K^{\pm} .

 $S_{EW} = 1.0232$: short-distance EW correction.

To be measured by experiment:

- $\Gamma(\mathbf{K}_{13(\gamma)})$: Decay rates including radiative γ 's \implies BR's, τ 's.
- **I**¹_{**K**}: Integral of form factors over phase space \implies slopes λ_+ , λ_0 .

To be determined by theory:

- **f**₊(**0**): Hadronic matrix element at $q^2 = 0$ (different for K^{\pm} , K^0).
- $\delta_{SU(2)}^{l}$, δ_{EM}^{l} : Form factor corrections for SU(2) breaking and long-distance EM interactions.

Direct Measurements of Kaon Branching Fractions

Several new data on main kaon branching fractions last year:

- **NA48/2:** $\mathbf{K}_{e3}^{\pm}/\pi^{\pm}\pi^{0}$, $\mathbf{K}_{\mu3}^{\pm}/\pi^{\pm}\pi^{0}$ published last year.
- **ISTRA+:** $\mathbf{K}_{e3}^-/\pi^-\pi^0$ updated.

KLOE:

Can measure **absolute** branching fractions $\implies \mathbf{K_{e3}}, \mathbf{K_{\mu 3}}, 2\pi, 3\pi, \mu\nu, \dots$

New precise K_{L,S}, K[±] lifetime measurements.

Global Flavianet fit to all data

Fit to Kaon Branching Fractions

Main K_L branching fractions:

$|V_{us}|$ Determination

Global Flavianet fit to all Kaon data

Includes: All K^{\pm} , K_L , K_S BR's, form factor slopes, lifetimes.

(M. Antonelli et al., arXiv:0801.1817 [hep-ph])

K_{L,S}

18 input measurements:

5 KTeV ratios NA48 K_{e3} /2t and Γ(3π⁰) **4 KLOE** BRs KLOE, NA48 π⁺π⁻/ K_{l3} KLOE, NA48 γγ/3π⁰ PDG ETAFIT for π⁺π⁻/π⁰π⁰ KLOE τ_L from 3π⁰ Vosburgh '72 τ_L

1 constraint: ΣBR=1

K+-

26 input measurements:

5 older τ values in PDG 2 KLOE τ KLOE BR($\mu\nu$) KLOE Ke3, K μ 3 BRs ISTRA+ $K_{e3}/\pi\pi^0$ NA48/2 $K_{e3}/\pi\pi^0$, $K_{\mu3}/\pi\pi^0$ E865 K_{e3}/K dal KLOE $\pi\pi^0$ 3 old $\pi\pi^0/\mu\nu$ 2 old Ke3/2 body 3 $K\mu3/Ke3$ (2 old)

2 old + 1 KLOE results on 3π

+ form factor slopes

$|V_{us}|$ Determination

				% error from		
	BR [%]	$ \mathbf{V_{us}} imes \mathbf{f_+}(0)$	% err	BR	au	Δ
$K_L e3$	40.58(9)	0.21625(60)	0.28	0.09	0.19	0.15
${f K_L}\mu{f 3}$	27.06(6)	${f 0.21675(66)}$	0.31	0.10	0.18	0.15
$\mathbf{K_Se3}$	0.0705(9)	0.21542 (134)	0.67	0.65	0.03	0.15
$\mathbf{K^{\pm}e3}$	${f 5.078(25)}$	${f 0.21728(84)}$	0.39	0.26	0.09	0.26
$\mathbf{K}^{\pm}\mu3$	3.365(27)	0.21758 (111)	0.51	0.40	0.09	0.26
Average		0.21661 (47)				
0.215	0.2175				1001	
	K _{Le3}	Average: $ V_{us} $	$\times \mathbf{f}_{+}(0)$) = 0.2	$1661 \pm$	= 0.00047
		Use $f_{\perp}(0) = 0.9$	0.00000000000000000000000000000000000	0 05 fro	om Lat	tice QCD
Katin We	, к _{циз}	(UKQCD/RBC 2	007 =	⇒ Talk	F. Mes	cia)
•	K _{Se3}					
+	— <i>K</i> [±] _{e3}	$ \mathbf{V_{us}} = 0$	• 0.2246 =	± 0.001	12	
f ₊ (0)×V _{us}	κ [±] _{μ3}	(Error domin	nated by e	stimate o	of $f_{+}(0)$.	.)
0.215	0.2175	Rai	iner Wanke, Univers	ität Mainz, FPCF	P 2008, Taipei, M	lay 6, 2008 – p.10/30

$|V_{us}|$ Determination

Adding information from $\mathbf{K}^+ \rightarrow \mu^+ \nu (\mathbf{K}_{\mu 2})$:

New BR from KLOE ($\sim 0.3\%$ precision) + older values

 \implies Br(K⁺ $\rightarrow \mu^+ \nu) = 0.6357 \pm 0.0011$

Take $\tau_{\mathbf{K}^+}$ from Flavianet fit and build $\Gamma(\mathbf{K} \to \mu\nu) / \Gamma(\pi \to \mu\nu)$ ($\Gamma(\pi_{\mu 2}) = 38.408(7) \ \mu s^{-1}$)

$$rac{|{f V}_{f us}|}{|{f V}_{f ud}|}\,rac{{f f}_{f K}}{{f f}_{\pi}}\,=\,0.2760\pm0.0006$$

Use $f_K/f_{\pi} = 1.189(7)$: (MILC-HPQCD 2007 \implies Talk F. Mescia)

 $|\mathbf{V_{us}}| / |\mathbf{V_{ud}}| = 0.2321 \pm 0.0015$

 $\begin{array}{l} \mbox{Very good agreement with} \\ |\mathbf{V_{us}}| \mbox{ from } \mathbf{K_{l3}} \mbox{ and } |\mathbf{V_{ud}}| \mbox{ from } \\ \mathbf{0^+} \rightarrow \mathbf{0^+} \mbox{ transistions!} \end{array}$

$$\mathbf{K_{e2}}/\mathbf{K}_{\mu \mathbf{2}}$$

$K_{e2}/K_{\mu 2}$ — Introduction

Standard Model Prediction:

■ $\mathbf{R}_{\mathbf{K}} = \mathbf{\Gamma}(\mathbf{K} \to \mathbf{e}\nu) / \mathbf{\Gamma}(\mathbf{K} \to \mu\nu)$ text book exercise for helicity suppression, but must include radiative corrections: (Cirigliano, Rosell, PRL 99 (2007) 231801)

 $\mathbf{R_K} = R_K^{(0)} (1 + \delta R_K^{\text{rad.corr.}}) = 2.569 \times 10^{-5} \times (0.9640 \pm 0.0004)$ $= (2.477 \pm 0.001) \times 10^{-5}$

 \implies SM prediction has precision of 0.04%!

Possibility for New Physics in ${\bf K_{e2}}/{\bf K_{\mu2}}$:

SUSY: LFV H^{\pm} couplings may enhance/lower SM K_{e2} decay width by up to 2 - 3%. (Masiero, Paradisi, Petronzio (2006))

PDG 2006: Three measurements from the 1970's

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = ({f 2.45\pm 0.11}) imes 10^{-5}$

 $K_{e2}/K_{\mu 2}$ — Measurements

Three new preliminary measurements:

NA48/2 (2003 data), presented in 2005:

About 4000 signal events from normal running period.

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.416 \pm 0.043 \pm 0.024) imes 10^{-5}$

NA48/2 (2004 data), presented last year:

About 4000 signal events from special minimum bias trigger.

Uncorrelated with 2003 measurement.

 $egin{aligned} \Gamma(\mathbf{K_{e2}}) / \Gamma(\mathbf{K_{\mu 2}}) \ &= (\mathbf{2.455} \pm \mathbf{0.045} \pm \mathbf{0.041}) imes \mathbf{10^{-5}} \end{aligned}$

■ KLOE, presented last year: ■ About 8000 events from 1.7 fb⁻¹. $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$ = (2.55 ± 0.05 ± 0.05) × 10⁻⁵

Combine all preliminary results and PDG2006:

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.457 \pm 0.032) imes 10^{-5}$

$$(\chi^2/n_{\rm dof} = 2.44/3)$$

Huge improvement w.r.t PDG 2006, $\sigma_{rel.} = 1.3\%$ now!

Perfect agreement with SM expectation.

Rainer Wanke, Universität Mainz, FPCP 2008, Taipei, May 6, 2008 – p.16/30

$K_{e2}/K_{\mu 2}$ — Restrictions on New Physics

Limit on LFV in H^{\pm} coupling:

(Masiero, Paradisi, Petronzio, PRD 74, 2006)

LFV Yukawa coupling:

$$l\mathbf{H}^{\pm}\nu_{\tau} \rightarrow \frac{\mathbf{g_2}}{\sqrt{2}} \frac{\mathbf{m}_{\tau}}{\mathbf{M_W}} \, \Delta_{\mathbf{13}} \, \tan^2 \beta$$

Lepton-flavour violating term: Δ_{13} (should be $\leq 10^{-3}$ from EW theory, but $\neq 0$)

Limit on LFV in K_{e2} converts to limit on $\Delta_{13} = \Delta_{13}(M_{H^{\pm}}, \tan \beta)$:

$$\mathbf{R}_{\mathbf{K}}^{\text{LFV}}\approx\mathbf{R}_{\mathbf{K}}^{\text{SM}}\left[1+\left(\frac{\mathbf{m}_{\mathbf{K}}^{4}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{4}}\right)\left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{\mathbf{e}}^{2}}\right)|\boldsymbol{\Delta}_{\mathbf{13}}|^{2}\text{tan}^{6}\,\boldsymbol{\beta}\right.$$

$K_{e2}/K_{\mu 2}$ — Comparison with $B \rightarrow \tau \nu_{\tau}$

$K_{e2}/K_{\mu 2}$ — Near Future

KLOE:

- Has $\sim 20\%$ more data on tape.
- Another ~ 3000 events with other reconstruction method.
- Improve MC statistics & systematics
- \Rightarrow Should arrive at $\sigma_{rel}(\mathbf{R}_{\mathbf{K}}) \sim \pm 1\%$.
- **NA62:** (also known as NA48/3)
 - Similar setup as for NA48/2 (2004) prel. measurement, most parts of existing NA48 apparatus re-used.
 - Special 4-month run period in 2007

 $\implies \sim 120\,000~K_{e2}$ decays.

 \implies Goal: $\sigma_{\mathsf{rel}}(\mathbf{R}_{\mathbf{K}}) \sim \pm (\mathbf{0.3} - \mathbf{0.4})\%$.

 $K_{e2}/K_{\mu 2}$ — Expectations

2.45 2.55 2.5 2.6 Γ(K_{e2}) / Γ(K_e) [10⁻⁵]

SM

FPCP09 ?! same R_K central value

 $\Delta_{42} < 10^{-3}$

Search for Direct CP Violation in ${ m K}^{\pm} ightarrow 3\pi$ Decays

Search for CP Violation in $K^{\pm} \rightarrow \pi^{\pm}\pi\pi$

${\cal CP}$ violation in ${ m K}^{\pm} ightarrow 3\pi$:

Possibility for **direct** CP **violation** in the K^{\pm} system:

- SM $\sim O(10^{-5} 10^{-6})$ (Gamiz, Prades, Scimeni, JHEP 10 (203) 042).
- New Physics could boost it up to $\mathcal{O}(10^{-4})$.

(Experimental limit so far: $\mathcal{O}(10^{-3})$.)

Method:

- **Rate asymmetry** $\Gamma(\mathbf{K}^+) \neq \Gamma(\mathbf{K}^-)$ experimentally not simple.
- Better: Measure difference in Dalitz plot slopes!

K^{$$\pm$$} $\rightarrow \pi^{\pm}\pi\pi$ matrix element:

 $\mathbf{M}(\mathbf{u},\mathbf{v})\sim \mathbf{1}+\mathbf{g}\,\mathbf{u}+\mathbf{hu^2}+\mathbf{kv^2}+\cdots$

with:
$$u = (s_3 - s_0)/m_\pi^2$$
, $v = (s_2 - s_1)/m_\pi^2$

Direct *CP* violating asymmetry:

$$\mathbf{A_g} = \frac{\mathbf{g^+} - \mathbf{g^-}}{\mathbf{g^+} + \mathbf{g^-}} = \frac{2\,\Delta\mathbf{g}}{\mathbf{g}}$$

$$g^{+} \equiv g(K^{+} \rightarrow \pi^{+}\pi\pi)$$

$$g^{-} \equiv g(K^{-} \rightarrow \pi^{-}\pi\pi)$$

NA48/2 experiment in 2003/2004:

- Simultaneous K^+ and K^- beams with $p_{K^{\pm}} = (60 \pm 3)$ GeV/c.
- Regular changes of achromat and spectrometer polarities to symmetrize beam and detector set-up.

Search for CP **Violation in** $K^{\pm} \rightarrow \pi^{\pm}\pi\pi$

 10^{7}

10⁶

10⁵

10⁴

10³

102

0.48

0.47

0.49

0.5

Total Yields: (practically bkg-free)

 $\mathbf{K}^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$: $\mathbf{3.1} \times \mathbf{10^9}$ events $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{\mathbf{0}} \pi^{\mathbf{0}}$: 9.1 × 10⁷ events

 $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$

 $\pi \rightarrow \mu \nu$

0.51 0.52 M_{3π}, GeV/c²

 $\pi \rightarrow \mu \nu$

10

15

5

0

Search for CP **Violation in** $K^{\pm} \rightarrow \pi^{\pm}\pi\pi$

Conclusions

$|V_{us}|$ from K_{l3} Decays:

New precise BR measurements from all experiments.

New $|V_{us}|$ value: $|V_{us}| = 0.2246 \pm 0.0012$

Ratio $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$:

Two new preliminary results reported by KLOE and NA48/2.

 \implies Precision on $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$ now 1.3%.

- Further improvement by KLOE and NA62 soon
 - \implies Sensitivity to LFV in SUSY!
- Search for CP violation in $K^+ \rightarrow 3\pi$:

Limits improved by one order of magnitude to $\mathcal{O}(10^{-4})$

 \implies No sign for new physics.

Spares

Measurement of form factors essential for

- E Knowledge of phase space integral I_K^l for $|V_{us}|$ determination.
- Knowledge of detector acceptances for BR measurements.

K_{13} matrix element:

 $\mathcal{M} \propto \mathbf{f_+(q^2)} (\mathbf{p_K} + \mathbf{p_{\pi}})^{\mu} \mathbf{\bar{u}_l} \gamma_{\mu} (\mathbf{1} + \gamma_5) \mathbf{u_v} + \mathbf{f_-(q^2)} \mathbf{m_l} \mathbf{\bar{u}_l} \gamma_{\mu} (\mathbf{1} + \gamma_5) \mathbf{u_v}$

 $\label{eq:scalar} \mbox{ Scalar form factor: } \ f_0(q^2) = f_+(q^2) + \frac{q^2}{m_K^2 - m_\pi^2} f_-(q^2)$

Common Parametrization used by all experiments:

- Quadratic expansion λ'_+ , λ''_+ for vector form factor $f_+(q^2)$.
- Linear expansion λ_0 for scalar form factor $f_0(q^2)$ ($K_{\mu3}$ only).

Current Data on K_{l3} form factor slopes by all 4 Experiments in 2004–07.

- Ke3: Good agreement
- **K**_{μ 3}: Bad χ^2 due to λ_0 from NA48 $K_{L\mu3}$

Combined fit:

(Includes scale factors due to $K_{\mu3}$ disagreement)

$$\lambda'_{+} = (\mathbf{24.9 \pm 1.1}) \times \mathbf{10^{-3}}$$

 $\lambda''_{+} = (\mathbf{1.6 \pm 0.5}) \times \mathbf{10^{-3}}$
 $\lambda_{\mathbf{0}} = (\mathbf{13.4 \pm 1.2}) \times \mathbf{10^{-3}}$

Rainer Wanke, Universität Mainz, FPCP 2008, Taipei, May 6, 2008 – p.29/30

EM corrections are small

(Cirigliano et al. (2002), updated by Cirigliano, Neufeld; errors are taken as uncorrelated [has to be improved].)

	$\delta^{\mathbf{e}}_{\mathbf{EM}}$ [%]	$\delta^{\mu}_{{f EM}}$ [%]	$({\bf 1}+\delta^{\mu}_{\bf K})^{\bf 2}/({\bf 1}+\delta^{\bf e}_{\bf K})^{\bf 2}$
K ⁰ ₁₃	+0.52(10)	+0.80(15)	1.006(4)
$\mathbf{K_{l3}^{\pm}}$	+0.03(10)	-0.12(15)	0.997(4)

Phase space corrections are large and depend on form factor slopes λ'_+ , λ''_+ , λ_0 .

Use form factor values from global Flavianet fit

(assuming lepton universality in the slopes and taking correlations into account).

	$\mathbf{I}^{\mathbf{e}}_{\mathbf{K}}$	$\mathbf{I}^{\mu}_{\mathbf{K}}$	${f I}^{\mu}_{f K}/{f I}^{f e}_{f K}$
$\mathbf{K}_{\mathbf{L},\mathbf{l3}}$	0.15454(29)	$\mathbf{0.10209(31)}$	0.6617(16)
$\mathbf{K_{l3}^{\pm}}$	0.15889(30)	$\mathbf{0.10504(32)}$	0.6611(16)