Quantum entanglement at the $\psi(3770)$ and $\Upsilon(4S)$

Bruce Yabsley

University of Sydney; http://belle.kek.jp/~yabsley

Flavor Physics & CP Violation Conference, NTU, Taipei, 6th May 2008

Outline

The flavor singlet state

- Spin singlet: Einstein, Podolsky, and Rosen, via Bohm
- Flavor singlet: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \frac{1}{\sqrt{2}} \left(|B^0\rangle |\overline{B}{}^0\rangle |\overline{B}{}^0\rangle |B^0\rangle \right)$

2 $\Upsilon(4S)$: **EPR correlations at Belle**

- On what can and cannot be measured; Or, conspiracy
- QM versus specific LR models
- The 2007 Belle result

3 ψ (3770): **CLEO-c** rates are tangled up with (*x*, *y*), δ , ...

- $\mathrm{D}^0 \to \mathrm{K}^0_{S,L} \pi^0$
- Charm mixing and $\delta_{\mathrm{K}\pi}$

4 ϕ_3 /**D**alitz: $\psi(3770)$ rescues the $\Upsilon(4S)$

- Current results (Belle and BaBar)
- Model-independent analysis

5 Summary

Einstein, Podolsky, and Rosen, via Bohm

spin-singlet state of photons or particles: $\frac{1}{\sqrt{2}} [|\Uparrow\rangle_1 |\Downarrow\rangle_2 - |\Downarrow\rangle_1 |\Uparrow\rangle_2]$

• measurements on 1 (2) indeterminate, but \implies full knowledge of 2 (1)

- Bell's Theorem (via Clauser, Horne, Shimony, and Holt):
 - correlation coeff: $E(\vec{a}, \vec{b}) = \frac{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b})}{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) + R_{-+}(\vec{a}, \vec{b})}$
 - $S = E(\vec{a}, \vec{b}) E(\vec{a}, \vec{b}') + E(\vec{a}', \vec{b}) + E(\vec{a}', \vec{b}')$
 - $|S| \leq 2$ for any local realistic model; $S_{QM} = \pm 2\sqrt{2}$ for optimal settings
- QM-like results rule out LR, even if we eventually "get behind" QM

source: 2-photon cascade decay ν_1, ν_2 polarizations are correlated

FIG. 2. Experimental setup. Two polarimeters I and II, in orientations \tilde{a} and \tilde{b} , perform true dichotomic measurements of linear polarization on photons ν_1 and ν_2 . Each polarimeter is rotatable around the axis of the incident beam. The counting electronics monitors the singles and the coincidences.

[two-channel polarimeters used]

correlation coeffs in data vs QM optimum relative angles 22.5° and 67.5°

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

 $S = 2.697 \pm 0.015$; cf. $S_{QM} = 2.70 \pm 0.05$

the B-pair has the same property, substituting flavor for spin/polarization:

• the $\Upsilon(4S)$ is C-odd

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4S)$ is C-odd
- an entangled B-pair is produced:

$$|\Psi(t)
angle = rac{\mathrm{e}^{-t/ au_{\mathrm{B}0}}}{\sqrt{2}} \left[|\mathrm{B}^0(ec{p})\overline{\mathrm{B}}\,^0(-ec{p})
angle - |\overline{\mathrm{B}}\,^0(ec{p})\mathrm{B}^0(-ec{p})
angle
ight]$$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4S)$ is C-odd
- an entangled B-pair is produced:
 - individual flavors indeterminate

$$|\Psi(t)
angle = rac{\mathrm{e}^{-t/ au_{\mathrm{B}0}}}{\sqrt{2}} \left[|\mathrm{B}^0(ec{p})\overline{\mathrm{B}}\,^0(-ec{p})
angle - |\overline{\mathrm{B}}\,^0(ec{p})\mathrm{B}^0(-ec{p})
angle
ight]$$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4S)$ is C-odd
- an entangled B-pair is produced:
 - individual flavors indeterminate
 - at fixed t, the pair is always $B^0\overline{B}{}^0$

$$|\Psi(t)
angle = rac{\mathrm{e}^{-t/ au_{\mathrm{B}}0}}{\sqrt{2}} \left[|\mathrm{B}^0(ec{p})\overline{\mathrm{B}}\,^0(-ec{p})
angle - |\overline{\mathrm{B}}\,^0(ec{p})\mathrm{B}^0(-ec{p})
angle
ight]$$

the B-pair has the same property, substituting flavor for spin/polarization:

 the Υ(4S) is C-odd
 an entangled B-pair is produced:

 individual flavors indeterminate
 at fixed t, the pair is always B⁰B⁰

 flagship B-factory measurements:
 {B⁰_{TAG}} definite flavor state
 B⁰_{CP} definite CP state
 ^π

 π

 $\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{\rm B0}}}{4\tau_{\rm B0}} \left[1 \pm \left\{\frac{S_{CP}}{\sin\left(\Delta m\Delta t\right)} + \frac{A_{CP}}{4\tau_{\rm CP}}\cos\left(\Delta m\Delta t\right)\right\}\right]$

the B-pair has the same property, substituting flavor for spin/polarization:

• the $\Upsilon(4S)$ is C-odd • an entangled B-pair is produced: individual flavors indeterminate • at fixed t, the pair is always $B^0\overline{B}{}^0$ • flagship B-factory measurements: B^{0}_{TAG} definite flavor state B^{0}_{CP} definite CP state $(t_1; x_1)$ π • decay rate modulated in $\Delta t \equiv t_1 - t_2$ **B**_{CP}

$$\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{\rm B0}}}{4\tau_{\rm B0}} \left[1 \pm \left\{\frac{S_{CP}}{4\pi_{\rm B0}}\sin\left(\Delta m\Delta t\right) + \frac{A_{CP}}{4\pi_{\rm CP}}\cos\left(\Delta m\Delta t\right)\right\}\right]$$

the B-pair has the same property, substituting flavor for spin/polarization:

the Υ(4S) is C-odd
an entangled B-pair is produced:

individual flavors indeterminate
at fixed t, the pair is always B⁰B⁰

flagship B-factory measurements:

B⁰_{TAG} definite flavor state
B⁰_{CP} definite CP state
decay rate modulated in Δt ≡ t₁ - t₂
with one rate for B⁰_{TAG} ...

 $\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{\rm B}0}}{4\tau_{\rm B}0} \left[1 + \left\{S_{CP}\sin\left(\Delta m\Delta t\right) + A_{CP}\cos\left(\Delta m\Delta t\right)\right\}\right]$

the B-pair has the same property, substituting flavor for spin/polarization:

• the $\Upsilon(4S)$ is C-odd • an entangled B-pair is produced: individual flavors indeterminate • at fixed t, the pair is always $B^0\overline{B}{}^0$ • flagship B-factory measurements: $\begin{cases} B^0_{TAG} & \text{definite flavor state} \\ B^0_{CP} & \text{definite CP state} \end{cases}$ π • decay rate modulated in $\Delta t \equiv t_1 - t_2$ • with one rate for B_{TAG}^0 ... B_{CP} • and another rate for \overline{B}_{TAC}^{0} : CPV

 $\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{\rm B}0}}{4\tau_{\rm B}0} \left[1 - \left\{S_{CP}\sin\left(\Delta m\Delta t\right) + A_{CP}\cos\left(\Delta m\Delta t\right)\right\}\right]$

$\Upsilon(4S)$: On what can and cannot be measured

we can instead assume the $\operatorname{B-physics}$, and study the entanglement:

• quasi-spin: $\begin{cases} |\mathrm{B}^0\rangle & \text{corresponds to spin} \mid \Uparrow\rangle_z \text{ or polarization } |V\rangle \\ |\overline{\mathrm{B}}^0\rangle & \text{corresponds to spin} \mid \Downarrow\rangle_z \text{ or polarization } |H\rangle \end{cases}$

 \bullet optical measurements can use arbitrary axes $\alpha|\Uparrow\rangle+\beta|\Downarrow\rangle$

- $\bullet\,$ for ${\rm B}\text{-mesons},\,$ only $|\Uparrow\rangle$ and $|\Downarrow\rangle$ measurements are practical
- but $|\mathrm{B}^{0}\rangle \xrightarrow{t} \frac{1}{2} \left[\{1 + \cos(\Delta m_{d}t)\} | \mathrm{B}^{0}\rangle + \{1 \cos(\Delta m_{d}t)\} | \overline{\mathrm{B}}^{0}\rangle \right]$
- time difference $\Delta m_d \Delta t$ plays the role of angle difference $\Delta \phi$

• unfortunately we can't *choose* the $\phi_{1,2}$, or the decay modes . . .

6 / 24

$\Upsilon(4S)$: The Green Baize Table Conspiracy Model Branch (Softano, J. Mot. Oct. 52, 1001 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \to B\overline{B}$
- hidden variables set at t = 0:
 - mesons 1 & 2 are given variables (t_1, f_1) & (t_2, f_2)
 - act locally: meson *i* decays
 - at time $t = t_i$
 - into final state $f = f_i$
- if (t_1, f_1, t_2, f_2) are chosen randomly according to QM ... the phenomena look like QM!
- no $\Delta \phi$ choice: no Bell test

QM's entangled flavor oscillations \implies distinctive modulation of opposite (OF) & same flavor (SF) decays: $A(t_1, t_2) = (R_{OF} - R_{SF})/(R_{OF} + R_{SF})$

• $A_{QM}(t_1, t_2) = \cos(\Delta m_d \Delta t)$

QM's entangled flavor oscillations \implies distinctive modulation of opposite (OF) & same flavor (SF) decays: $A(t_1, t_2) = (R_{OF} - R_{SF})/(R_{OF} + R_{SF})$

- $A_{QM}(t_1, t_2) = \cos(\Delta m_d \Delta t)$
- spontaneous disentanglement: independent flavor oscillations, A_{SD} = cos(Δm_dt₁) cos(Δm_dt₂)

QM's entangled flavor oscillations \implies distinctive modulation of opposite (OF) & same flavor (SF) decays: $A(t_1, t_2) = (R_{OF} - R_{SF})/(R_{OF} + R_{SF})$

- $A_{QM}(t_1, t_2) = \cos(\Delta m_d \Delta t)$
- spontaneous disentanglement: independent flavor oscillations, $A_{SD} = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$
- Pompili-Selleri class of models: $A_{PS}^{min} = 1 - \min(2 + \Psi, 2 - \Psi);$ $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min})$ $- \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})$

QM's entangled flavor oscillations \implies distinctive modulation of opposite (OF) & same flavor (SF) decays: $A(t_1, t_2) = (R_{OF} - R_{SF})/(R_{OF} + R_{SF})$

- $A_{QM}(t_1, t_2) = \cos(\Delta m_d \Delta t)$
- spontaneous disentanglement: independent flavor oscillations, $A_{SD} = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$
- Pompili-Selleri class of models: $A_{PS}^{min} = 1 - \min(2 + \Psi, 2 - \Psi);$ $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min})$ $- \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})$
- & upper bound $A_{PS}^{max} = 1 |\{1 \cos(\Delta m_d \Delta t)\}\cos(\Delta m_d t_{\min}) + \sin(\Delta m_d \Delta t)\sin(\Delta m_d t_{\min})|$

물 이 이 문 이 모님이.

QM's entangled flavor oscillations \implies distinctive modulation of opposite (OF) & same flavor (SF) decays: $A(t_1, t_2) = (R_{OF} - R_{SF})/(R_{OF} + R_{SF})$

- $A_{QM}(t_1, t_2) = \cos(\Delta m_d \Delta t)$
- spontaneous disentanglement: independent flavor oscillations, $A_{SD} = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$
- Pompili-Selleri class of models: $A_{PS}^{min} = 1 - \min(2 + \Psi, 2 - \Psi);$ $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min})$ $- \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})$
- & upper bound $A_{PS}^{max} = 1 |\{1 \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})|$
- measure only Δm_d : $\int dt_{min} A \dots$

- $152\times 10^{6}~\mathrm{B}\overline{\mathrm{B}}$ data sample; established Belle tCPV machinery:
 - $\bullet\,$ reconstruct one B in flavor-tagging mode $B^{0} \rightarrow D^{*-} \ell^{+} \nu$
 - tag other B-flavor using lepton; consistency check to maintain purity
 - 8565 events: 6718 OF, 1847 SF pairs, in 11 bins of Δt
- backgrounds subtracted from OF/SF samples separately, in Δt bins: $\begin{cases} \text{fake } D^*, \text{ using sidebands} & 126 \pm 6 \text{ OF}, 54 \pm 4 \text{ SF} \\ \text{bad } D^* - \ell \text{ combinations, also from data} & 78 \pm 9 \text{ OF}, 236 \pm 15 \text{ SF} \\ B^+ \rightarrow \overline{D}^{**0} \ell \nu, \text{ from } \cos_{B,D^*\ell} \& \text{ MC} & 254 \text{ OF}, 1.5 (\pm 6\%) \\ \text{produces a time-structured difference in the asymmetry} \longrightarrow \end{cases}$
- $(1.5\pm0.5)\%$ correction for mistagging
- deconvolution (DSVD: SF,OF separately) to remove σ_{vtx} , ϵ effects ... [bias among QM/SD/PS subtracted; systematics assigned]
- ullet successful lifetime fit as check: $\tau_{\mathrm{B}^0}=(1.532\pm0.017)\,\mathrm{ps}$, cf. 1.530

$\Upsilon(4S)$: "Measurement of EPR-type Flavor Entanglement ..." (1) Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131002 (2007)

FPCP/Taipei 2008/05/06

9 / 24

- $152\times 10^{6}~\mathrm{B}\overline{\mathrm{B}}$ data sample; established Belle tCPV machinery:
 - $\bullet\,$ reconstruct one B in flavor-tagging mode $B^{0} \rightarrow D^{*-} \ell^{+} \nu$
 - tag other B-flavor using lepton; consistency check to maintain purity
 - 8565 events: 6718 OF, 1847 SF pairs, in 11 bins of Δt
- backgrounds subtracted from OF/SF samples separately, in Δt bins: $\begin{cases} \text{fake } D^*, \text{ using sidebands} & 126 \pm 6 \text{ OF}, 54 \pm 4 \text{ SF} \\ \text{bad } D^* - \ell \text{ combinations, also from data} & 78 \pm 9 \text{ OF}, 236 \pm 15 \text{ SF} \\ B^+ \rightarrow \overline{D}^{**0} \ell \nu, \text{ from } \cos_{B,D^*\ell} \& \text{ MC} & 254 \text{ OF}, 1.5 (\pm 6\%) \\ \text{produces a time-structured difference in the asymmetry} \longrightarrow \end{cases}$
- $(1.5\pm0.5)\%$ correction for mistagging
- deconvolution (DSVD: SF,OF separately) to remove σ_{vtx} , ϵ effects ... [bias among QM/SD/PS subtracted; systematics assigned]
- ullet successful lifetime fit as check: $\tau_{\mathrm{B}^0}=(1.532\pm0.017)\,\mathrm{ps}$, cf. 1.530

$\Upsilon(4S)$: "Measurement of EPR-type Flavor Entanglement ..." (2) Eeler A. So, A. Bay et al., Phys. Rev. Lett. 99, 131602 (2007)

fit: float Δm_d subject to WA-sans-(Belle+BaBar): (0.496 \pm 0.014) ps⁻¹

• "SD fraction": $(1 - \zeta_{B^0\overline{B}\,^0})A_{QM} + \zeta_{B^0\overline{B}\,^0}A_{SD}$, $\zeta_{B^0\overline{B}\,^0} = 0.029 \pm 0.057$

• Pompili-Selleri class: QM-like states, stable mass, flavor correlations; QM predictions for *single* B-*mesons* preserved

CPV at the $\Upsilon(4S)$; **CP-tagging** at the $\psi(3770)$? Aster and Sup. Phys. Rev. D 71, 044034 (2010); 77, 019902(E) (2000)

• formally, the situation at the $\psi(3770)$ is the same as at the $\Upsilon(4S)$:

- $e^+e^- \rightarrow \psi(3770) \rightarrow \frac{1}{\sqrt{2}} \left(|D^0\rangle |\overline{D}{}^0\rangle |\overline{D}{}^0\rangle |D^0\rangle \right)$ and so on
- practical difference #1: mixing is a %-level effect in D-amplitudes
- practical difference #2: CPV is suppressed orders of magnitude further
- *naïvely*, the C-odd state is $\begin{cases} all about CP violation at \Upsilon(4S) \\ all about CP-tagging at \psi(3770) \end{cases}$
 - e.g. decays to two CP-even (or two CP-odd) eigenstates don't occur
 - but consider the decay $\psi(3770) \rightarrow (K^-\pi^+)_D (K^-\pi^+)_D$:
 - reduced to the mixing rate $R_M = \frac{1}{2}(x^2 + y^2)$
 - cf. rate from uncorrelated DD: $R_{WS} \simeq 40 \times R_M$
- there are nontrivial effects due to the coherence of the state
- need an orderly treatment for CLEO-c: Asner & Sun, *op. cit.*, following Gronau/Grossman/Rosner and others

simple example: $D^0 \rightarrow K^0_I \pi^0$ reconstruction in tagged events with M^2_{miss}

EO: Rosner et al, arXiv:0802.2264 \rightarrow PRL; Asner et al, 0802.2268 \rightarrow PRD

correlations \implies interference terms depend on (x, y, δ) in general use single tag (ST) rates for \mathcal{B} 's; double tag (DT) for correlations

Mode	Correlated	Uncorrelated
$K^{-}\pi^{+}$	$1+R_{ m WS}$	$1 + R_{ m WS}$
S_+	2	2
S_{-}	2	2
$K^-\pi^+, K^-\pi^+$	$R_{ m M}$	$R_{\rm WS}$
${K^-}{\pi^+}, {K^+}{\pi^-}$	$(1+R_{\rm WS})^2 - 4r\cos\delta(r\cos\delta+y)$	$1+R_{ m WS}^2$
${\cal K}^-\pi^+, {\cal S}_+$	$1+ extsf{R}_{ extsf{WS}}+2 extsf{r}\cos\delta+ extsf{y}$	$1+R_{ m WS}$
${\cal K}^-\pi^+, {\cal S}$	$1+{\it R}_{ m WS}-2r\cos\delta-y$	$1+R_{ m WS}$
${\cal K}^-\pi^+, {\it e}^-$	$1 - ry\cos\delta - rx\sin\delta$	1
S_+,S_+	0	1
S, S	0	1
S_+, S	4	2
S_+, e^-	1 + y	1
S, e^-	1-y	1

FPCP/Taipei 2008/05/06

$\psi(3770)$: Charm mixing and $\delta_{\mathrm{K}\pi}$ (2)

CLEO: Rosner et al, arXiv:0802.2264 — PRL: Asner et al, 0802.2268 — PRD

$\psi(3770)$: Charm mixing and $\delta_{\mathrm{K}\pi}$ (3)

CLEO: Rosner et al, $arXiy:0802.2264 \rightarrow$ PRL; Asner et al, $0802.2268 \rightarrow$ PRD

- $\cos \delta = 1.10 \pm 0.35 \pm 0.07$ • $x \sin \delta = (4.4^{+2.7}_{-1.8} \pm 2.9) \times 10^{-3}$
- minimising on physical $(\cos \delta, \sin \delta)$ surface: $\delta = (22^{+11+9}_{-12-11})^{\circ}$ $\delta \in [-7^{\circ}, +61^{\circ}]$ @ 95%
- $\bullet \ \cos \delta$ precision driven by
 - { $K\pi$, S_{\pm} } DT yields
 - ST yields

("both 100%")

 $\bullet\,$ this is with $281\,{\rm pb}^{-1}$

FPCP/Taipei 2008/05/06

= 900

ϕ_3 /Dalitz: The state of play

updated Belle arXiv:0803.3375 prelim AND BaBar arXiv:0804.2089 \rightarrow PRE

(see Anton Poluektov's talk from Monday); σ_{model} already uncomfortable

ϕ_3 /Dalitz: Model-independent analysis

Bondar & Poluektov arXiv:0801.0840 -- EPJC; following EPJC 47, 247 (2006)

extract from ψ (3770) data: $c = \cos(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$ $s = \sin(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$

• <u>advance:</u> nonobvious binning, uniform in $\Delta \delta_D|_{model}$

ϕ_3 /Dalitz: Model-independent analysis

Bondar & Poluektov srXiv:0801.0840 -> EPJC; following EPJC 47, 247 (2006)

extract from $\psi(3770)$ data: $c = \cos(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$ $s = \sin(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$

- <u>advance:</u> nonobvious binning, uniform in $\Delta \delta_D|_{model}$
- drawback: bias for finite $D_{CP} \rightarrow K_S^0 \pi^+ \pi^-$ sample

generate in one model, reconstruct with another: model dependence returns (only c_i reconstructed; shift in δ_D region breaks s_i recovery)

ϕ_3 /Dalitz: Model-independent analysis

3ondar & Poluektov arXiv:0801.0840 \rightarrow EPJC; following EPJC 47, 247 (2006)

extract from $\psi(3770)$ data: $c = \cos(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$ $s = \sin(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$

- <u>advance:</u> nonobvious binning, uniform in $\Delta \delta_D|_{model}$
- 2 <u>drawback</u>: bias for finite $D_{CP} \rightarrow K_S^0 \pi^+ \pi^-$ sample
- renewed attack: $\{c_i, s_i\}$ determined in $\psi(3770) \rightarrow (K_S^0 \pi \pi)_D (K_S^0 \pi \pi)_D;$ unbiassed at finite stats

B N 4 B N

3 5

Summary

• entangled D-pairs lift model-dependence of ϕ_3 /Dalitz analysis

- CLEO-c will already be necessary for final B-factory results
- $\bullet~\mbox{BESIII}$ results will be needed for super- $\rm B/flavor$ analysis
- opposite-side CP tagged $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ help; $\psi(3770) \rightarrow (K_S^0 \pi^+ \pi^-)_D (K_S^0 \pi^+ \pi^-)_D$ are crucial
- entanglement in $\psi(3770) \rightarrow D^0 \overline{D}{}^0$ modulates tagged decay rates
 - $\bullet\,$ has to be taken into account for ${\rm D}^0 \to {\rm K}^0_L \pi^0$ measurement
 - gives mixing- and $\delta_{K\pi}$ -sensitivity for $\{S_+, S_-, K\pi, \ldots\}$)
 - $\cos \delta_{\mathrm{K}\pi} = (1.10^{+0.31}_{-0.17} \pm 0.06); (x, y) \text{ constraints } \rightarrow \delta_{\mathrm{K}\pi} = (22^{+11+9}_{-12-11})^{\circ}$

• entanglement at $\Upsilon(4S)$, used many times/second, has been tested

- test of specific models, not a Bell Inequality test ...
- "decoherent fraction" $\zeta_{B^0\overline{B}^0} = 0.029 \pm 0.057$ [modified interf. term]
- $\bullet\,$ Pompili-Selleri class of LR models is ruled out at $5.1\sigma\,$
- [many details suppressed: ask me a question!!]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

BACKUP SLIDES

Bruce Yabsley (Sydney)

글 🖌 🖌 글 🕨

ELE DOG

some more recent experiments are based on a devious design with alternative paths used to set up a *position-time* correlation:

it's the variable phase delays $\Phi_{1,2}$ (*Pockels cells* or similar) which are interesting for our purpose: we shall return ...

$\Upsilon(4S)$: Green Baize Table Conspiracy (backup) C. Webs et al., Phys. Rev. Lett. 01, 5049–5043 (1990): "Aspect 1-3"

no conspiracy can fix results according to $\Delta \theta$; but in our experiment, it can

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

21 / 24

wrong: unfortunately there is another problem with the B-meson case

- B-mesons decay: sample decreases rapidly with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

ovetom

System	x			
B^0/\overline{B}^0	0.77			
$\mathrm{K}^{0}/\overline{\mathrm{K}}^{0}$	0.95			
D^0/\overline{D}^0	< 0.03			
B_s/\overline{B}_s	~ 26			

so it'd work for B_s mesons . . .

Aspect: free to choose optimum $\Delta \theta = 22.5^{\circ}$, 67.5°

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

ELE DOG

			Systematic errors					
window [ps]	A and total error	stat. err.	total	event sel.	bkgd sub.	mistags	deconv.	
0.0 - 0.5	1.013 ± 0.028	0.020	0.019	0.005	0.006	0.010	0.014	
0.5 - 1.0	0.916 ± 0.022	0.015	0.016	0.006	0.007	0.010	0.009	
1.0 - 2.0	0.699 ± 0.038	0.029	0.024	0.013	0.005	0.009	0.017	
2.0 - 3.0	0.339 ± 0.056	0.047	0.031	0.008	0.005	0.007	0.029	
3.0 - 4.0	-0.136 ± 0.075	0.060	0.045	0.009	0.009	0.007	0.042	
4.0 - 5.0	-0.634 ± 0.084	0.062	0.057	0.021	0.014	0.013	0.049	
5.0 - 6.0	-0.961 ± 0.077	0.060	0.048	0.020	0.017	0.012	0.038	
6.0 - 7.0	-0.974 ± 0.080	0.060	0.053	0.034	0.025	0.020	0.025	
7.0 - 9.0	-0.675 ± 0.109	0.092	0.058	0.041	0.027	0.022	0.022	
9.0 - 13.0	0.089 ± 0.193	0.161	0.107	0.067	0.063	0.038	0.039	
13.0 - 20.0	0.243 ± 0.435	0.240	0.363	0.145	0.226	0.080	0.231	

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

23 / 24

ψ (3770): Charm mixing and $\delta_{\mathrm{K}\pi}$ (backup)

LEO: Rosner et al, arXiv:0802.2264 \rightarrow PRL; Asner et al, 0802.2268 \rightarrow P

 $Xe^-\nu$ modes (summed):

full recon DT modes (summed):

Bruce Yabsley (Sydney)