Theoretical review of exclusive rare radiative decays

Ben Pecjak

DESY

FPCP 2008, Taiwan

May 2008

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Outline

1) $B \rightarrow V\gamma$ decays in QCD factorization and SCET • sample results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2) Improving factorization predictions

- NNLO perturbative corrections
- annihilation at order \alpha_s
- form factor uncertainties

Rare radiative $B \rightarrow V\gamma$ decays

Examples: $B \rightarrow (\rho, K^*, \omega, \phi) \gamma$ decays

- all involve FCNC
- potential to constrain new physics and CKM parameters

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Observables and their relevance

- ▶ branching fractions $\leftrightarrow |V_{td}/V_{ts}|$
- CP asymmetries \leftrightarrow new physics, α
- isospin violation \leftrightarrow new physics, γ

Experimental status

Weighted branching fractions in units of 10⁻⁶

$$\begin{array}{lll} \mathcal{B}(B \to K^* \gamma) &=& 41.8 \pm 1.7 & (\mathrm{HFAG}) \\ \mathcal{B}(B \to (\rho, \omega) \gamma) &=& 1.28 \pm 0.30 & (\mathrm{HFAG}) \\ \mathcal{B}(B_{\mathrm{s}} \to \phi \gamma) &=& 57 \pm 22 & (\mathrm{Belle}) \end{array}$$

These and CP, isospin asymmetries will become more precise at *B* factories and at LHCb

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Rightarrow improving theory predictions useful and relevant

Theoretical challenge: hadronic matrix elements

Amplitude for $b \rightarrow s\gamma$ transitions:

$$\mathcal{A} \sim \langle V\gamma | \mathcal{H}_{\mathrm{eff}} | \bar{B}
angle \sim \sum_{p=u,c} V_{\rho s}^* V_{\rho b} \sum_{i=1}^8 C_i \langle V\gamma | Q_i^p | \bar{B}
angle$$

• Main challenge: evaluate $\langle V\gamma | Q_i | \bar{B} \rangle$ = hadronic matrix elements

Most important operators:

$$Q_1^{\rho} = (\bar{s} \, \rho)_{V-A} (\bar{\rho} \, b)_{V-A} \qquad Q_2^{\rho} = (\bar{s}_i \, \rho_j)_{V-A} (\bar{\rho}_j \, b_i)_{V-A}, \quad (\rho = u, c)$$

$$\mathsf{Q}_{7} \quad = \quad -\frac{e\,\overline{m}_{b}}{8\pi^{2}}\,\bar{\mathsf{s}}\,\sigma^{\mu\nu}\,[\mathsf{1}+\gamma_{5}]\,b\mathcal{F}_{\mu\nu}, \quad \mathsf{Q}_{8} = -\frac{g\,\overline{m}_{b}}{8\pi^{2}}\,\bar{\mathsf{s}}\,\sigma^{\mu\nu}\,[\mathsf{1}+\gamma_{5}]\,\mathcal{T}^{a}\,b\mathcal{G}^{a}_{\mu\nu}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

For $b \rightarrow d\gamma$ replace $s \rightarrow d$

Theoretical approaches

QCD factorization

(Ali, Parkhomenko; Bosch, Buchalla; Beneke, Feldmann, Seidel)

QCD factorization + QCD sum rules

(Ball, Jones, Zwicky)

SCET ~ QCD factorization + resummation

(Chay, Kim; Grinstein, Grossman, Ligeti; Becher, Hill, Neubert)

pQCD

(Keum, Matsumori, Sanda, Yang)

Talk will focus on QCD factorization-based approaches

QCD factorization

Matrix elements of Q_i obtained as a series in α_s , $\Lambda_{\rm QCD}/m_b \ll 1$

$$\left\langle V\gamma \left| \mathsf{Q}_{i} \right| \bar{\mathsf{B}} \right\rangle = t_{i}^{\mathrm{I}} \zeta_{\mathsf{V}_{\perp}} + t_{i}^{\mathrm{II}} \star \phi_{+}^{\mathsf{B}} \star \phi_{\perp}^{\mathsf{V}} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)$$

ζ_{V⊥} (form factor) and φ^{B,V} (LCDAs) are non-perturbative
 t^I and t^{II} are perturbative hard-scattering kernels

$$t^{I} = \mathcal{O}(1) + \mathcal{O}(\alpha_{s}) + \dots$$

"vertex corrections"

$$t^{\mathrm{II}} = \mathcal{O}(\alpha_{s}) + \dots$$

" spectator corrections"

1/mb power corrections may or may not factorize

SCET approach

SCET factorization formula:

(Chay, Kim '03; Grinstein, Grossman, Ligeti '04; Becher, Hill, Neubert '05)

$$\left\langle V\gamma \left| \mathsf{Q}_{i} \right| \bar{\mathsf{B}} \right\rangle = t_{i}^{\mathrm{I}} \zeta_{\mathsf{V}_{\perp}} + t_{i}^{\mathrm{II}} \star \phi_{+}^{\mathsf{B}} \star \phi_{\perp}^{\mathsf{V}} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)$$

ζ_{V⊥}, φ^V_⊥, φ^B₊ are matrix elements of SCET operators
 hard-scattering kernels = SCET matching coefficients

$$\begin{split} t_i^{\rm I} &= C_i^{\rm A}(m_b,\mu) \\ t_i^{\rm II} &= C_i^{\rm B1}(m_b,\mu) \star j_{\perp}(m_b\Lambda,\mu) \quad \text{(subfactorization)} \end{split}$$

large logs in t^{II}_i resummed by solving RG equations

$1/m_b$ power corrections: annihilation

Must understand annihilation to:

- study any observable in $B \rightarrow (\rho, \omega) \gamma$
- study isospin and CP asymmetries in $B \rightarrow K^* \gamma$

QCDF results 2001-2007

Ali, Lunghi, Parkhomenko; Bosch, Buchalla; Beneke, Feldmann, Seidel, ...

- form factors and LCDAs from QCD sum rules
- t^{I} , t^{II} known at NLO (α_{s})
- annihilation at tree level

Recent analysis in Ball, Jones, Zwicky '07 in QCDF + sum rules

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Will give two sample applications from that paper

Sample application: determination of $|V_{td}/V_{ts}|$

$$rac{\mathcal{B}(m{B}
ightarrow
ho\gamma)}{\mathcal{B}(m{B}
ightarrowm{K}^*\gamma)}\propto \left|rac{V_{td}}{V_{ts}}
ight|^2rac{1}{\xi_
ho^2}\left[1+\Delta R(ar
ho,ar\eta)
ight]$$

• $\Delta R \sim 0.1$ can be calculated in QCDF

Result from Ball, Jones, Zwicky using Feb. 2007 HFAG

$$\left| \frac{V_{td}}{V_{ts}} \right| = 0.192 \pm 0.016 \,(\text{exp}) \pm 0.014 \,(\text{th})$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

- theory errors dominated by form-factor ratio ξ_ρ
- improved lattice results for f_{ρ}^{\perp} will reduce error on ξ_{ρ}

Sample application: Isospin violation in $B \rightarrow K^* \gamma$

Isospin asymmetry

$$A_{I}(K^{*}) = \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*}\gamma) - \Gamma(B^{-} \to K^{*}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*}\gamma) + \Gamma(B^{-} \to K^{*}\gamma)}$$

QCDF:
$$A_I(K^*) = (5.4 \pm 1.4)\%$$
 (Ball, Jones, Zwicky)Exp: $A_I(K^*) = (3 \pm 4)\%$ (HFAG 2007)

- sensitive to penguins through Q₆ (Kagan, Neubert)
- to calculate, must understand annihilation
- largest error in QCDF result is µ-dependence

Outline

1) $B \rightarrow V\gamma$ decays in QCD factorization and SCET

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

sample results

- 2) Improving factorization predictions
 - NNLO perturbative corrections
 - annihilation at order α_s
 - form factor uncertainties

NNLO perturbative corrections

$$\langle V\gamma | Q_i | \bar{B} \rangle = t_i^{\mathrm{I}} \zeta_{V_\perp} + t_i^{\mathrm{II}} \star \phi_+^{B} \star \phi_\perp^{V}$$

<□ > < @ > < E > < E > E のQ @

Vertex corrections at NNLO

These are virtual corrections to matrix elements in $B \rightarrow X_s \gamma$ Asatrian, Bieri, Blokland, Czarnecki, Gambino, Greub, Hurth, Misiak, ...

Status:

- Q_{7,8} known exactly to NNLO (α²_s)
- Q_{1,2} known at NNLO in large-β₀ limit (C_Fn_f terms)
- Can obtain t_i^{I} to same accuracy (Ali, Greub, BP)

<u>Numerics</u>: contributions from Q_1 and Q_7 large, but tend to cancel

Spectator corrections at NNLO

No analog in inclusive decay, must be calculated from scratch

Status:

- Q_{7,8} known to NNLO (α²_s) (Becher, Hill; Beneke, Kiyo, Yang; Ali, Greub, BP)
- Q_{1,2} known only to NLO (Bosch, Buchalla; Beneke, Feldmann, Seidel)

Numerics: NNLO corrections from each Q_i individually small

Estimate of branching fractions at NNLO

$$10^5 imes \mathcal{B}(B o K^* \gamma) = 4.6 \pm 1.2 \, [\zeta_{K^*}] \pm 0.4 \, [m_c] \pm 0.2 \, [\lambda_B] \pm 0.1 \, [\mu]$$

Matching not complete because of $Q_{1,2}$:

- ► Assign 100% uncertainty to NLO hard-spectator correction: $\Rightarrow \Delta \mathcal{B} \approx \pm 0.1$
- Assign 100% uncertainty to NNLO vertex correction in large-β₀ limit:

 $\Rightarrow \Delta \mathcal{B} \approx \pm 0.5$

- Results for $Q_{1,2}$ beyond large- β_0 limit would reduce errors
 - directly, by eliminating the $\Delta \mathcal{B} \approx \pm 0.5$ above
 - indirectly, by fixing a renormalization scheme for m_c
 - three-loop calculation in progress (Boughezal, Czakon, Schutzmeier)

Annihilation at $\mathcal{O}(\alpha_s)$: Two examples

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Annihilation in $B \rightarrow V\gamma$ with $Q_{1,2}$

Result to $\mathcal{O}(\alpha_s)$: (Ali, Parkhomenko, BP (in progress))

$$\mathcal{A}_{\mathrm{ann}} \sim \phi^{\mathcal{B}}_{+} \star t^{\mathrm{II}}_{\mathrm{ann}} \star \phi^{\mathrm{V},1/m_{b}}_{\perp}$$

- IR divergences absorbed in LCDAs
- convolution integral converges

Example of factorization at $\mathcal{O}(\alpha_s/m_b)$

Annihilation in $B \rightarrow V\gamma$ with Q_8

Result at
$$\mathcal{O}(\alpha_{\rm s})$$
: $\frac{\mathcal{A}_{\rm ann}^8}{\mathcal{A}_{\rm LO}} \sim \frac{\lambda_B}{m_b} \int_0^1 du \, \frac{\phi_{\perp}^V(u)}{(1-u)^2}$

endpoint divergence in convolution integral breaks factorization

- small numerically (Kagan, Neubert)
- a conceptual problem

Possible treatments of endpoint divergences:

- introduce an IR cutoff on *u*-integral, estimate uncertainty (Kagan, Neubert)
- use zero-bin subtractions
 (Manohar, Stewart; Arnesen, Ligeti, Rothstein, Stewart)
- introduce subleading form factors that generalize $\zeta_{V_{\perp}}$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Systematic treatment of $B \rightarrow V\gamma$ relies on solving this

Form factor uncertainties

Branching fractions have \sim 30% form factor uncertainties

To reduce form factor uncertainties, can

- take ratios of branching fractions, estimate SU(3) breaking effects in ratios of form factors with QCD sum rules
- ► constrain form factors with data, for instance $B \rightarrow \rho \ell \nu$ (Bosch, Buchalla)

CP and isospin asymmetries *defined* through ratios

less sensitive to form factors than branching fractions

but involve annihilation ...

Summary

Reviewed theory status of $B \rightarrow V\gamma$ decays

Systematic studies rely on QCD factorization (or pQCD)

Improving the factorization predictions requires:

- NNLO perturbative corrections
- treatment of power corrections (especially annihilation)
- more precise knowledge of form factors (or SU(3) breaking)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Work on these points in progress

Backup slides

▲ロ▶▲圖▶▲≣▶▲≣▶ 差 のへで

Numerical impact of vertex corrections in $B \rightarrow K^* \gamma$

The ratio of NNLO to LO is:

$$\frac{\mathcal{A}_{v}^{\text{NNLO}}}{\mathcal{A}_{v}^{\text{LO}}} = 1 + (0.096 + 0.057i) \left[\alpha_{s}\right] + (-0.007 + 0.030i) \left[\alpha_{s}^{2}\right]$$

In terms of individual contributions

$$\left(\left(0.264 + 0.034i \right) \left[Q_1 \right] - \left(0.184 \right) \left[Q_7 \right] + \left(0.016 + 0.023i \right) \left[Q_8 \right] \right) \left[\alpha_s \right] \right. \\ \left. + \left(\left(0.073 + 0.022i \right) \left[Q_1 \right] - \left(0.081 \right) \left[Q_7 \right] + \left(0.002 + 0.008i \right) \left[Q_8 \right] \right) \left[\alpha_s^2 \right] \right] \right]$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

- NNLO correction small due to cancellation between Q₁ and Q₇
- That Q₁ is only large-β₀ limit result can be significant (see branching fractions)

Numerical impact of spectator corrections in $B \rightarrow K^* \gamma$

Total corrections:

$$\frac{\mathcal{A}_{\text{hs}}^{\text{NNLO}}}{\mathcal{A}_{v}^{\text{LO}}} = \left(0.11 + 0.05i\right)\left[\alpha_{s}\right] + \left(0.03 + 0.01i\right)\left[\alpha_{s}^{2}\right]$$

In terms of individual operators:

$$= \left((0.023 + 0.046i) [Q_1] + 0.074 [Q_7] + 0.010 [Q_8] \right) [\alpha_s] + \left((0.004 + 0.003i) [Q_1] + 0.025 [Q_7] + (0.003 + 0.005i) [Q_8] \right) [\alpha_s^2]$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 $([Q_1] = \Delta_1 C^{B1(0)} \star j_{\perp}^{(1)})$

- The NNLO corrections are individually small
- Resummation effects \sim 10% (but stabilize μ -dependence)