

Inclusive and Exclusive $b \rightarrow s/d \gamma$

Nanae Taniguchi Kyoto University

May 8, 2008, FPCP08@TAIPEI

- Introduction
- $b \rightarrow s \gamma$
 - Branching fraction of inclusive B \rightarrow Xs γ
 - Direct CP violation for inclusive B \rightarrow Xs γ
- $b \rightarrow d \gamma$
 - Exclusive B $\rightarrow \rho\gamma$, $\omega\gamma$
 - CP asymmetry for B $\rightarrow \rho \gamma$
 - Sum of exclusive modes

Introduction

- $b \rightarrow s, d$ transitions
- - b \rightarrow s,d transitions are forbidden at tree level
 - Probe for New physics effects
 - New particles in the loops can give effects at the same order

- Measurement of |V_{td}/V_{ts}|²
 - From B.F(B $\rightarrow \rho\gamma$)/B.F(B $\rightarrow K^*\gamma$)

FPCP 08, Taipei, Taiwan

Analysis technique

- Large clean sample of $Y(4S) \rightarrow B^+B^-$ and $B^0\overline{B}^0$
 - Inclusive analysis of radiative decays
- Continuum suppression technique with event shape variables
 - Continuum subtraction with off-resonance data
 - Exclusive *B* reconstruction with

 $\Delta E = E_B^* - E_{beam}^* \text{ and } (M_{bc})^2 = (M_{ES})^2 = (E_{beam}^*)^2 - |p_B^*|^2$

Most powerful mode to constrain new physics Inclusive branching fraction measurement agree with SM

$\rightarrow X_s \gamma$ inclusive measurements

- Branching fraction can be accurately predicted at NNLO
- Eγ distribution depends on the b-quark mass and the fermi motion of the b quark
 - Can be used to reduce the model dependent error on $|V_{ub}|$ and $|V_{cb}|$
- Direct CP asymmetry ~ 0.4 % in SM
 - Can be up to ~ 10% in some new physics models

B.F(B $\rightarrow X_s \gamma$) comparison

- Calculations up to NNLO
 - Agreement between experiment and theory has been degraded
- Need to improve the precision in the experimental measurement

More data and lower energy cut

Belle preliminary at Moriond EW 2008

New $B \rightarrow X_s \gamma by$ Belle

• Inclusive analysis

- 605/fb, 4.3 times more data than previous analysis
- Improvements in the analysis technique
- Find isolated clusters in the ECL
 - High energy $E_{\gamma}^* > 1.4 \text{ GeV}$
 - Veto γ from π^0 , η & Bhabha
 - Use topological information to suppress continuum background
 - Background subtraction
 - Estimate continuum event using OFF resonance data
 - Estimate B decays using "corrected" MC sample

Continuum scaling

$N^{B\overline{B}}(E_{\gamma}^{*ON}) = N^{ON}(E_{\gamma}^{*ON}) - \alpha \varepsilon F_N N^{OFF}(F_E E_{\gamma}^{*OFF})$

N. Taniguchi

p.11

FPCP 08, Taipei, Taiwan

N. Taniguchi

Continuum scaling

$N^{B\overline{B}}(E_{\gamma}^{*ON}) = N^{ON}(E_{\gamma}^{*ON}) - \alpha \varepsilon F_{N} N^{OFF}(F_{E} E_{\gamma}^{*OFF})$

Scaling OFF resonance data

$$N^{B\overline{B}}(E_{\gamma}^{*ON}) = N^{ON}(E_{\gamma}^{*ON}) - \Omega \varepsilon F_N N^{OFF}(F_E E_{\gamma}^{*OFF})$$

 The ratio of ON to OFF resonance integrated luminosity corrected for the energy difference

Response to Selection

$$N^{B\overline{B}}(E_{\gamma}^{*ON}) = N^{ON}(E_{\gamma}^{*ON}) - \alpha \bigotimes F_N N^{OFF}(F_E E_{\gamma}^{*OFF})$$

• Combined efficiency of hadronic selection and analysis selection criteria $(B \rightarrow X_s \gamma)$ for either ON-resonance and OFF-resonance beam energies

$$\varepsilon = \frac{\varepsilon_{Hadronic}^{ON}}{\varepsilon_{Hadronic}^{OFF}} \times \frac{\varepsilon_{B \to X_s \gamma}^{ON}}{\varepsilon_{B \to X_s \gamma}^{OFF}}$$

 $= (0.9986 \pm 0.0001) \times (0.9871 \pm 0.0014)$

Energy (F_E) and Multiplicity (F_N) Scaling

 $N^{B\overline{B}}(E_{\gamma}^{*ON}) = N^{ON}(E_{\gamma}^{*ON}) - \alpha \varepsilon F_{N} N^{OFF}(F_{E})$

 Compensation for slightly lower mean energy and multiplicity of particles in OFF compared to ON events

p.15

FPCP 08, Taipei, Taiwan

N. Taniguchi

Scaled continuum

background sources from B decays

- Photons from B decays
 - Six background categories

	fraction
Signal	0.190
Decays of π^0	0.474
Decays of n	0.163
Decay of others	0.081
Mis-IDed electrons	0.061
Mis-IDed hafrons	0.017
Beam background	0.013

Subtraction of the background from B decays

For all six background categories, (if possible),

- Determine E_γ-dependent selection efficiency using control sample
 - OFF-subtracted ON data (ϵ^{data})
 - MC (ε^{MC})
- Scale MC background sample according to the ratio of these efficiencies

All selection criteria are investigated in a similar fashion

N. Taniguchi

Photon energy spectrum

N. Taniguchi

p.19

FPCP 08, Taipei, Taiwan

N. Taniguchi

$B.F(B \rightarrow X_{s}\gamma) \text{ summary}$

CLEO PRL87, 251807(2001) $[9.1fb^{-1}]$ **BaBar** PRD72, 052004(2005) **BaBar** PRL98, 022002(2007) **BaBar** PRD77, 051103(2008) **Belle** PRB511, 151(2001)

 $[81.5fb^{-1}]$ $[210 fb^{-1}]$ $[5.8fb^{-1}]$

HFAG April 2008

Measurement of direct CP violation in $b \rightarrow s\gamma$ by BaBar

SM predicts very tiny CP violation ~ 0.4%

BaBar preliminary at Moriond EW 2008

Direct CP Violation for B \rightarrow X_s \gamma by Babar

Sum of exclusive modes

- Fully reconstruct B $\rightarrow X_{s\gamma}$ in 16 exclusive modes \int
 - Xs = K and up to 3π , 3K and 0 or 1π , K $\eta(\pi)$, 3K(π)
- Main background: π^0 and η from continuum, ISR
 - Veto photons which form good π^0 or η
- Extract yield from M_{ES} fit to signal region
 - Background shapes from MC
- Sidebands and $B \rightarrow X_s \pi^0$ control sample used for:
 - Detector bias (different interaction cross sections for K+ and K-)
 - BB background shape uncertainty
 - Continuum shape uncertainty

p.21

FPCP 08, Taipei, Taiwan

Most accurate measurement of A_{cp} to date

Sensitive probe for physics beyond the standard model Similar to b \rightarrow sy in SM, could be different in new physics Suppressed by |Vtd/Vts|

Belle, arXiv:0804.4770, 657M BB Submitted to PRL $Update B \rightarrow \rho\gamma, \omega\gamma by Belle$

• B \rightarrow K^{*} γ is significant background

- (Mis-id rate for kaon) x B.F(B \rightarrow K^{*} γ) > B.F(B \rightarrow $\rho\gamma$)
- $M_{\kappa\pi}$ now in the fit for $B^0 \rightarrow \rho^0 \gamma$ (M_{bc} - ΔE - $M_{\kappa\pi}$ fit)
 - $M_{K\pi}$: invariant mass of $\pi\pi$ with kaon mass assignment for one pion
- good separation of signal from background

Measurements of branching fraction for $B \rightarrow \rho \gamma$, $\omega \gamma$

$$B.F(B^{+} \to \rho^{+}\gamma) = (8.7^{+2.9+0.9}_{-2.7-1.1}) \times 10^{-7}$$
$$B.F(B^{0} \to \omega\gamma) = (4.0^{+1.9}_{-1.7} \pm 1.3) \times 10^{-7}$$
$$B.F(B^{0} \to \rho^{0}\gamma) = (7.8^{+1.7+0.9}_{-1.6-1.0}) \times 10^{-7}$$

N. Taniguchi

N. Taniguchi

Belle, arXiv:0804.4770 , 657M BB BaBar PRL98, 151802 (2007), 347M BB

	Belle		Babar		
	B (10 ⁻⁷)	(Σ)	$B(10^{-7})$	(Σ)	
$\overset{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{$	$8.7^{+2.9}_{-2.7}$	(3.3 0)	11.0 ^{+3.7} ± 0.9	(3. 8 0)	
$B^{ heta} o ho^{ heta} \gamma$	7.8 ^{+1.7} +0.9 _{-1.6} -1.0	(5.0 σ)	$7.9^{+2.2}_{-2.0} \pm 0.6$	(4.9 5)	
$B^{\theta} \rightarrow \omega \gamma$	4.0 ^{+1.9} _{-1.7} ± 1.3	(2.6 σ)	$4.0^{+2.4}_{-2.0}\pm0.5$	(2.2 σ)	
$\vec{\underline{a}} B \rightarrow \rho \gamma$	$12.1^{+2.4}_{-2.2} \pm 1.2$	(5.8 0)	13.6 ^{+2.9} _{-2.7} ± 0.9	(6.0 5)	
$\stackrel{\text{\tiny P}}{\boxtimes} B \rightarrow (\rho, \omega) \gamma$	$11.4 \pm 2.0^{+1.0}_{-1.2}$	(6.2 σ)	$12.5^{+2.5}_{-2.4} \pm 0.9$	(6.4 0)	
FPC					

$B \rightarrow (\rho, \omega) \gamma: CKM \ constraint$

Form factor ratio

$$R = \frac{B.F(B \to (\rho, \omega)\gamma)}{B.F(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{(1 - m_{(\rho,\omega)}^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \zeta^2 [1 + \Delta R]$$

[Ali, Lunghi, Parkhomenko, PLB 595, 323 (2004)]

Annihilation amplitude corrections

$$R = \frac{B.F(B \to (\rho, \omega)\gamma)}{B.F(B \to K^*\gamma)} = 0.0263 \pm 0.0047^{+0.0022}_{-0.0025}$$

Using, Ball, Jones, Zwicky, PRD 75 054004 (2007)

$$|V_{td} / V_{ts}| = 0.195^{+0.020}_{-0.019}$$
 (exp.) ± 0.015 (theo.)

CP Asymmetry of $B \rightarrow \rho \gamma$ by Belle

First CPV in $b \rightarrow d\gamma$

- <u>Time-dependent CPV in B $\rightarrow \rho^0 \gamma$ </u> A_{cp}(Δt) = <u>Sin</u> $\Delta m \Delta t + A \cos \Delta m \Delta t$
- S ~ zero in SM

Time-dependent CP asymmetry

- Weak phase cancelation: $arg(V_{td})$ in mixing $\leftarrow \rightarrow arg(V_{td})$ in decay
- Suppression due to photon polarization
- A could be non-zero in SM

Direct CP asymmetry

- Charge asymmetry in $B^+ \rightarrow \rho^+ \gamma$ Direct CP asymmetry
 - Simultaneous fit to M_{bc} and ΔE of $B^+ \rightarrow \rho^+ \gamma$ and $B^- \rightarrow \rho^- \gamma$
- Asymmetries in the other background sources
 - Fixed to zero in the nominal fit
 - Included in the systematic error
- B \rightarrow D π control sample used for: $A(B^+ \rightarrow \rho^+ \gamma) = \frac{N(B^- \rightarrow \rho^- \gamma) N(B^+ \rightarrow \rho^+ \gamma)}{N(B^- \rightarrow \rho^- \gamma) + N(B^+ \rightarrow \rho^+ \gamma)}$
 - Detector bias

0.28

PCP 08, Taipei, Taiwan

Babar, arXiv:0708.1652, 383M BB

Measurement of branching fraction for $B \rightarrow X_d \gamma$ by BaBar

- Sum of 7 exclusive final state for study of inclusive b \rightarrow d γ
- $B \rightarrow X_{d} \gamma (X_{d} = \pi^{+}\pi^{-}, \pi^{+}\pi^{0}, \pi^{+}\pi^{-}\pi^{+}, \pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{+}\pi^{0}, \pi^{+}\eta)$
- $1.0 < M(X_d) < 1.8 \text{ GeV}$ (B $\rightarrow \rho\gamma$ and $\omega\gamma$ are not included)

- Partial branching fraction $B \rightarrow X_d \gamma = (3.1 \pm 0.9 \pm 0.7) \times 10^{-6}$
 - Promising method for a improved $|V_{td}/V_{ts}|$ determination

Summary

• Precise measurement of $b \rightarrow s\gamma$

- Branching fraction with $E\gamma$ cut = 1.7 GeV
- CP asymmetry with 0.6 < M(X_s) < 2.8 GeV/ c^2

• Measurement of b \rightarrow d γ

- New measurement of exclusive modes with a larger sample
- First measurement of the CP asymmetry of B $\rightarrow \rho\gamma$
- First Evidence for B \rightarrow X_d γ with 1.0 < M(X_d) < 1.8 GeV/c²

0.31

Backup slides

Pi0 and Eta from B-decays

Measure major backgrounds in data and MC independently and correct our analysis sample MC

N. Taniguchi

Efficiency corrections

Get selection efficiency in MC and data in control samples e.g 0 Veto efficiencyin partially reconstructed $D^* \rightarrow D \rightarrow K\pi\pi^0, \ \pi^0 \rightarrow \gamma(\gamma)$

All selection criteria are investigated in a similar fashion

ker		
10-	200	
Y(4S)) rest frame	
E(cut)) PBF	
[GeV]] [10^-4]	
1.70	$3.32 \pm 0.19 \pm 0.37$	2.29
1.80	$3.25 \pm 0.17 \pm 0.24$	2.30
• 1.90	$3.13 \pm 0.15 \pm 0.16$	2.31
2.00	$2.95 \pm 0.14 \pm 0.12$	2.34
2.10	$2.68 \pm 0.12 \pm 0.10$	2.37

First at E(cut)=1.7 GeV

Preliminary

Mean [GeV] $91 \pm 0.032 \pm 0.053$ $02 \pm 0.025 \pm 0.028$ $8 \pm 0.019 \pm 0.014$ $40 \pm 0.015 \pm 0.007$ $70 \pm 0.011 \pm 0.005$

Variance $[GeV^2]$ $0.0467 \pm 0.0156 \pm 0.0213$ $0.0417 \pm 0.0096 \pm 0.0081$ $0.0355 \pm 0.0058 \pm 0.0027$ $0.0290 \pm 0.0033 \pm 0.0009$ $0.0225 \pm 0.0017 \pm 0.0006$

Preliminary

B-meson rest frame

(additional uncertainty due to models needed to calculate correction from Y(4S) to B frame)

E(cut)	PBF	Mean	Variance
[GeV]	[10-4]	[GeV]	$[GeV^2]$
1.70	$3.31 \pm 0.19 \pm 0.37 \pm 0.01$	$2.281 \pm 0.032 \pm 0.053 \pm 0.002$	$0.0396 \pm 0.0130 \pm 0.0213 \pm 0.0012$
1.80	$3.24 \pm 0.17 \pm 0.24 \pm 0.01$	$2.290 \pm 0.025 \pm 0.028 \pm 0.002$	$0.0350 \pm 0.0085 \pm 0.0081 \pm 0.0005$
1.90	$3.12 \pm 0.15 \pm 0.16 \pm 0.02$	$2.305 \pm 0.019 \pm 0.014 \pm 0.004$	$0.0292 \pm 0.0053 \pm 0.0027 \pm 0.0008$
2.00	$2.94 \pm 0.14 \pm 0.12 \pm 0.02$	$2.326 \pm 0.015 \pm 0.007 \pm 0.005$	$0.0227 \pm 0.0031 \pm 0.0009 \pm 0.0009$
2.10	$2.62 \pm 0.12 \pm 0.10 \pm 0.05$	$2.350 \pm 0.011 \pm 0.005 \pm 0.006$	$0.0170 \pm 0.0017 \pm 0.0006 \pm 0.0012$

E(cut)	PBF	Analysis	Rel	ative	
[GeV]	[10-4]		Erre	or	
1.70	3.31 +- 0.19 +- 0.37	(Belle 605/f	b) (12	2.6%)	
1.80	3.24 +- 0.17 +- 0.24	(Belle 605/f	b) (9	9.1%)	
1.80	3.38 +- 0.31 +- 0.30	(Belle 140/f	b) (12	2.5%)	
Sys	stematic	PBF[10 ⁻⁴]			
,		1.7 GeV	1.8 GeV		. arv
Cor	ntinuum Background	0.17	0.12	 nri	eliminary
Sele	ection Criteria	0.20	0.15	41	
pi0/	/eta background	0.06	0.05		
othe	er B - background	0.24	0.13		
Bea	am background	0.02	0.02		
Ene	ergy resolution	0.01	0.01		
Unt	folding	0.01	0.01		
Sig	nal model	0.03	0.02		
Pho	oton detection	0.05	0.03		
b->	· d gamma	0.01	0.01		
B-n	neson boost	0.01	0.01		
Tot	al	0.37	0.24	-	

Extrapolation to E > 1.6 GeV

CLEO

BaBar

BaBar

Belle

Belle

hep-ex/0603003

FROM - Phys.Rev. D73 (2006) 073008 **Buchmuller & Flacher**

Eur.Phys.J.C7:5-27,1999 -Kagan & Neubert (KN)

Nucl.Phys.B699:335-386,2004 -Bosch, Lange, Neubert & Paz

p.38

Phys.Rev.D72:073006, 2005 -Lange, Neubert & Paz (BLNP)

Phys.Lett.B612:13-20,2005 Neubert

aiwan

Nucl.Phys.B710:371-401,2005 Benson, Bigi & Uraltsev (BBU)

Eur.Phys.J.C7:5-27,1999 - Kagan & Neubert (KN)

BLNP

JHEP 0510:084, 2005 Phys.Rev.D72:073006, 2005

- Lange, Neubert & Paz

BBU

Nucl.Phys.B710:371-401,2005 Benson, Bigi & Uraltsev

DGE

JHEP01(2007)029 Andersen & Gardi

GG

Gambino & Giordano - work in progress

