Inclusive semileptonic B decays: $|V_{cb}|$ and $|V_{ub}|$

Marcello Rotondo

INFN Padova

On Behalf of the BaBar and Belle Collaboration

Outline

• Motivation

•

- Semileptonic decays
- Inclusive $B \rightarrow X_c \ell v$
 - Hadronic moments: $|V_{cb}|$ and HQE parameters extraction
- Inclusive $B \rightarrow X_u \ell v$
 - · BaBar Measurement: $|V_{ub}|$ with B_{reco} sample
 - · World Average
 - \cdot X_u hadronic moments
 - Weak Annihilation in $B \rightarrow X_u \ell v$ decays
- Conclusions

Motivation

CKM description of CP Violation is a success

We are looking for small deviations from SM:

need both precision and redundancy

Sin2β and B_{s,d} mixing give indirect |V_{ub}| determination from SM loop processes (CKM fitter '07, 5% uncertainty)

 $|V_{\mu\nu}| = (3.57 \pm 0.17)10^{-3}$

- Direct determination from inclusive semileptonic decays, only tree level (HFAG '08, ~9% uncertainty):
 - $|V_{ub}| = (3.99 \pm 0.14 \pm 0.30)10^{-3}$

Precision is improving: was 15% in 2003

Semileptonic decays

Semileptonic Decays are a natural probe for |Vub| and |Vcb| We want to study **quark** interactions but measure **hadron** decays

- Error on $|V_{ub}/V_{cb}|$ is dominated by $|V_{ub}|$: ~9%
 - ~7% from the b-quark mass and b momentum inside the B meson
 - these parameters are extracted using inclusive $B \rightarrow X_c \ell v$ decays (and the $B \rightarrow X_s \gamma$)
- Improve $B \rightarrow X_c \ell v$ to reduce uncertainty on $|V_{ub}|$

Inclusive |V_{cb}|

- $|V_{cb}|$ can also be extracted using $B \rightarrow D^* \ell v$ (next talk by H. Kakuno)
 - Still large uncertainty from Form Factor normalization (Lattice-QCD)

Inclusive |V_{cb}|: Heavy Quark Expansion

• HQE connect the inclusive $b \rightarrow c \ell v$ decay width to $|V_{cb}|$

 $\Gamma_{\text{SL}\sim} |V_{cb}|^2 m_b^5 \ [z_0(r) + 0/m_b + z_2(r, \mu_{\pi}^2/m_b^2, \mu_G^2/m_b^2) + z_3(r, \rho_D^3/m_b^3, \rho_{LS}^3/m_b^3) + \dots]$

- Similar expressions for moments of various inclusive distributions:
 - Hadron mass moments $\langle M_x^n \rangle_{E > Ecut}$
 - Lepton energy moments $\langle E_{lep}^{n} \rangle_{E > Ecut}$
 - Photon energy moments in $b \rightarrow s \gamma$: $\langle E_{\gamma}^{n} \rangle_{E > Ecut}$

Extract |V_{cb}|, BR_{clv}

and the HQE parameters $m_b, m_c, \mu_{\pi}^2, \mu_{G}^2, \rho_{D}^3, \rho_{LS}^3$

r=m_c/m_b

$$\langle M_x^n \rangle_{E>Eo} = \tau_B \int M_x^n d\Gamma = f \left(E_0, \underline{m_b}, \underline{m_c}, \underline{\mu_\pi^2}, \mu_G^2, \rho_D^3, \rho_{LS}^3 \right)$$

 Fit predicted moments of inclusive b→sγ and b→cℓv for different cuts on kinematics variables Lepton/ γ energy cut A Non-pert. matrix element at order: $1/m_b^2 \& 1/m_b^3$ Quark masses

Observables

Hadronic mass moments

ArXiv: 0707.2670[hep-ex] 232 M BB

- Fully reconstruct one B
- Measure hadronic moments as function of minimum lepton momentum:

 $\langle m_X^1 \rangle$ to $\langle m_X^6 \rangle$ moments for E_ℓ >0.8,...,1.9 GeV

- $p_{miss} = p_{Y(4S)} - p_{reco} - p_X - p_t$ - m_X : all remaining particles

Event by event m_X calibration functions to relate reconstructed m_X to true m_X , in bins of:

- X charged tracks multiplicity, E_{miss} -| P_{miss} | and P_{ℓ}

Hadronic Mass Moments

O BaBar 2004 OThis measurement > [(GeV/c²)⁴] 2.12 10 **BABAR** preliminary **BABAR** preliminary **BABAR** preliminary BABAR preliminary cm³/_X> [(GeV/c²)³] $[(GeV/c^2)^2]$ 2.1 2.08 2.06 4.5 9.5 1.5 43 $\langle m_X^2 \rangle^2$ €2.04 m_{X}^{2} > 4.20.5 8.5 1.5 2 p_{1,min} [GeV/c] 1.5 2 p_{1_min} [GeV/c] 0.5 0.5 0.5 0.5 $p_{l,min}^{*}$ [GeV/c] p^{*}_{1,min} [GeV/c]

- Moments integrated over data for various lepton cuts (all points highly correlated)
- Each observable has a different dependence on HQE paramaters and quark masses
- Parameters determined by a Global Fit using:
 - 8 mass moments (only are used in the fit, O agree well with the fit result)
 - 10 E_{ℓ} moments
 - · 2 E $_{\gamma}$ moments

 $\begin{aligned} |V_{cb}| = & (41.88 \pm 0.44 \pm 0.35 \pm 0.59) 10^{-3} \\ m_b = & (4.552 \pm 0.038 \pm 0.40) \text{ GeV} \\ \mu_{\pi}^2 = & (0.471 \pm 0.034 \pm 0.62) \text{ GeV}^2 \end{aligned}$

In the Kinetic Scheme Gambino, Uraltsev, Eur.Phys.J.C34,181(2004)

Hadronic Mixed moments

- Modified moments: $n_{\chi}^{2}=m_{\chi}^{2}-2\Lambda E_{\chi}+\Lambda^{2}$ (with $\Lambda=0.65$ GeV)
 - Combination of Hadronic Mass and Energy Moments
 - Expect higher sensitivity to higher order parameters

Gambino, Uraltsev JHEP34,181(2004)

Belle OPE fit

- Update of ICHEP06 results
- 7 m_x moments, 11 E_{ℓ} moments, 4 E_{γ} moments
- Both 1S scheme and Kinetic scheme

Kinetic Scheme Gambino, Uraltsev, Eur.Phys.J.C34,181(2004) 1S Scheme Bauer, Ligeti, Luke, PRD64, 113004 ((2004)

Inclusive |V_{cb}|: global OPE fit

>100 measurements, different HQE fit implementations, results in very good agreement:

 $\sigma_{|Vcb|}$ <2% and σ_{mb} <~1%

8 May 2008

Comparison with exclusive $|V_{cb}|=(39.2\pm0.6exp\pm1.0th)10^{-3}$ Inclusive-exclusive: $\Delta=2.7\pm1.3$ 2.0 σ

Inclusive |V_{ub}|

- $|V_{ub}|$ can also be extracted using $B \rightarrow \pi \ell v$ (next talk by H. Kakuno)
 - Still large uncertainty from Form Factor normalization (Lattice-QCD)
 - Expected large improvements in the future

Inclusive $B \rightarrow X_u \ell v$

$$\frac{\Gamma(b \to u \ell \nu)}{\Gamma(b \to c \ell \nu)} \approx \frac{|V_{ub}|^2}{|V_{cb}|^2} \approx \frac{|V_{ub}|^2}{|V_{cb}|^2}$$

$$\frac{1}{50}$$

• Experiment challenge is to separate $B \rightarrow Xc \ell v$ from signal

- $m_u^2 < m_c^2$, different kinematics: signal have larger E_{ℓ}^2 and q^2
- Measure partial $\Delta B(B \rightarrow X_u \ell v)$ in a region where the S/N is good and the $\Delta \Gamma_u$ is reliably calculable

$$\Delta B(B \to X_u \ell \nu) = \tau_B |V_{ub}|^2 \zeta_c$$

Cut dependent constant, from Theory (many frameworks available)

- OPE convergence is compromised: non perturbative effects at O(1/m_b)
 - Light cone distribution of b-quark (**Shape** *Function*) is needed
 - Detailed shape not known, in particular the tail, but mean and r.m.s constrained from moment measurement in $B \rightarrow X_c \ell v$ (and $B \rightarrow X_s \gamma$)

Inclusive |Vub|: strategy

• Fully reconstruct one B in hadronic decays

Inclusive |V_{ub}|: results

Inclusive |V_{ub}|: results

Cut:	N _u	$ V_{ub} 10^3$ stat. syst. theory	Bosn,Lange,Neuber,Paz PRL93,221801(2004) PRD72,073006(2005)
m _x <1.55 GeV	803 ±60	4.27 ±0.16 ±0.13 ±0.30 BLNP 4.56 ±0.17 ±0.14 ±0.32 DGE	Andersen,Gardi JHEP0601,097(2006)
P ₊ =E _x - P _x <0.66	633 ±63	3.88 ±0.19 ±0.16 ±0.28 BLNP 3.99 ±0.20 ±0.16 ±0.24 DGE	Bauer,Ligeti,Luke PRD64,113004(2001)
m _x <1.7 GeV & q² >8 GeV2	562 ±55	4.57 ±0.22 ±0.19 ±0.30 BLNP 4.64 ±0.23 ±0.19 ±0.25 DGE 4.93 ±0.24 ±0.20 ±0.36 BLL	

Single analysis with 9% tot. uncertainty

Compatibility taking into account the large correlations (stat. & syst.) between the different cuts: - m_x and (m_x, q^2) agree at 1σ - P_{\perp} differs by 2.5 σ

Monte Carlo Total Shape $\mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})$ Gluon function $X_u = \pi, \rho, \ldots$ splitting $\mathcal{B}(\overline{B} \to X_c \ell \bar{\nu}) \xrightarrow{B \to D^* \ell^- \bar{\nu}}{\text{form factors}} \mathcal{B}(D)$ $m_{\rm ES}$ fit *Method* Detector statistics effects M_X 1.920.90 2.081.620.870.210.443.713.226.07 P_+ 3.882.221.47 2.800.390.733.984.628.38 1.31 M_X, q^2 3.832.432.711.021.170.550.795.174.298.81

Experimental systematics on $\Delta B(B \rightarrow Xu\ell v)$ expressed in %

V_{ub} results (HFAG average, BLNP)

Many different theoretical approach
 ⇒many |V_{ub}| values

- Here only BLNP, with m_b from B→ Xcℓv Global Fit (Kinetic Scheme), including also uncertainty on the KS⇔SF Scheme translation
 - $B \rightarrow X s \gamma$ not included: theory not under control (Neubert @ LP2007)

$|V_{ub}| = (3.99 \pm 0.14 \pm 0.30) 10^{-3}$

δ Vub	+8.8% -7.7%	
Statistical	2.0%	
Exp.systematics	2.3%	
<mark>b→cℓv</mark> model	1.3%	
<mark>b→u</mark> ℓv model	1.4%	
HQ parameters	7.0%	
SF + Sub. SF	0.6%	
matching	3.6%	
Weak Annihilation	1.3%	

For B_{reco} analysis use only m_x cut:

- large unpublished correlations with P+ and q2

V_{ub} results (HFAG average, GGOU)

Gambino, Giordano, Ossola, Uraltsev JHEP0710:058(2007)

• m_b from Global Fit (Kinetic Scheme), including also $B \rightarrow X s \gamma$

$|V_{ub}| = (3.94 \pm 0.15 \pm 0.23)10^{-3}$

δ Vub	+6.3% -7.0%
Statistical	2.2%
Exp.systematics	2.2%
<mark>b→cℓv</mark> model	1.3%
<mark>b→uℓ</mark> v model	1.5%
Non pert	3.9%
Higher order par.	1.8%
q2 tail model	2.6%
Weak Annihilation	-3.1%

For B_{reco} analysis use only m_x cut:

- large unpublished correlations with P+ and q2

V_{ub} using SF independent analyses

• QCD interaction affecting $b \rightarrow s\gamma$ and $b \rightarrow u\ell v$ are the same

Lange,Neuber,Paz JHEP0510:084 (2005)

• Take ratio of weigheted rates

V_{ub} results (different calculations)

Hadronic Moments in $B \rightarrow X_u \ell v$ decays

- Measure hadronic mass spectrum over full m_{χ} range (same strategy/datasample used to extract $|V_{ub}|$)
- Mass moments related to m_b : extract moments with upper cut $m_x^2 < 6.4 \text{ GeV}^2$

Weak annihilation in $B \rightarrow X_u \ell v$

ArXiv: 0708.1753 383 M BB

Small contribution to $B \rightarrow X_u \ell v$ decays:

 $\frac{|\Gamma_{WA}|}{\Gamma_{\mu}} < 7.4\% \ at \ 90\% C.L.$ CLEO, studing the q² spectra PRL96,121801 (2006)

- Introduce difference between B⁰ and B⁺ decays
- Tag with partial reconstructed $B^0 \rightarrow D^{*+} \ell v$
- Neutrino mass from kinematics: $m_v^2 = (P_B P_{D^*} P_\ell)^2$

Compare B^0 partial rate to charge averaged $B \rightarrow X_u \ell v$ rate in the large p_{ℓ} region (to enhance the WA contribution) PRD73,012006(2006)

Charge asymmetry:
$$A^{+/0} = \frac{\Delta \Gamma + -\Delta \Gamma^{0}}{\Delta \Gamma^{+} + \Delta \Gamma^{0}}$$

For $\Delta p=2.3-2.6 \text{ GeV}$ ~300 X_u events (e+ μ)

```
- f_{WA}(\Delta p) is the fraction
of WA in a \Delta p interval
```

Δp	$\Delta \mathcal{B}(B) \cdot 10^4 [8]$	$\Delta \mathcal{B}(B^0) \cdot 10^4$	$A^{+/0}$
$2.2-2.6{\rm GeV}/c$	$2.31{\pm}0.10{\pm}0.18$	$2.62{\pm}0.33{\pm}0.16$	$-0.17 \pm 0.15 \pm 0.11$
$2.3-2.6{\rm GeV}/c$	$1.46{\pm}0.06{\pm}0.10$	$1.30{\pm}0.21{\pm}0.07$	$0.08{\pm}0.15{\pm}0.08$
$2.4-2.6{\rm GeV}/c$	$0.75 {\pm} 0.04 {\pm} 0.06$	$0.76{\pm}0.15{\pm}0.05$	$-0.05 {\pm} 0.20 {\pm} 0.10$

$$\frac{|\Gamma_{WA}|}{\Gamma_u} < \frac{3.8\%}{f_{WA}(2.3-2.6)} \ at \ 90\% C.L.$$

Conclusion

- Determination of $|V_{ub}/V_{cb}|$ complements $sin 2\beta \cap |V_{td}/V_{ts}|$ to test the SM
- Significant improvemets of understanding semileptonic decays in the last years:
 - Thanks to the continuous theory ⇔ experiment interactions
- Inclusive $B \rightarrow X_c \ell v$ decays precisely determined $|V_{cb}|$, m_b etc.
- Inclusive $B \rightarrow X_u \ell v$ achieved <~9% error on $|V_{ub}|$ (crucial the role of m_b)
 - · room for improvements on both systematics and statistics
 - · challenge the theory: WA and HQE parameters from decays $b \rightarrow u \ell v$

Backup Slides

Theory: references

- Approaches based on the OPE, require the SF
 - 3-scale OPE based on HQET, SCET: Bosch, Lange, Neubert, Paz PRD72:073006(2005)
 - *Kinetic Scheme: Gambino, Giordano, Ossola, Uraltsev JHEP10(2007)058*
 - Relate b uln to b sg with weight functions: Lange, Neubert, Paz JHEP 0510:084,2005; Leibovith,Low,Rothstein PLB486:86
 - Select a region with reduced SF dependece: Bauer, Ligeti, Luke PRD64:113004(2001)
- Parton level approach, no SF is needed but require a model of nonperturbative QCD effects (can be tested on other measurements: b quark fragmentations data)
 - Dressed Gluon Exponentiation: Andersen, Gardi JHEP0601:097(2006)
 - Analytuc Coupilg: Aglietti, Ferrera, Ricciardi PR74 (2006) 034006, PRD74(2006) 034005, PRD74(2006)034004