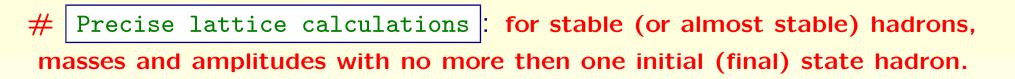
Lattice QCD: A progress report

Elvira Gámiz

Flavor Physics & CP Violation 2008

· Taipei, 8 May 2008 ·

Outline


- 1. Introduction: Lattice QCD
- 2. Decay constants: $P \rightarrow l\nu$
 - f_D and f_{D_s} : test of lattice QCD
 - f_B and f_{B_s}
- 3. Semileptonic decays
 - Exclusive $B \rightarrow D^* l \nu$: determination of $|V_{cb}|$
 - $B \rightarrow \pi l \nu$: determination of $|V_{ub}|$
- 4. Neutral meson mixing $(\Delta F = 2)$
 - Indirect CP violation in neutral kaons: \hat{B}_K
 - B^0 neutral mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ
- 5. Conclusions and outlook

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool \rightarrow becoming a precise tool

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool \rightarrow becoming a precise tool

* Quantities relevant for all CKM matrix elements except V_{tb} .

experiment = (CKM)*(lattice inputs)

Lattice inputs: Encoding non-perturbative information on hadrons

(decay constants, form factors, bag parameters, etc)

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool \rightarrow becoming a precise tool

Precise lattice calculations : for stable (or almost stable) hadrons, masses and amplitudes with no more then one initial (final) state hadron.

* Quantities relevant for all CKM matrix elements except V_{tb} .

experiment = (CKM)*(lattice inputs)

Lattice inputs: Encoding non-perturbative information on hadrons

```
(decay constants, form factors, bag parameters, etc)
```

* Generate sets of gluon fields contribute most to the Path Integral (configurations).

* Calculate averaged hadron correlators on these sets

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool \rightarrow becoming a precise tool

Precise lattice calculations : for stable (or almost stable) hadrons, masses and amplitudes with no more then one initial (final) state hadron.

* Quantities relevant for all CKM matrix elements except V_{tb} .

experiment = (CKM)*(lattice inputs)

Lattice inputs: Encoding non-perturbative information on hadrons

(decay constants, form factors, bag parameters, etc)

* Generate sets of gluon fields contribute most to the Path Integral (configurations).

* Calculate averaged hadron correlators on these sets

Quenched approximation: neglect vacuum polarization effects \rightarrow uncontrolled and irreducible errors

Unquenched work with $N_f = 2$ or $N_f = 2 + 1$ flavours of sea quarks

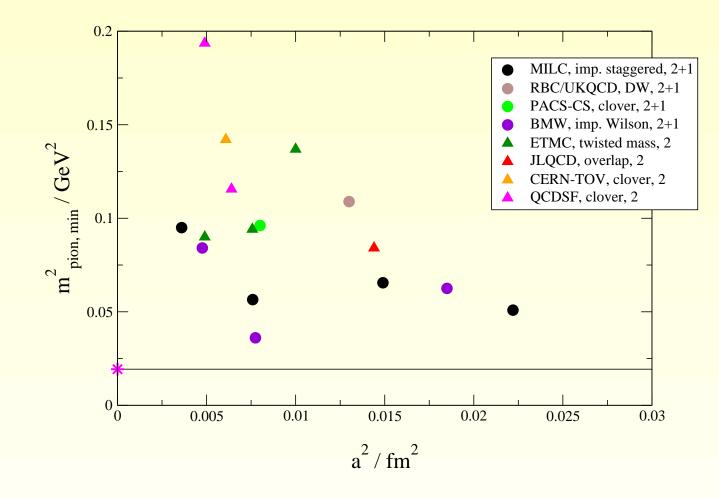
Quenched approximation: neglect vacuum polarization effects \rightarrow uncontrolled and irreducible errors

Unquenched work with $N_f = 2$ or $N_f = 2 + 1$ flavours of sea quarks

Light quark formalism: speed, discretization errors, chiral symmetry, technical issues.

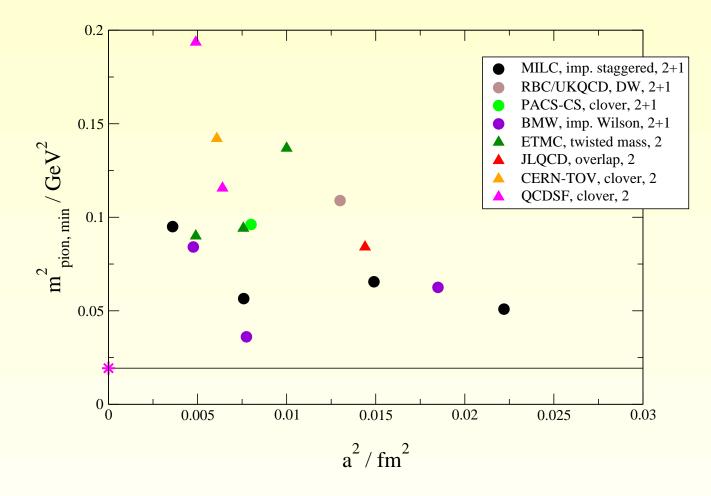
Quark	speed	chiral symmetry	Collaboration	
formulation				
Improved	fast	$U(1) \times U(1)$ (ok)	HPQCD/MILC/FNAL	
staggered				
Overlap	very slow	exact	JLQCD	
Domain Wall	slow	$m_{res}~({ m good})$	RBC/UKQCD	
Wilson	Moderately fast	bad	JLQCD/QCDSF/	
		566	ALPHA/CERN/PACS-CS	
tmQCD	Moderately fast	ok	ETMC	

Quenched approximation: neglect vacuum polarization effects \rightarrow uncontrolled and irreducible errors


Unquenched work with $N_f = 2$ or $N_f = 2 + 1$ flavours of sea quarks

Light quark formalism: speed, discretization errors, chiral symmetry, technical issues.

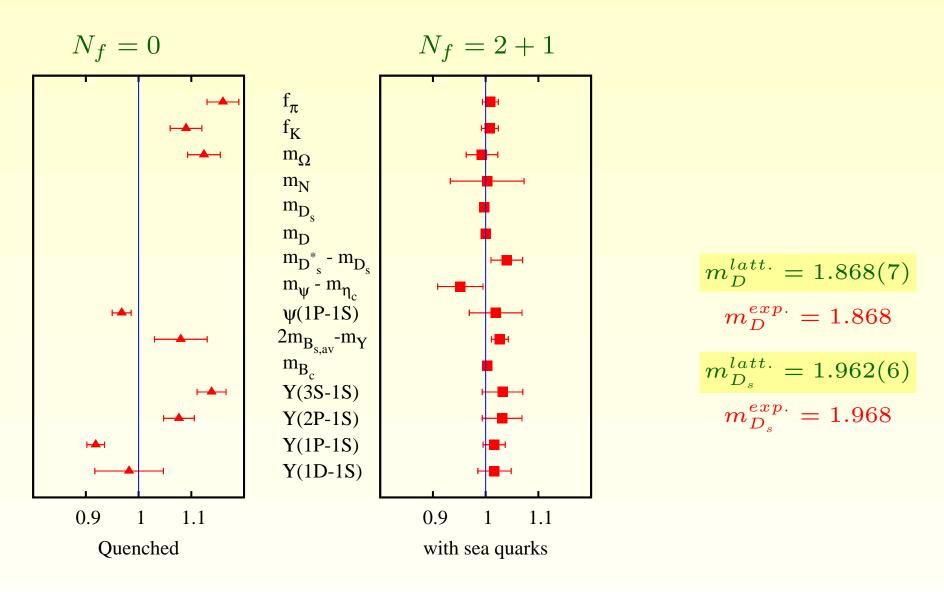
Quark	speed	chiral symmetry	Collaboration	
formulation	_			
Improved	fast	$U(1) \times U(1)$ (ok)	HPQCD/MILC/FNAL	
staggered				
Overlap	very slow	exact	JLQCD	
Domain Wall	slow	$m_{\it res}~({ m good})$	RBC/UKQCD	
Wilson	Moderately fast	bad	JLQCD/QCDSF/	
			ALPHA/CERN/PACS-CS	
tmQCD	Moderately fast	ok	ETMC	


Mixed actions: Different formulations for sea and valence quarks.

 $N_f=2$ and $N_f=2+1$ ensembles available

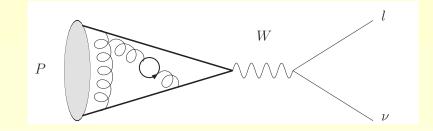
$m_l > m_{u,d}$ in numerical simulations

 $N_f = 2$ and $N_f = 2 + 1$ ensembles available



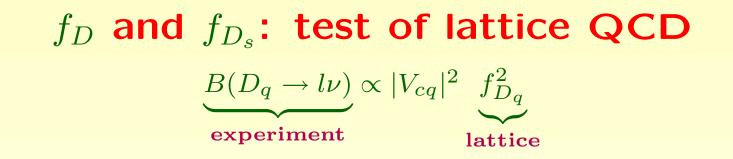
$m_l > m_{u,d}$ in numerical simulations

Use chiral perturbation theory to extrapolate to $m_{u,d}$


Staggered χ PT: remove leading $\mathcal{O}(a^2)$ errors in fits. Bernard, Sharpe and Aubin

Testing Lattice QCD

Experimental quantities are quite well reproduced by lattice when including realistic sea quark effects


2. Decay constants: $P \rightarrow l\nu$

Purely leptonic decays can be used to extract CKM matrix elements

$$\Gamma(P_{ab} \to l\nu) \propto f_P^2 |V_{ab}|^2$$

or testing **SM/lattice** predictions

Simple matrix element $\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}c|D_{q}(p)\rangle = if_{D_{q}}p_{\mu} \rightarrow$ precise calculations

f_D and f_{D_s} : test of lattice QCD $\underbrace{B(D_q \to l\nu)}_{\text{experiment}} \propto |V_{cq}|^2 \underbrace{f_{D_q}^2}_{\text{lattice}}$

Simple matrix element $\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}c|D_{q}(p)\rangle = if_{D_{q}}p_{\mu} \rightarrow$ precise calculations

Results from two groups with $N_f = 2 + 1$

heavy valence quarks HPQCD HISQ , FNAL/MILC Fermilab action

Highly improved staggered quarks (HISQ): Reduction of $\mathcal{O}(a^2 \alpha_s)$ and $\mathcal{O}((am_Q)^4)$ discretization errors \rightarrow Very precise results for charm physics, charmonium and D, $(m_c \text{ fixed by } \eta_c)$. E. Follana et al (2007)HPQCD

f_D and f_{D_s} : test of lattice QCD $\underbrace{B(D_q \to l\nu)}_{\text{experiment}} \propto |V_{cq}|^2 \underbrace{f_{D_q}^2}_{\text{lattice}}$

Simple matrix element $\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}c|D_{q}(p)\rangle = if_{D_{q}}p_{\mu} \rightarrow$ precise calculations

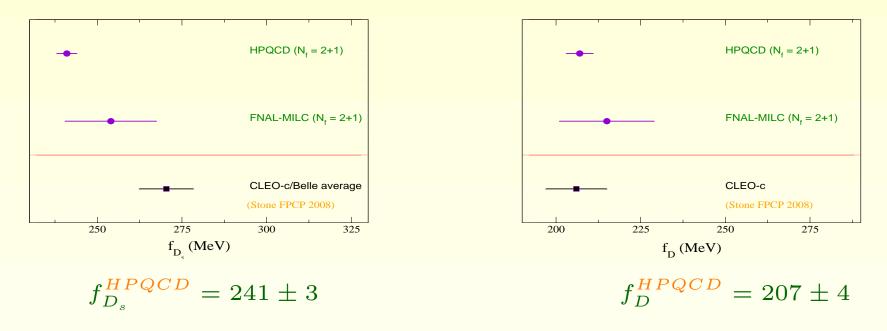
Results from two groups with $N_f = 2 + 1$

heavy valence quarks HPQCD | HISQ , FNAL/MILC | Fermilab action

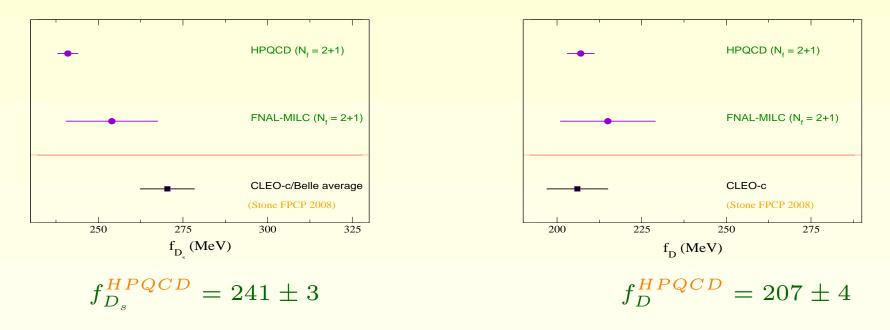
* MILC ensembles: 3 lattice spacings (0.09 fm ,0.12 fm, 0.15 fm)

* Renormalization partially non-pert. (FNAL/MILC, 1.5% error) and normalization via PCAC (нроср, no error)

 * Simultaneous chiral and continuum extrapolation including all a, valence and sea quark masses:


SChPT (FNAL/MILC) and continuum ChPT + $\mathcal{O}(a^2)$ terms (HPQCD).

Highly improved staggered quarks (HISQ): Reduction of $\mathcal{O}(a^2 \alpha_s)$ and $\mathcal{O}((am_Q)^4)$ discretization errors \rightarrow Very precise results for charm physics, charmonium and D, $(m_c \text{ fixed by } \eta_c)$. E. Follana et al (2007)HPQCD


Latest Results (2007/08)

Sensitive to **BSM** physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? **Dobrescu and Kronfeld 2008**

Sensitive to **BSM** physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? **Dobrescu and Kronfeld 2008**

> 3σ discrepancy between experiment and HPQCD lattice f_{D_s} . # Experiment-lattice agreement in f_K , f_π , f_D , m_D , m_{D_s} , $\frac{2m_{D_s} - m_{\eta_c}}{2m_D - m_{\eta_c}}$. # Sensitive to **BSM** physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? **Dobrescu and Kronfeld 2008**

> 3σ discrepancy between experiment and HPQCD lattice f_{D_s} . # Experiment-lattice agreement in f_K , f_π , f_D , m_D , m_{D_s} , $\frac{2m_{D_s} - m_{\eta_c}}{2m_D - m_{\eta_c}}$. # Expected reduction of experimental errors # Experiment uses $V_{cs} = V_{ud}$. Main sources of uncertainty in lattice f_{D,D_s}

FNAL/MILC plan to work on more (smaller) lattice spacings \rightarrow

* Smaller lattice spacing: $a = 0.06 \ fm$ already exist, $a = 0.04 \ fm$ in production.

Statistics: smearings, random wall sources, more ensembles, twice as many configurations.

Fixing m_c and improving the determination of the scale r_1 (Υ system).

Main sources of uncertainty in lattice f_{D,D_s}

FNAL/MILC plan to work on more (smaller) lattice spacings \rightarrow

* Smaller lattice spacing: $a = 0.06 \ fm$ already exist, $a = 0.04 \ fm$ in production.

Statistics: smearings, random wall sources, more ensembles, twice as many configurations.

Fixing m_c and improving the determination of the scale r_1 (Υ system).

error will improve to a few % in 2 years

* expected reduction of the error by **FNAL/MILC**:

 f_{D_s} : 4.4% $\rightarrow 2.3\%$ f_{D_s}/f_D : 1.8% $\rightarrow 1.5\%$

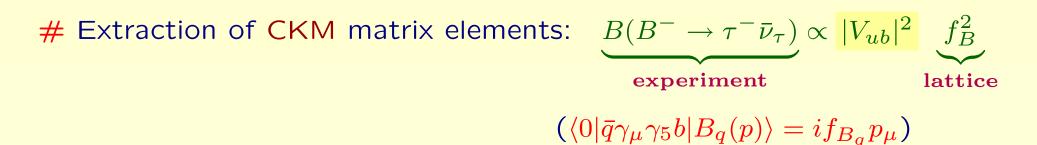
Main sources of uncertainty in lattice f_{D,D_s}

FNAL/MILC plan to work on more (smaller) lattice spacings \rightarrow

* Smaller lattice spacing: $a = 0.06 \ fm$ already exist, $a = 0.04 \ fm$ in production.

Statistics: smearings, random wall sources, more ensembles, twice as many configurations.

Fixing m_c and improving the determination of the scale r_1 (Υ system).


error will improve to a few % in 2 years

* expected reduction of the error by **FNAL/MILC**:

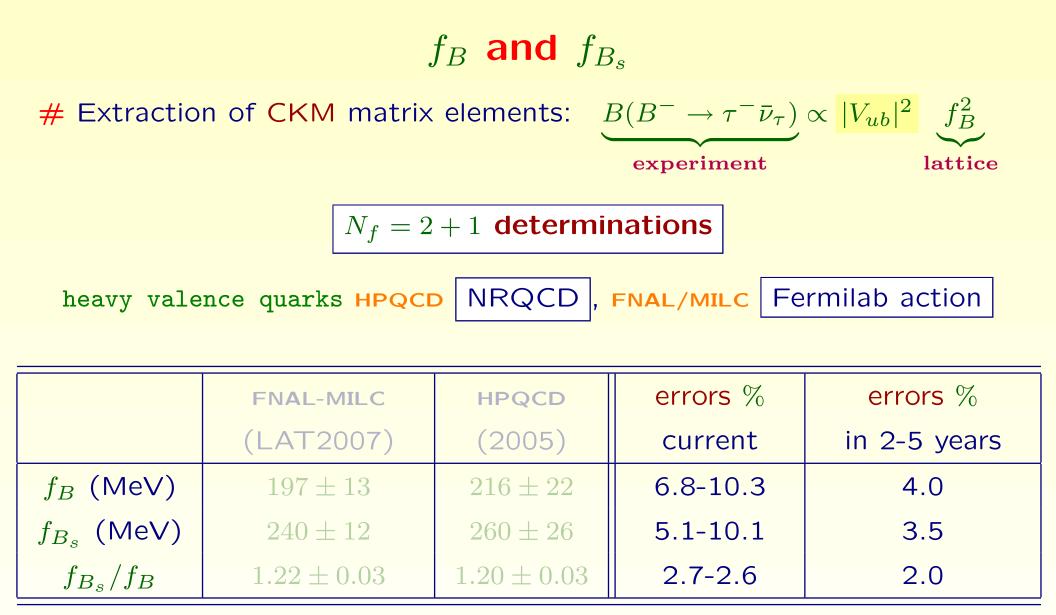
 f_{D_s} : 4.4% $\rightarrow 2.3\%$ f_{D_s}/f_D : 1.8% $\rightarrow 1.5\%$

Other fermion formulations.

f_B and f_{B_s}

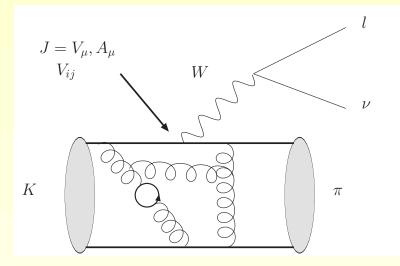
f_B and f_{B_s}

Extraction of CKM matrix elements: $\underbrace{B(B^- \to \tau^- \bar{\nu}_{\tau})}_{\text{experiment}} \propto \frac{|V_{ub}|^2}{|I_{ub}|^2} \underbrace{f_B^2}_{\text{lattice}}$


 $(\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}b|B_{q}(p)\rangle = if_{B_{q}}p_{\mu})$

Decay constants needed in the SM prediction for processes potentially very sensitive to BSM effects: for example, f_{B_S} for $B_s \to \mu^+ \mu^-$

$B^- \rightarrow \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.


f_B and f_{B_s} # Extraction of CKM matrix elements: $\underbrace{B(B^- \to \tau^- \bar{\nu}_{\tau})}_{\text{experiment}} \propto \frac{|V_{ub}|^2}{|I_{attice}} \underbrace{f_B^2}_{|I_{attice}}$ $N_f = 2 + 1$ determinations

	FNAL-MILC	HPQCD	
	(LAT2007)	(2005)	
f_B (MeV)	197 ± 13	216 ± 22	
f_{B_s} (MeV)	240 ± 12	260 ± 26	
f_{B_s}/f_B	1.22 ± 0.03	1.20 ± 0.03	

Extraction of f_{B_s}/f_B from double ratios: e.g. $[f_{B_s}/f_B]/[f_K/f_\pi]$

3. Semileptonic decays

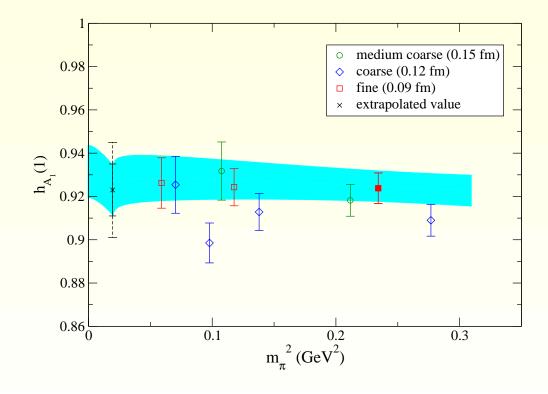
$B \rightarrow D^* l \nu$ rate at zero recoil $\propto |V_{cb}h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \rightarrow \pi \nu \bar{\nu})$).

$B \rightarrow D^* l \nu$ rate at zero recoil $\propto |V_{cb}h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \rightarrow \pi \nu \bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | \bar{B} \rangle \langle \bar{B} | \bar{b} \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | \bar{b} \gamma_4 b | \bar{B} \rangle}$

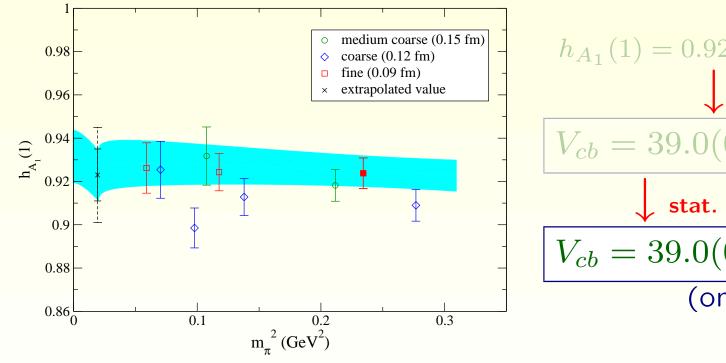

 $N_f = 2 + 1$ FNAL-MILC (Laiho, LAT07)

$B \rightarrow D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \to \pi \nu \bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | B \rangle \langle B | b \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | \bar{b} \gamma_4 b | \bar{B} \rangle}$

 $N_f = 2 + 1$ FNAL-MILC (Laiho, LAT07)

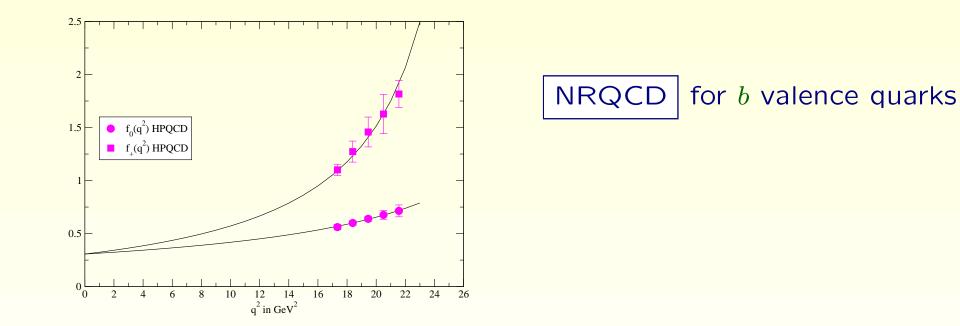

$$h_{A_1}(1) = 0.923(12)_{stat.}(19)_{syst.}$$
$$\downarrow \text{HFAG}$$
$$|V_{cb}| = 39.0(0.7)_{exp.}(0.9)_{latt.}$$

$B \rightarrow D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \to \pi \nu \bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | B \rangle \langle B | b \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | \bar{b} \gamma_4 b | \bar{B} \rangle}$

 $N_f = 2 + 1$ FNAL-MILC (Laiho, LAT07)

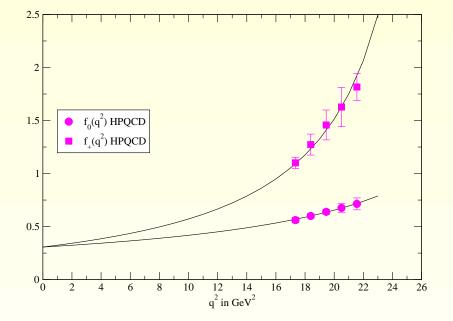


$$h_{A_1}(1) = 0.923(12)_{stat.}(19)_{syst.}$$

 \downarrow HFAG
 $V_{cb} = 39.0(0.7)_{exp.}(0.9)_{latt.}$
 \downarrow stat. + disc. errors
 $V_{cb} = 39.0(0.7)_{exp.}(0.7)_{latt.}$
(one year)

$B \rightarrow \pi l \nu$: determination of $|V_{ub}|$

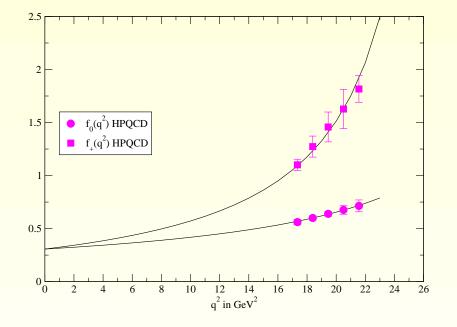
Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)


$$Br(B \to \pi l\nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2} dq^2 f_+^{B \to \pi} (q^2)^2} \times (\text{known factors})$$

$B \rightarrow \pi l \nu$: determination of $|V_{ub}|$

Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)

$$Br(B \to \pi l\nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2} dq^2 f_+^{B \to \pi} (q^2)^2} \times (\text{known factors})$$


NRQCD for *b* valence quarks

 $|V_{ub}| \times 10^3 = 3.55(25)_{exp.}(50)_{theor.}$ 14% theory error dominated by statistics and matching

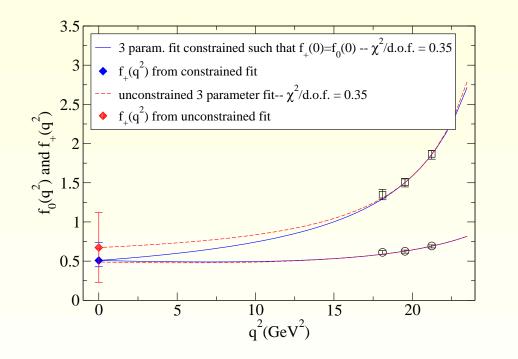
$B \rightarrow \pi l \nu$: determination of $|V_{ub}|$

Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)

$$Br(B \to \pi l\nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2} dq^2 f_+^{B \to \pi} (q^2)^2} \times (\text{known factors})$$

NRQCD for *b* valence quarks

 $|V_{ub}| \times 10^3 = 3.55(25)_{exp.}(50)_{theor.}$ 14% theory error dominated by statistics and matching

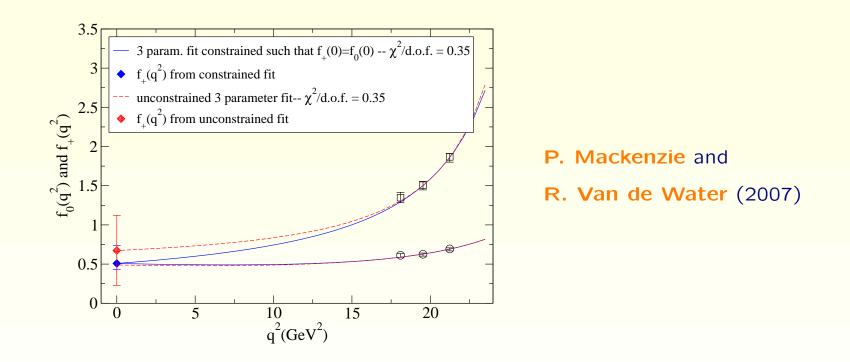

Poor overlap in q^2 between lattice and experiment \rightarrow increases the total error # Work in progress to reduce total error

* Moving NRQCD: Generate data at low q^2 + keeping statical errors under control K. Wong Lattice2007.

Work in progress to reduce total error

* Moving NRQCD: Generate data at low q^2 + keeping statical errors under control K. Wong Lattice2007 .

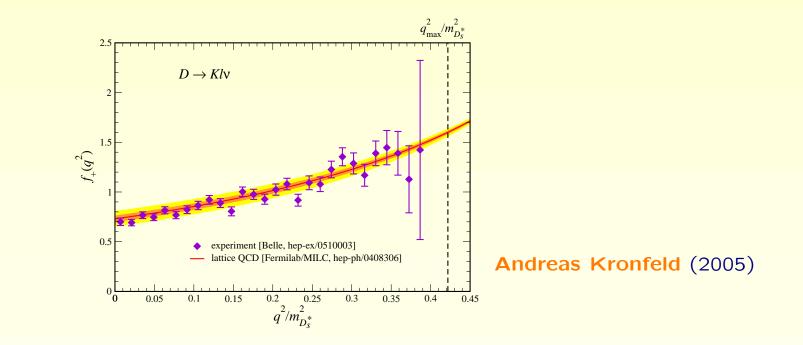
* **z-fit**: combine lattice and experimental data over full q^2 region using model-independent expression based on analyticity and unitarity **Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water**



- P. Mackenzie and
- R. Van de Water (2007)

Work in progress to reduce total error

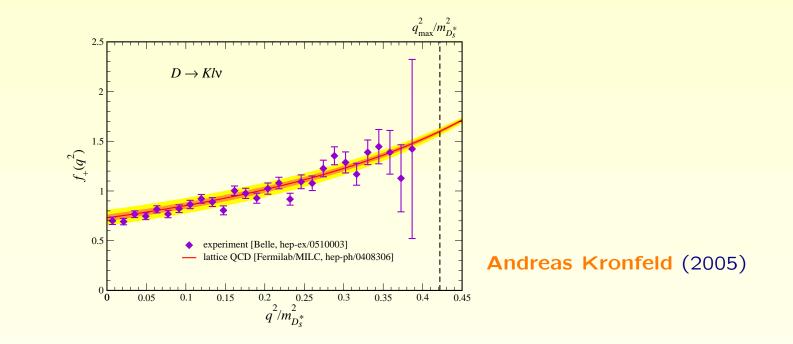
* Moving NRQCD: Generate data at low q^2 + keeping statical errors under control K. Wong Lattice2007 .


* **z-fit**: combine lattice and experimental data over full q^2 region using model-independent expression based on analyticity and unitarity **Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water**

Work underway to extend lattice results \rightarrow FNAL-MILC (Mackenzie, LAT07) total error after finishing current analysis $\sim 10\%$.

Semileptonic decays: Improvements in progress

$$D \rightarrow \pi l \nu$$
 and $D \rightarrow K l \nu$:



* **FNAL-MILC** 2005 results are consistent with experiment for $f_+(0) \leftrightarrow$ predict $V_{cd}(V_{cs})$ with 14%(11%)

** Uncertainty dominated by discretization errors \rightarrow improvable by going to finer (0.09 fm) lattice spacings.

Semileptonic decays: Improvements in progress

$$D \rightarrow \pi l \nu$$
 and $D \rightarrow K l \nu$:

* **FNAL-MILC** 2005 results are consistent with experiment for $f_+(0) \leftrightarrow$ predict $V_{cd}(V_{cs})$ with 14%(11%)

** Uncertainty dominated by discretization errors \rightarrow improvable by going to finer (0.09 fm) lattice spacings.

FNAL-MILC working on $N_f = 2 + 1$ calculation of the form factors $f_+^{D \to \pi}(0)$ and $f_+^{D \to K}(0)$ (reduction of discr. errors) $\to V_{cd}$ and V_{cs} .

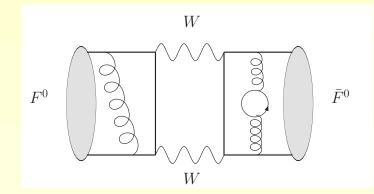
$$\#$$
 $D \rightarrow \pi l \nu$ and $D \rightarrow K l \nu$:

- * $\frac{\Gamma(D \to l\nu)}{\Gamma(D \to \pi l\nu)}$ independent of $|V_{cq}| \to \text{consistency check}$
- * $\frac{\Gamma(D_s \rightarrow l\nu)}{\Gamma(D \rightarrow K l\nu)}$ CKM independent test of lattice (QCD)

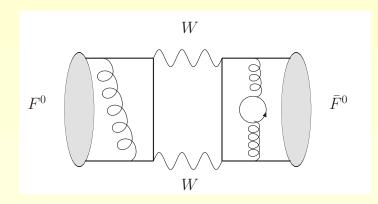
$$\#$$
 $D \rightarrow \pi l \nu$ and $D \rightarrow K l \nu$:

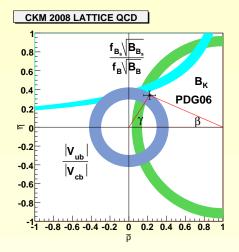
- * $\frac{\Gamma(D \to l\nu)}{\Gamma(D \to \pi l\nu)}$ independent of $|V_{cq}| \to \text{consistency check}$
- * $\frac{\Gamma(D_s \rightarrow l\nu)}{\Gamma(D \rightarrow K l\nu)}$ CKM independent test of lattice (QCD)
- * Becirevic, Haas and Mescia: Testing systematic errors reduction for several double ratios with $N_f = 2$ Wilson fermions.

$$\#$$
 $D \rightarrow \pi l \nu$ and $D \rightarrow K l \nu$:


- * $\frac{\Gamma(D \to l\nu)}{\Gamma(D \to \pi l\nu)}$ independent of $|V_{cq}| \to \text{consistency check}$
- * $\frac{\Gamma(D_s \rightarrow l\nu)}{\Gamma(D \rightarrow K l\nu)}$ CKM independent test of lattice (QCD)
- * Becirevic, Haas and Mescia: Testing systematic errors reduction for several double ratios with $N_f = 2$ Wilson fermions.

$$B \rightarrow Dl\nu$$
 (alternative determination of V_{cb}):

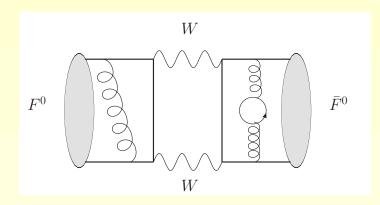

de Divitiis et al 2007 Quenched analysis in the framework of HQET

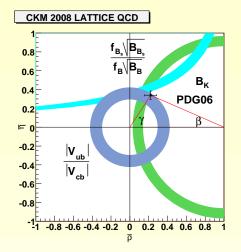

- * Including the case of non-vanishing lepton mass.
- * Demonstrate feasibility of using methodology in the unquenched theory

4. Neutral meson mixing ($\Delta F = 2$)

4. Neutral meson mixing ($\Delta F = 2$)

Indirect CP violation in neutral kaons: \hat{B}_K


$$\underbrace{|\epsilon_K|}_{A(K_S \to (\pi\pi)_{I=0})} = \left| \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \right|$$


experimental $B_{K}(\mu) = \frac{\langle \bar{K}^{0} | Q_{\Delta S=2}(\mu) | K^{0} \rangle}{\frac{8}{3} \langle \bar{K}^{0} | \bar{s} \gamma_{\mu} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{\mu} \gamma_{5} d | K^{0} \rangle}$

hyperbole in the $\rho - \eta$ plane of the **UT** (Im $(V_{ts}V_{td}^*) \sim \overline{\eta}[(1 - \overline{\rho}) + const.]$).

* B_K largest source of error to extract CKM combination from experimental ε_K

4. Neutral meson mixing ($\Delta F = 2$)

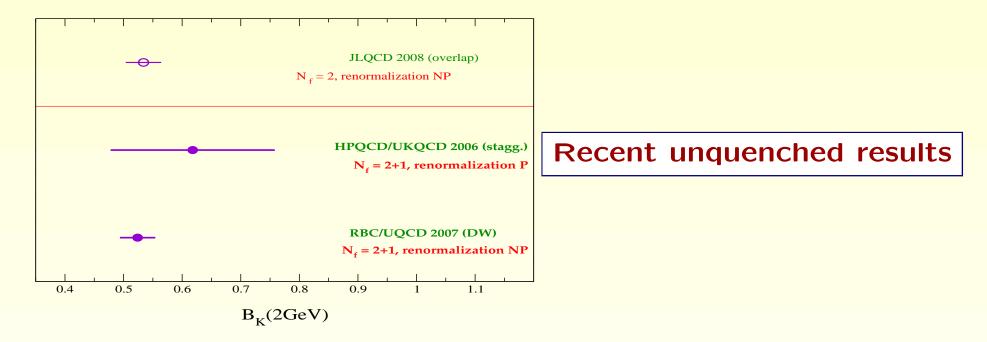
Indirect CP violation in neutral kaons: \hat{B}_K

$$\underbrace{|\epsilon_K|}_{A(K_S \to (\pi\pi)_{I=0})} = \left| \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \right|$$

 $\underbrace{B_{K}(\mu)}_{\frac{8}{3}\langle\bar{K}^{0}|\bar{s}\gamma_{\mu}\gamma_{5}d|0\rangle\langle0|\bar{s}\gamma_{\mu}\gamma_{5}d|K^{0}\rangle}$

lattice

hyperbole in the $\rho - \eta$ plane of the UT $(\operatorname{Im}(V_{ts}V_{td}^*) \sim \overline{\eta}[(1 - \overline{\rho}) + const.]).$


- * B_K largest source of error to extract CKM combination from experimental ε_K
 - ** Expected reduction in B_K error to a few per-cent level $\rightarrow V_{cb}$ error becomes significant.

Indirect CP violation in neutral kaons: \hat{B}_K

Calculate box in lattice QCD needs good chiral symmetry \rightarrow control the allowed operator mixing \rightarrow simplify renormalization (smaller errors)


Indirect CP violation in neutral kaons: \hat{B}_K

Calculate box in lattice QCD needs good chiral symmetry \rightarrow control the allowed operator mixing \rightarrow simplify renormalization (smaller errors)

Indirect CP violation in neutral kaons: \hat{B}_K

Calculate box in lattice QCD needs good chiral symmetry \rightarrow control the allowed operator mixing \rightarrow simplify renormalization (smaller errors)

Current most accurate result by **RBC-UKQCD**:

$$B_k^{\overline{MS}}(2 \ GeV) = 0.524(10)_{stat.}(25)_{sys.}(13)_{ren.}$$

(6% error)

* NLO $SU(2) \times SU(2) \chi PT$ (2% error).

* Only one lattice spacing (4% error) \rightarrow need check discret. errors.

(work in progress)

JLQCD generating $N_f = 2 + 1$ ensembles (two different volumes) \rightarrow remove dominant uncertainties. # JLQCD generating $N_f = 2 + 1$ ensembles (two different volumes) \rightarrow remove dominant uncertainties.

Underway overlap valence + twisted mass sea $N_f = 2$ calculation

ALPHA, Scorzato LAT2007

* overlap: exact chiral symmetry

* twisted mass: computationally more efficient than overlap or DW

JLQCD generating $N_f = 2 + 1$ ensembles (two different volumes) \rightarrow remove dominant uncertainties.

Underway overlap valence + twisted mass sea $N_f = 2$ calculation

ALPHA, Scorzato LAT2007

* overlap: exact chiral symmetry

* twisted mass: computationally more efficient than overlap or DW

Underway DW valence + staggered sea $N_f = 2 + 1$ calculation:

Aubin, Laiho, Van de Water

- * Non-perturbative renormalization
- * Large number of staggered sea quark configurations MILC
- * $\simeq 5 6\%$ error expected.

B^0 neutral mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ

Experimental measurements:

PDG07 average
$$\Delta M_d|_{exp.} = 0.507 \pm 0.005 \, ps^{-1}$$

 $\Delta \Gamma_s |_{exp.}^{\mathbf{D}\emptyset} = 0.17 \pm 0.09 \pm 0.02 \, ps^{-1}$

$$\Delta \Gamma_s |_{exp.}^{\mathbf{CDF}} = 0.076^{+0.059}_{-0.063} \pm 0.006 \, ps^{-1}$$

• theoretically: In the Standard Model

 $\Delta M_s|_{exp.} = 17.77 \pm 0.12 \, ps^{-1}$

$$\Delta M_q|_{theor.} \propto |V_{tq}^* V_{tb}|^2 - \frac{f_{B_q}^2 \hat{B}_{B_q}}{f_{B_q}^2}$$

 \implies Need accurate theoretical calculation of $f_{B_q}^2 \hat{B}_{B_q}$

B^0 neutral mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ

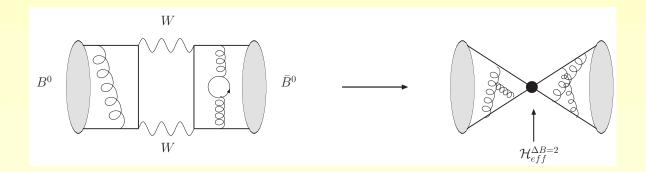
Experimental measurements:

 $\Delta M_s|_{exp.} = 17.77 \pm 0.12 \, ps^{-1}$

 $\Delta \Gamma_s |_{exp.}^{\mathbf{D}\emptyset} = 0.17 \pm 0.09 \pm 0.02 \, ps^{-1}$

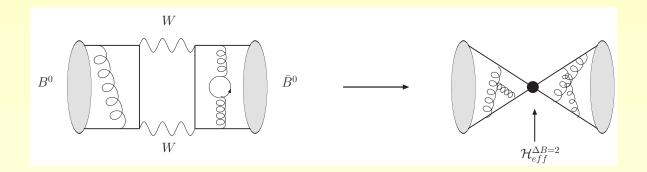
$$\begin{aligned} & \Delta M_d|_{exp.} = 0.507 \text{ average} \\ & \Delta M_d|_{exp.} = 0.507 \pm 0.005 \, ps^{-1} \\ & \Delta \Gamma_s|_{exp.}^{\textbf{CDF}} = 0.076^{+0.059}_{-0.063} \pm 0.006 \, ps^{-1} \end{aligned}$$

• theoretically: In the Standard Model


$$\Delta M_q|_{theor.} \propto |V_{tq}^* V_{tb}|^2 - \frac{f_{B_q}^2 \hat{B}_{B_q}}{f_{B_q}^2}$$

 \implies Need accurate theoretical calculation of $f_{B_q}^2 \hat{B}_{B_q}$

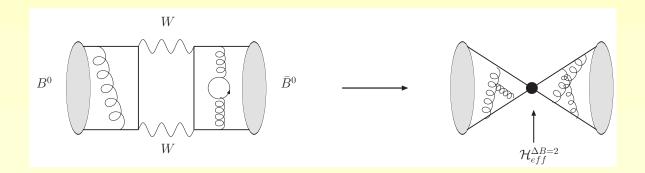
Precise determination of CKM matrix elements


$$\left|\frac{V_{td}}{V_{ts}}\right| = \underbrace{\frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}}_{\xi} \sqrt{\frac{\Delta M_d M_{B_s}}{\Delta M_s M_{B_d}}}$$

* Many uncertainties in the theoretical (lattice) determination cancel totally or partially in the ratio

NP could enter through new particles in box diagrams.

Recent claims of NP effects in $B_s^0 - \bar{B}_s^0$ mixing (Bona et al. (UTfit Col.)) and $B_d^0 - \bar{B}_d^0$ mixing (Lunghi and Soni)


NP could enter through new particles in box diagrams.

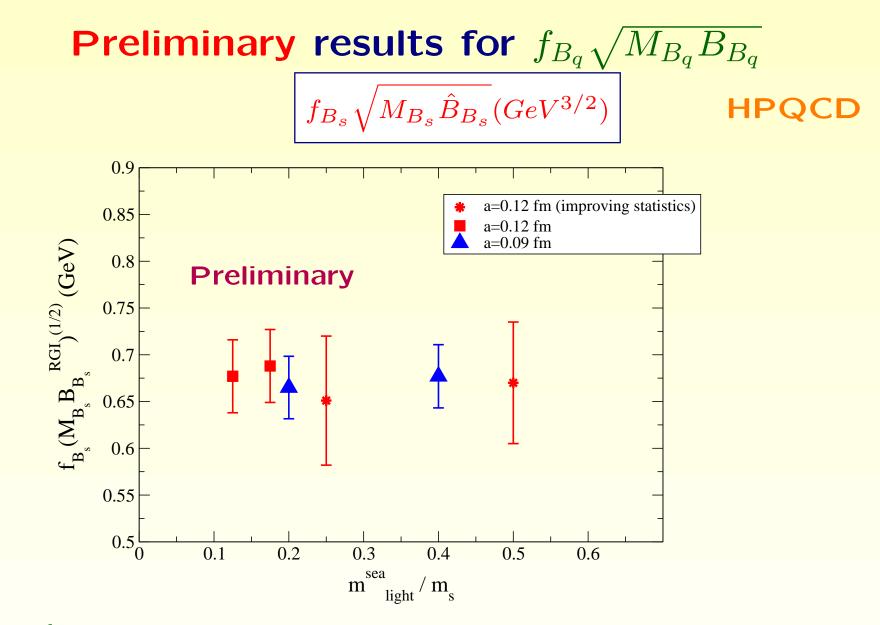
Recent claims of NP effects in $B_s^0 - \bar{B}_s^0$ mixing (Bona et al. (UTfit Col.)) and $B_d^0 - \bar{B}_d^0$ mixing (Lunghi and Soni)

Two unquenched $N_f = 2 + 1$ calculations underway: HPQCD and MILC/FNAL

* Improved staggered (Asqtad) for light quarks and NRQCD (HPQCD) Fermilab action (MILC/FNAL)

* Calculation of all the matrix elements needed to determine $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ .

NP could enter through new particles in box diagrams.

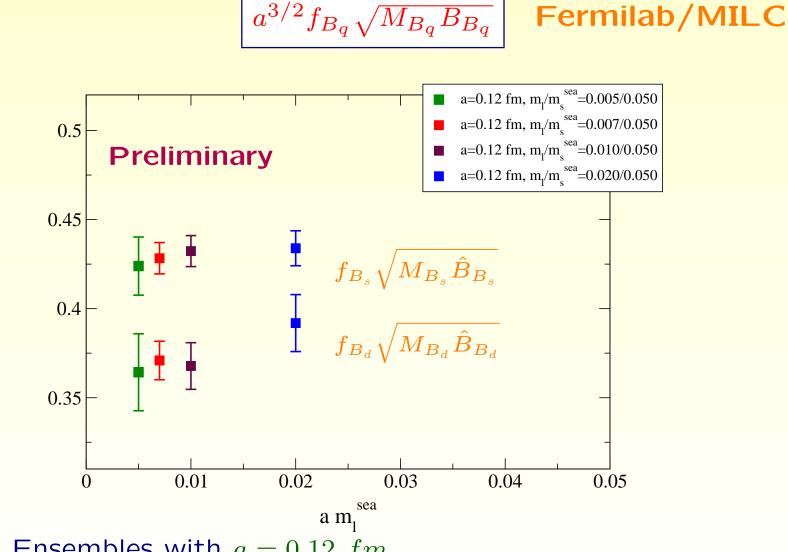

Recent claims of NP effects in $B_s^0 - \bar{B}_s^0$ mixing (Bona et al. (UTfit Col.)) and $B_d^0 - \bar{B}_d^0$ mixing (Lunghi and Soni)

Two unquenched $N_f = 2 + 1$ calculations underway: HPQCD and MILC/FNAL

* Improved staggered (Asqtad) for light quarks and NRQCD (HPQCD) Fermilab action (MILC/FNAL)

* Calculation of all the matrix elements needed to determine $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ .

Current status: working on the chiral extrapolation (NLO+analytic NNLO $S\chi PT$)

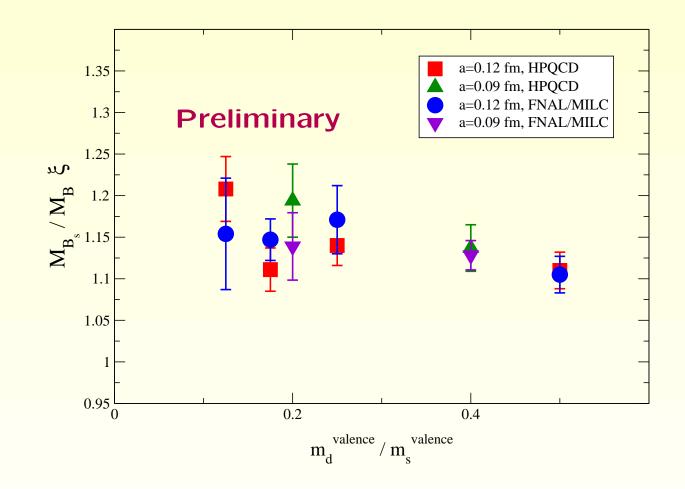

with $m_s^{valence}$ fixed to its physical value and m_s^{sea} very close to it.

statistics+fitting errors $\sim 1-2\%$

Statistics and systematic errors included

Same for $f_{B_d} \sqrt{B_{B_d}}$

Preliminary results for $f_{B_q}\sqrt{M_{B_q}B_{B_q}}$



Example: Ensembles with $a = 0.12 \ fm$.

Full QCD: only statistical errors included

Preliminary results for ξ : Full QCD

 $\xi M_{B_s}/M_{B_d} = (f_{B_s}\sqrt{M_{B_s}B_{B_s}})/(f_{B_d}\sqrt{M_{B_d}B_{B_d}})$

Only statistical errors included.# Only full QCD points included.

Discussion of errors

$$\frac{f_{B_q}\sqrt{B_{B_q}}}{\text{Total (estimate)}} \quad \frac{\xi}{5-7\%} \quad 2-3\%$$

Discussion of errors

	$f_{B_q}\sqrt{B_{B_q}}$	ξ
Total (estimate)	5 - 7%	2 - 3%

Expected improvements in 2 years: smaller lattice spacings, better statistics, development of non-perturbative or partially non-perturbative matching, more accurate inputs $(am_b, a, ...)$.

Reduction of errors by a factor of 1.5-2

Discussion of errors

	$f_{B_q}\sqrt{B_{B_q}}$	ξ
Total (estimate)	5 - 7%	2 - 3%

Expected improvements in 2 years: smaller lattice spacings, better statistics, development of non-perturbative or partially non-perturbative matching, more accurate inputs $(am_b, a, ...)$.

Reduction of errors by a factor of 1.5-2

Underway RBC/UKQCD: C. Albertus et al.

* In an early stage: static limit, $m_{pion} \ge 400 MeV$,...

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

****** With Q_i and \widetilde{Q}_i four-fermion operators

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

****** With Q_i and \widetilde{Q}_i four-fermion operators

- C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
- $\langle \bar{F^0} | Q_i | F^0 \rangle$ calculated on the lattice

SM predictions + BSM contributions + experiment

 \rightarrow constraints on BSM physics

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

****** With Q_i and \widetilde{Q}_i four-fermion operators

- C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
- $\langle \bar{F^0} | Q_i | F^0 \rangle$ calculated on the lattice

SM predictions + BSM contributions + experiment

 \rightarrow constraints on BSM physics

Same programme can be applied for extra operators

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

****** With Q_i and \widetilde{Q}_i four-fermion operators

- C_i, \widetilde{C}_i Wilson coeff. calculated for a particular BSM theory
- $\langle \bar{F^0} | Q_i | F^0 \rangle$ calculated on the lattice

SM predictions + BSM contributions + experiment

 \rightarrow constraints on BSM physics

Same programme can be applied for extra operators

Complete $N_f = 2 + 1$ analysis of $\Delta B = 2$ matrix elements expected from both Fermilab lattice-MILC and HPQCD collaborations in 1-2 years with errors < 10%.

D^0 neutral mixing

See Eugene Golowich's talk

What can lattice calculate?

Long-distance:

Current lattice techniques are inefficient for calculating non-local operators

* Straightforward approach requires a unreasonable increase of computing time to account for non-locality.

What can lattice calculate?

Short-distance: We can calculate the matrix elements involved in the the SM and general BSM analysis on the lattice.

- * Same techniques and effective hamiltonian as for B^0 mixing.
- * This kind of studies can exclude large regions of parameters in many models, constraining BSM building.

See Eugene Golowich's talk

What can lattice calculate?

- # Short-distance: We can calculate the matrix elements involved in the the SM and general BSM analysis on the lattice.
 - * Same techniques and effective hamiltonian as for B^0 mixing.
 - * This kind of studies can exclude large regions of parameters in many models, constraining BSM building.

See Eugene Golowich's talk

* A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed

What can lattice calculate?

- # Short-distance: We can calculate the matrix elements involved in the the SM and general BSM analysis on the lattice.
 - * Same techniques and effective hamiltonian as for B^0 mixing.
 - * This kind of studies can exclude large regions of parameters in many models, constraining BSM building.

See Eugene Golowich's talk

- * A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed
- * **FNAL/MILC** col. plans to calculate these matrix elements in the next 2 years with at least a 10% precission.

5. Conclusions and outlook

Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$

* Precise new results (few percent errors) in Kaon and D sectors.

* **Expected for this year**: precise results in *b* physics: B^0 mixing parameters, decay constants.

5. Conclusions and outlook

Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$

* Precise new results (few percent errors) in Kaon and D sectors.

* **Expected for this year**: precise results in *b* physics: B^0 mixing parameters, decay constants.

Several quark formalisms giving good results and more $N_f = 2 + 1$ configurations being generated \rightarrow important test

5. Conclusions and outlook

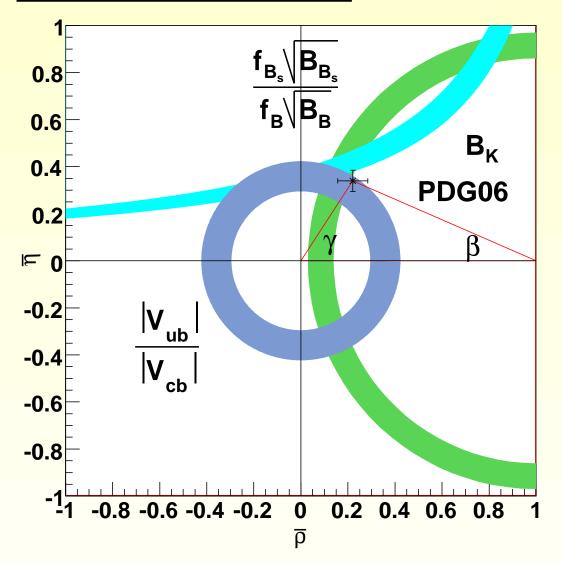
Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$

* Precise new results (few percent errors) in Kaon and D sectors.

* **Expected for this year**: precise results in b physics: B^0 mixing parameters, decay constants.

Several quark formalisms giving good results and more $N_f = 2 + 1$ configurations being generated \rightarrow important test

Prospects for next two years


* Reduction in uncertainties of quantities relevant for CKM physics by a factor of around 2.

* Consistency checks of lattice QCD methods by ...

****** more comparison against experiment.

** comparing lattice calculations using different
fermion formulations.

CKM 2008 LATTICE QCD

* \hat{B}_K from RBC/UKQCD

* $\frac{f_{B_s}\sqrt{B_{B_s}}}{f_B\sqrt{B_B}}$ preliminary result from FNAL/MILC

* $|V_{ub}|$ from Flynn and Nieves, 0705.3553

* $|V_{cb}|$ from Jack Laiho, LAT2007

*
$$|V_{us}|$$
 from $K_{l2}^{exp.} + \underbrace{\frac{f_K}{f_\pi}}_{HPQCD}$

C. Davies & C. McNeile

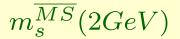
Other Heavy-light semileptonic decays

	Flavour neutral	Unstable	affordable now	in 5 years?
$B \rightarrow \eta l \nu$			possible but	
	v		expensive	
$B \to \eta' l \nu$	\checkmark	\checkmark		\checkmark
$B \to \rho l \nu$		\checkmark		\checkmark
$B \to \omega l \nu$	\checkmark	\checkmark		\checkmark
$B \to Kll$			\checkmark	
$B \to K^* ll$		\checkmark		\checkmark
$B \to \phi l l$	\checkmark	\checkmark		\checkmark
$B \to K^* \gamma$		\checkmark		\checkmark

R. Van de Water

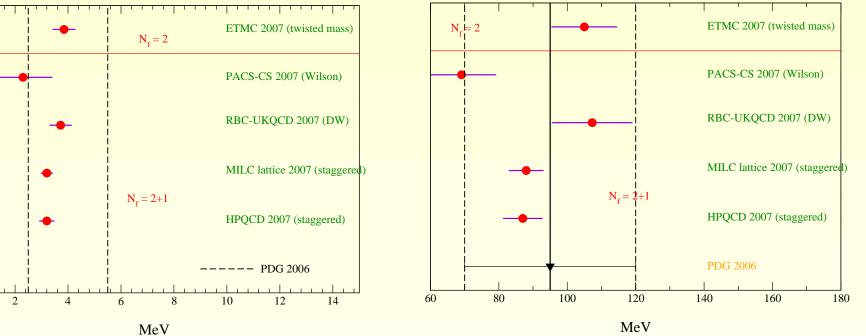
HISQ action

E. Follana et al, HPQCD coll.


- Highly improved staggered action.
- Much improved control of discretization errors.
 - * Highly reduce $\mathcal{O}(a^2 \alpha_s)$ errors (an order of magnitude)
 - * Substantially reduce taste-changing with respect to Asqtad
 - * No tree-level $\mathcal{O}((am)^4)$ at first order in the quark velocity v/c

 \rightarrow accurate results for charm quarks

Error budget for decay constants


	f_{π}	f_K	f_K/f_π	f_D	f_{D_s}	f_{D_s}/f_D
r_1 uncert.	1.4	1.1	0.3	1.4	1.0	0.4
a^2 extrap.	0.2	0.2	0.2	0.6	0.5	0.4
finite volume	0.8	0.4	0.4	0.3	0.1	0.3
$m_{u/s}$ extrap.	0.4	0.3	0.2	0.4	0.3	0.2
statistical	0.5	0.4	0.2	0.7	0.6	0.5
m_s evol.	0.1	0.1	0.1	0.3	0.3	0.3
m_d , QED, etc	0.0	0.0	0.0	0.1	0.0	0.1
Total(%)	1.7	1.3	0.6	1.8	1.3	0.9

Quark masses

 $\hat{m}^{\overline{MS}}(2GeV) = \frac{(m_u + m_d)}{2}$

0

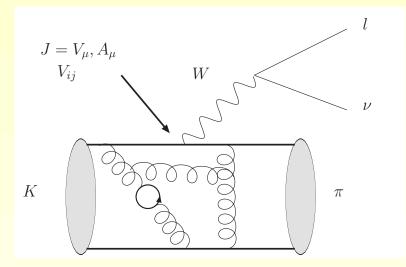
New: Determination of the charm quark mass

HPQCD coll., Chetyrkin, Kühn, Steinhauser & Sturm

m_c extracted from current-current correlators.

* **HISQ** action used to determine moments G_n of charm-quark pseoudoscalar, vector and axial-vector correlators.

$$G_n \equiv \sum_t (t/a)^n G(t)$$


with

$$G(t) \equiv a^{6} \sum_{\vec{x}} (am_{0c})^{2} \langle 0|J(\vec{x},t)J(0,0)|0\rangle$$

* Four-loop results from continuum perturbation theory for the moments.

 $m_c(m_c) = 1.266(16)GeV$ or equivalently $m_c(3GeV) = 0.983(13)GeV$

$K \rightarrow \pi l \nu$: $|V_{us}|$ from Kaon semileptonic decays (K_{l3})

See Federico Mescia's talk

Latest result [RBC/UKQCD (2007)]: $f_{+}^{K\pi}(0) = 0.9644(33)_{stat.}(34)_{q^2,\chi}(14)_a$

* Only one lattice spacing \rightarrow need check disc. errors \rightarrow calculation in a second lattice spacing in progress.

* Further technical improvements to reduce systematic and statistical errors in progress (twisted boundary conditions, stochastic volume averages)

Calculations with other fermion formulations: ETMC (twisted mass), FNAL-MILC (staggered) # Same programme can be applied for extra operators

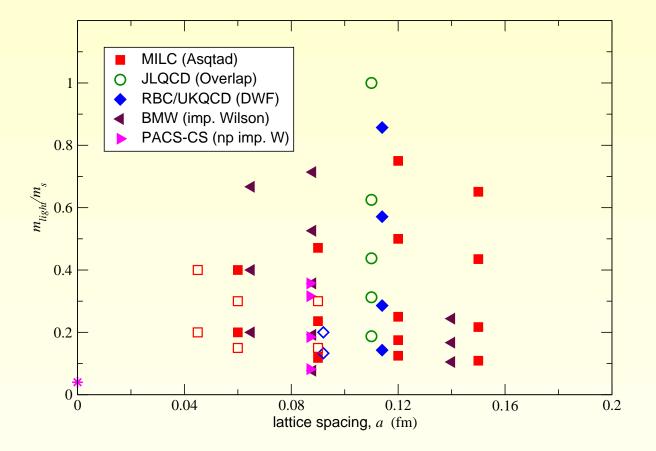
$$\langle \bar{B^{0}}_{d(s)} | Q_{i=1-5} | B^{0}_{d(s)} \rangle$$

• Chiral perturbation theory more complicated (extra free parameters):

$$\langle \overline{B^0_{d(s)}} | Q_{i=1-5} | B^0_{d(s)} \rangle \rightarrow_{chiral} \Gamma_i(1+L) + \underbrace{\Gamma'_i L'}_{i \neq 1} + \text{analytic terms}$$

Same programme can be applied for extra operators

$$\langle \bar{B^{0}}_{d(s)} | Q_{i=1-5} | B^{0}_{d(s)} \rangle$$


• Chiral perturbation theory more complicated (extra free parameters):

$$\langle \overline{B_{d(s)}^{0}} | Q_{i=1-5} | B_{d(s)}^{0} \rangle \rightarrow_{chiral} \Gamma_{i}(1+L) + \underbrace{\Gamma_{i}'L'}_{i \neq 1} + \text{analytic terms}$$

Complete N_{f+1} analysis of $\Delta B = 2$ matrix elements expected from both Fermilab lattice-MILC and HPQCD collaborations in 1-2 years with errors < 10%.

* First results : One-loop renormalization for HPQCD study (E.G,Shigemitsu,Trottier)

$N_f = 2 + 1$ ensembles available or in production

A. El-Khadra, 2007