FPCP 2008 @ NTU, May 5-9, 2008

D⁰ mixing & CPV from Belle & BaBar

Youngjoon Kwon (Yonsei Univ. / Belle) There is an unimpeachable reason to visit the Sistine Chapel, namely to see Michelangleo's frescoes. ... Most of you who have been [there] will have forgotten ... there are wonderful frescoes by other famous masters, namely Botticelli...

... I concede that the fascination of charm decays might not match that of beauty decays any more than Botticelli can match the power of Michelangelo. Of course, Botticelli is still Botticelli, i.e. a first-rate artist, but what about charm?

... I will argue that future charm studies can 5 provide us with first rate lessons of fundamental dynamics... 0

- I. Bigi, "Charm Physics - Like Botticelli in the Sistine Chapel (2001)"

 $\sigma (e^+e^- \rightarrow \text{Hadrons})(nb)$ $\Upsilon(4S)$ $I = 10.58 \qquad 10.62$

Neutral Meson Mixing

"box" diagram: Δm

D0 mixing is dominated by long-distance contributions (both Δm and $\Delta \Gamma$)

Meson	flavors	$\Delta m/\Gamma$	$\Delta\Gamma/2\Gamma$	observed?
K ⁰	sd	0.474	0.997	1958
B^0	b d	0.77	< 1%	1987
B_s^0	bs	27	0.15 ± 0.07	2006
D^0	cu <	< 0.029	$0.011 {\pm} 0.005$	March 2007

D⁰ mixing - the Formalism

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} |D^0\rangle \\ |\bar{D}^0\rangle \end{array} \right) = \left(M - \frac{i}{2}\Gamma \right) \left(\begin{array}{c} |D^0\rangle \\ |\bar{D}^0\rangle \end{array} \right)$$

 $|D_1(t)\rangle = |D_1\rangle e^{-(\Gamma_1/2 + im_1)} \qquad |D^0\rangle = (|D_1\rangle + |D_2\rangle)/2p$ $|D_2(t)\rangle = |D_2\rangle e^{-(\Gamma_2/2 + im_2)} \qquad |\bar{D}^0\rangle = (|D_1\rangle - |D_2\rangle)/2q$

$$\begin{aligned} |D^{0}(t)\rangle &= e^{-(\overline{\Gamma}/2+i\overline{m})t} \left\{ \cosh\left[(...)t\right] |D^{0}\rangle + \frac{q}{p} \sinh\left[(...)t\right] |\overline{D}^{0}\rangle \right\} \\ |\overline{D}^{0}(t)\rangle &= e^{-(\overline{\Gamma}/2+i\overline{m})t} \left\{ \frac{p}{q} \sinh\left[(...)t\right] |D^{0}\rangle + \cosh\left[(...)t\right] |\overline{D}^{0}\rangle \right\} \end{aligned}$$

$$\overline{m} \equiv (m_1 + m_2)/2 \qquad \overline{\Gamma} \equiv (\Gamma_1 + \Gamma_2)/2 \qquad (\dots) = \frac{\Delta\Gamma}{4} + i\frac{\Delta m}{2}$$
$$\Delta m \equiv m_2 - m_1 \qquad \Delta\Gamma \equiv \Gamma_2 - \Gamma_1 \qquad (\dots) = \frac{\Delta\Gamma}{4} + i\frac{\Delta m}{2}$$

D⁰ mixing - the Formalism

For
$$\Delta m \ t \ll 1$$
 and $\Delta \Gamma \ t \ll 1$
$$|\langle f|H|D^{0}(t)\rangle|^{2} \propto e^{-\overline{\Gamma}t} \left\{ 1 + (y\mathcal{R}(\lambda) - x\mathcal{I}(\lambda))\overline{\Gamma}t + |\lambda|^{2}\frac{x^{2} + y^{2}}{4}(\overline{\Gamma}t)^{2} \right\}$$
$$x \equiv \frac{\Delta m}{\overline{\Gamma}} \quad y \equiv \frac{\Delta\Gamma}{2\overline{\Gamma}} \quad \lambda \equiv \frac{q}{p}\frac{\mathcal{A}(\overline{D}^{0} \to f)}{\mathcal{A}(D^{0} \to f)}$$
$$x \equiv \frac{\Delta m}{p} \quad y \equiv \frac{\Delta\Gamma}{2\overline{\Gamma}} \quad \lambda \equiv \frac{q}{p}\frac{\mathcal{A}(\overline{D}^{0} \to f)}{\mathcal{A}(D^{0} \to f)}$$
$$x \leq y \sim \frac{10^{-6} - 10^{-3} \text{ (short distance)}}{10^{-3} - 10^{-2} \text{ (long distance)}}$$

D⁰ mixing - key exp'tal features

p(D*) > ~2.5 GeV to eliminate D⁰'s from B decays

D⁰ mixing - exp'tal results

∃ various measurements using

• 0712.2249

- Lifetime difference
 - PRL 98, 211803
- Hadronic D⁰ decays
 - PRL 99, 131803 PRL 98, 211802
- Semileptonic D⁰ decays
 - 0802.2952
 PRD 76,014018

- Study D^0 mixing by apparent lifetime difference for $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ and $D^0 \rightarrow K^- \pi^+$
- Approximately, the effective lifetimes are:

$$\varphi_{f} \equiv \arg(\lambda)$$

$$\tau_{hh}^{+} = \tau_{K\pi} / \left[1 + \left| \frac{q}{p} \right| \left(y \cos \varphi_{f} - x \sin \varphi_{f} \right) \right]$$

$$\tau_{hh}^{-} = \tau_{K\pi} / \left[1 + \left| \frac{p}{q} \right| \left(y \cos \varphi_{f} + x \sin \varphi_{f} \right) \right]$$

$$y_{CP} = \frac{\tau_{k^{\pm}\pi^{\mp}}}{\langle \tau_{h^{+}h^{-}} \rangle} - 1 \quad \underbrace{\mathsf{CP}}_{\text{conserved}} \quad y_{CP} = y = \Delta\Gamma/2\overline{\Gamma}$$
$$A_{\Gamma} = \frac{\tau_{hh}^{+} - \tau_{hh}^{-}}{\tau_{hh}^{+} + \tau_{hh}^{-}} \quad \Delta Y = \frac{\tau_{k^{\pm}\pi^{\mp}}}{\langle \tau_{h^{+}h^{-}} \rangle} A_{\Gamma} \quad \underbrace{\mathsf{CP}}_{\text{conserved}} \quad 0$$

PRL 98, 211803 (2007)

- Background events may contain effects differing in each mode
- Event selection is chosen for high purity
- e.g. require $|\delta m q_0| < 0.8 \text{ MeV/c}^2$
 - $q_0 = 145.4 \text{ MeV/c}^2$: nominal value for $D^{*+} D^0$ mass difference (δm)

Sample	Size	Purity (%)
$K^{-}\pi^{+}$	730,880	99.9
K^-K^+	69,696	99.6
$\pi^{-}\pi^{+}$	30,679	98.0

0712.2249

D⁰ mixing - by lifetime difference

-||

D⁰ mixing - by lifetime difference

	$\sigma_{y_{CP}}$ (%)		$\sigma_{\Delta Y}$ (%)			
Systematic	K^-K^+	$\pi^{-}\pi^{+}$	Av.	K^-K^+	$\pi^{-}\pi^{+}$	Av.
Signal model	0.130	0.059	0.085	0.072	0.265	0.062
Charm bkg.	0.062	0.037	0.043	0.001	0.002	0.001
Combinatoric bkg.	0.019	0.142	0.045	0.001	0.005	0.002
Selection criteria	0.068	0.178	0.046	0.083	0.172	0.011
Detector model	0.064	0.080	0.064	0.054	0.040	0.054
Quadrature sum	0.172	0.251	0.132	0.122	0.318	0.083

- Syst. error on the average can be smaller than the individual ones because of anti-correlations.
- Combined with the previous analysis (of untagged sample, 91 fb⁻¹), improve stat. error for y_{CP} :

 $y_{CP} = (1.03 \pm 0.33 \pm 0.19)\%$

cf. $y_{CP} = (1.24 \pm 0.39 \pm 0.13)\%$ (this analysis only)

D⁰ mixing - by $D^0(t) \rightarrow K^+ \pi^-$

Master formula

$$|\langle f|H|D^{0}(t)\rangle|^{2} \propto e^{-\overline{\Gamma}t} \left\{ 1 + \left(y\mathcal{R}(\lambda) - x\mathcal{I}(\lambda)\right)\overline{\Gamma}t + |\lambda|^{2}\frac{x^{2} + y^{2}}{4}(\overline{\Gamma}t)^{2} \right\}$$

$$\int_{D^{0}} \frac{DCS}{k^{+}\pi^{-}} \text{ for } f = K^{+}\pi^{-} \text{ (wrong-sign), } \lambda = \frac{q}{p} \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}} = \left|\frac{q}{p}\right| \sqrt{R_{D}} e^{i(\phi+\delta)}$$

$$\delta : \text{ strong phase b/w DCS \& CF}$$

$$\propto e^{-\overline{\Gamma}t} \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} \left[y \cos(\phi + \delta) - x \sin(\phi + \delta) \right] (\overline{\Gamma}t) + \left| \frac{q}{p} \right|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma}t)^2 \right\}$$

$$= e^{-\overline{\Gamma}t} \left\{ R_D + \sqrt{R_D} (y \cos \delta - x \sin \delta) (\overline{\Gamma}t) + \frac{(x^2 + y^2)}{4} (\overline{\Gamma}t)^2 \right\} \qquad \begin{pmatrix} |q/p| = 1 \\ \phi = 0 \end{pmatrix}$$

$$= e^{-\overline{\Gamma}t} \left\{ R_D + \sqrt{R_D} y' (\overline{\Gamma}t) + \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma}t)^2 \right\}$$

$$x' \equiv x \cos \delta + y \sin \delta \qquad y' \equiv y \cos \delta - x \sin \delta$$

PRL 98, 211802 (2007)

FIG. 1. (a) $m_{K\pi}$ for WS candidates with 0.1445 $< \Delta m < 0.1465 \text{ GeV}/c^2$ and (b) Δm for WS candidates with 1.843 $< m_{K\pi} < 1.883 \text{ GeV}/c^2$. The fitted PDFs are overlaid.

D⁰ mixing - by
$$D^0(t) \rightarrow K_S^0 \pi^+ \pi^-$$

Master formula

$$\langle K_S^0 \pi^+ \pi^- | H | D^0(t) \rangle = \frac{1}{2p} \left(\langle K_S^0 \pi^+ \pi^- | H | D_1(t) \rangle + \langle K_S^0 \pi^+ \pi^- | H | D_1(t) \rangle \right)$$

= $A_1 e^{-(\Gamma_1/2 + im_1)t} + A_2 e^{-(\Gamma_2/2 + im_2)t}$

$$\begin{aligned} |\langle K_{S}^{0}\pi^{+}\pi^{-}|H|D^{0}(t)\rangle|^{2} &= |A_{1}|^{2}e^{-\overline{\Gamma}(1+y)t} + |A_{2}|^{2}e^{-\overline{\Gamma}(1-y)t} \\ &+ 2e^{-\overline{\Gamma}t}\left[\mathcal{R}(A_{1}A_{2}^{*})\cos xt - \mathcal{I}(A_{1}A_{2}^{*})\sin xt\right] \end{aligned}$$

- The amplitudes A_j are functions of Dalitz plot (DP) variables $m_+^2 = m^2(K_S^0\pi^+)$ and $m_-^2 = m^2(K_S^0\pi^-)$ and account for intermediate states.
- The amplitude as a ftn. of m²₊ and m²₋ is expressed as a sum of quasi-2-body amplitudes and a const. non-res. term.
- The *t*-dependent decay amplitude is fitted over the DP and the mixing param's. are extracted.

PRL 99, 131803 (2007)

PRL 99, 131803 (2007)

D⁰ mixing - by $D^0(t) \rightarrow K_S^0 \pi^+ \pi^-$

$$\mathcal{L} = \prod_{i=1}^{N_{D^0}} \sum_j f_j(m_{K_S^0 \pi \pi, i}, Q_i) \mathcal{P}_j(m_{-,i}^2, m_{+,i}^2, t_i)$$

Determine x, y, by maximizing $\ln \mathcal{L} + \ln \mathcal{L}$

Fit case	Parameter	Fit result	95% C.L. interval
No	<i>x</i> (%)	$0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14}$	(0.0, 1.6)
CPV	y(%)	$0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08}$	(-0.34, 0.96)
CPV	x(%)	$0.81 \pm 0.30^{+0.10+0.09}_{-0.07-0.16}$	x < 1.6
	y(%)	$0.37 \pm 0.25^{+0.07+0.07}_{-0.13-0.08}$	y < 1.04
	q/p	$0.86^{+0.30+0.06}_{-0.29-0.03}\pm0.08$	• • •
	$\arg(q/p)(^{\circ})$	$-14^{+16+5+2}_{-18-3-4}$	• • •

CL. for no mixing = 2.6%

0802.2952

PRD accepted D^0 mixing - by $D^0 \rightarrow K^{(*)}$

semileptonic decays, with no DCS contribution, gives direct access to mixing rate R_M

 P(D⁰ → D
 *D*⁰ → X⁺ℓ⁻ν_ℓ) ∝ R_M t² e^{-Γt}

$$R_M = \frac{\int_0^\infty dt \ \mathcal{P}(D^0 \to \overline{D}^0 \to X^+ \ell^- \overline{\nu}_\ell)}{\int_0^\infty dt \ \mathcal{P}(D^0 \to X^- \ell^+ \nu_\ell)} \approx \frac{x^2 + y^2}{2}$$

• select $D^0 \to K^- \ell^+ \nu$ ($\ell = e, \mu$) from $D^{*+} \to D^0 \pi^+$

• search for signals in $\Delta M \equiv M(\pi_s K \ell \nu) - M(K \ell \nu)$

D⁰ mixing - by $D^0 \rightarrow K^{(*)}\ell^+$

 t_{xy} : proper decay time in xy plane normalized to τ_{D^0}

0802.2952

 $R_M = (1.3 \pm 2.2 \pm 2.0) \times 10^{-4}$ < 6.1 × 10⁻⁴ @ 90% CL

PRD 76, 014018 (2007)

D⁰ mixing - by $D^0 \rightarrow K^{(*)}\ell^+\nu$

- full reconstruction of the opposite side ("double-tagging")
- neural-network selection based on p_{π} , p_{Ke} , thrust axis, opening angle
- "signal yield" by counting ; backg'd estimate comes from MC

D⁰ mixing - by $D^0 \rightarrow K^{(*)}\ell^+\nu$

CP violation in D⁰

- time-integrated asymmetry: $A_{CP} = \frac{\Gamma(D^0 \to f) \Gamma(D^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})}$
 - in decays
 - in mixing
 - in interference b/w mixing & decays
- for $f = K^- K^+$, $\pi^- \pi^+$: $A_{CP} \sim \mathcal{O}(10^{-5} 10^{-4})$
- for $f = \pi^- \pi^+ \pi^0$: $A_{CP} \sim \mathcal{O}(10^{-3})$
- Principle of measurements
 - $D^{*+} \to D^0 \pi_s^+$ - $N_{D^0}^{\text{reco}} = N_{D^{*+}}^{\text{prod}} \cdot \mathcal{B}(D^{*+} \to D^0 \pi^+) \cdot \mathcal{B}(D^0 \to f) \cdot \epsilon_f \cdot \epsilon_{\pi_s}$
 - contributions to measured asymmetry: $A^{\text{meas}} = A_{FB} + A_{CP} + A_{\epsilon}^{\pi}$

D⁰ CPV - exp'tal results

∃ several searches for CPV using
✓ In singly Cabibbo-suppressed modes
● preliminary
● PRL 100, 061803

In 3-body modes

0801.2439
0802.4035

PRD 100, 061803 (2008)

CPV in D⁰ $\rightarrow K^+K^-$, $\pi^+\pi^-$

$$A_{\rm corr}^{\rm rec}(\cos\theta^*) = A_{FB}^{D^*} + A_{CP}^{h^+h^-}$$

$$A_{CP} = \frac{A_{\text{corr}}^{\text{rec}}(\cos\theta^*) + A_{\text{corr}}^{\text{rec}}(-\cos\theta^*)}{2}$$
$$A_{FB} = \frac{A_{\text{corr}}^{\text{rec}}(\cos\theta^*) - A_{\text{corr}}^{\text{rec}}(-\cos\theta^*)}{2}$$

preliminary

$$A_{\rm corr}^{\rm rec}(\cos\theta^*) = A_{FB}^{D^*} + A_{CP}^{h^+h^-}$$

0.8

0.8

CPV in $D^0 \to K^+ K^-, \pi^+ \pi^-$

 $A_{CP}^{KK} = (-0.41 \pm 0.30 \pm 0.11)\% \qquad A_{CP}^{KK} = (0.00 \pm 0.34 \pm 0.13)\%$ $A_{CP}^{\pi\pi} = (+0.41 \pm 0.52 \pm 0.12)\% \qquad A_{CP}^{\pi\pi} = (-0.24 \pm 0.52 \pm 0.22)\%$

Summary of systematic uncertainties of A_{CP} .			
	Source	$D^0 \to K^+ K^-$	$D^0 \to \pi^+ \pi^-$
	Signal counting	0.04%	0.06%
	Slow pion corrections	0.10%	0.10%
	A_{CP} extraction	0.03%	0.04%
	Quadrature sum	0.11%	0.12%

Syst. err. will improve w/ more D* sample

CPV in 3-body SCS D⁰ decays

In singly Cabibbo-suppressed 3-body D⁰ modes

• $D^0 \to \pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$

What to look for

- differences in D^0 and \overline{D}^0 Dalitz plots in 2-d.
- differences in angular moments
- Intermediate states (model-dep.)
- phase-space-integrated asymmety

 $D^0 \rightarrow \pi^+ \pi^- \pi^0$

1.7

 $D^0 \rightarrow K^- \pi^+ \pi^0$

🗯 other bkgd

misrec. signal

1.8

1.9

misrec. signal $D^0 \rightarrow K^- \pi^+ \pi^0$ other bkgd

5000

1.6

a)

2 Μ(π⁺π⁻π⁰)

b)

CPV in 3-body SCS D⁰ decays

- • Fit ${\cal M}(D^0)$ for signal & backg'd yield
- $D^{*+} \rightarrow D^0 \pi^+$ for flavor-tagging and backg'd suppression
- Fill separate Dalitz histograms
 - events from $M(D^0)$ signal region for data
 - simulated backg'd w/ the normaliz'n fixed from the $M(D^0)$ fit

CPV in 3-body SCS D⁰ decays

- effi'cy-corrected signal yield separately for D^0 and \bar{D}^0
- detector-bias in tracking is the main source of syst. err.
- A_{FB} effect is also studied with $D^0 \to K^+ K^-$, $\pi^+ \pi^-$ events

32

CPV in 3-body SCS D⁰ decays

• a direct comparison of the effi'cy-corrected, backg'd-subtracted Dalitz plot for D^0 and \overline{D}^0

$$\Delta = (n_{\overline{D}^{0}} - R \cdot n_{D^{0}}) / \sqrt{\sigma_{n_{\overline{D}^{0}}}^{2} + R^{2} \cdot \sigma_{n_{D^{0}}}^{2}} \qquad \chi^{2} / \nu = \frac{1}{\nu} \sum_{i=1}^{\infty} \Delta_{i}^{2}$$

$$R = 0.983 \pm 0.006$$

$$R = 0.983 \pm 0.006$$

$$T = 1 \text{ in the simulated ensemble}$$

$$(Data)$$

$$1.020 (\pi\pi\pi), 1.056 (KK\pi)$$

$$(Data)$$

$$1.020 (\pi\pi\pi), 1.056 (KK\pi)$$

$$CL. \text{ for No CPV}$$

$$0.328 (\pi\pi\pi), 0.166 (KK\pi)$$

$$S^{2} = \frac{1}{\nu} \sum_{i=1}^{\infty} \Delta_{i}^{2}$$

$$(Data)$$

CPV in 3-body SCS D⁰ decays

- model-dependent asymmetry in Dalitz plot amplitudes : \lesssim (a few)% and consistent with 0
- phase-space-integrated asymmetry

• any A_{FB} is cancelled in $|\cos \theta_{D^0}^{CM}|$

$$A_{\rm CP} = \begin{cases} (-0.28 \pm 0.34 \pm 0.19)\% & (\pi\pi\pi) \\ (0.62 \pm 1.24 \pm 0.28)\% & (KK\pi) \end{cases}$$

CPV in 3-body SCS D⁰ decays

Updated mixing/CPV parameters

Summary

- Firm and consistent evidences for D⁰ mixing
 - Systematic efforts are going on to measure D⁰ mixing parameters in various ways
- No evidence for CPV in D⁰
 - Perhaps, not much bigger than O(1%) level
 - Improving the syst. uncertainties shall be important