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Charm Mixing thru the Years

1970’s
Experiment – Discovery of Charm  
Theory – Correlated D’s via e+e- Production

1980’s
SM Theory – Short distance D-mixing
SM Theory – Long distance D-mixing

1990’s
Fixed-target Experiments (E687, E791)
FOCUS result yCP ~ 3.4%

2000’s
B-factory Experiments (BaBar, Belle, CLEO) 
Dalitz studies (CLEO, Belle) 

2007 (Wow!)
‘Measurement’ of D-mixing (BaBar, Belle, CLEO, CDF)

2008 
Time for reflection?  Futures planning ?



D0 Mixing (2007)

HFAG Charm Subgroup values:

xD = 

yD =

The above xD is a 2.4 σ effect.

PRL discovery criteria are:
a) ‘Observation’: >5σ
b) ‘Evidence’: 3σ-to-5σ
c) ‘Measurement’: <3σ
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D0 Mixing (2008)

HFAG Group (Schwartz hep-ex/0803.0082v2) 

Contours for y(%) vs x(%).

1] x differs from 0 by 3.0σ,

2] y differs from 0 by 4.1σ,

3] The point x=y=0 excluded by 6.7σ.



HFAG Global Fits (2008)

No CPV

x(%)

y(%)

δ(o) ← Strong phase!

CPV-allowed (95% C.L.)

x(%) 0.39 → 1.48

y(%) 0.41 → 1.13

δ(o) -6.3 → 44.6

Theories with x~y~0.1% untenable?
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The Strong Phase δ

Defn: δ = relative phase between D0→K+π-

and D0→K-π+.

Origin of ‘Wrong Sign’ K+π- in D0 Decays: Via 
DCS decays and via mixing.

x’ and y’: x’ = x cosδ + y sinδ
y’ = y cosδ - x sinδ

SU(3) invariant world: δ = 0.



Recent Example: CDF

CDF (Phys. Rev. Lett. 100 (2008) 1218020)

Extract x’, y’, and RD via fit to data of

There is no fundamental physics in δ -- it is a  
detail of strong interactions.  δ is actually an
irritant, a nuisance.
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δ and Resonance Model

Falk, Nir, Petrov JHEP 9912 (1999) 019

Consider D0 → Kπ modes (DCS and CF).

Influence of near-by resonance?  

For example, try K*(1945).

DCS:  A = AT + AR eiϕ

CF: B = BT + BR eiϕ D        K*

Regain δ = 0:   AT/AR  = BT/BR

Sign of δ not determined.
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δ and Resonance Model (cont)

A Measure of SU(3) Breaking

Evaluation in 1999: R = 1.58 ± 0.49 

Is SU(3) breaking large? Thus δ large?
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δ and Resonance Model (cont)

A Measure of SU(3) Breaking

Evaluation in 2008: R = 1.28 ± 0.05 

So δ not ‘very large’.
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δ and Factorization Model

D-N Gao, Phys Lett B645 (2007) 59

Study 7 D→Kπ modes

A by-product is estimation of δ

Quark diagram topologies (A ≅ -0.4 E)

Factorization

Monopole form factors

SU(3) breaking mainly in fK, fπ

Find:  |δ| ≅ 10o → 19o



Measuring δ

D. Asner and W. Sun [PR D73 (2006) 034024]

D0 pair has P=C=-1  
Define CP|D1>=-|D1> CP|D2>=+|D2>

Quantum correlations and D1,D2 production

To get sensitivity to δ, include CP eigenstates S±
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Quark-level Analysis (‘SD’)

Operator Product Expansion
QCD Perturbation Theory
Expansion in ms/mc

Evaluation of B-parameters

Hadron-level Analysis (‘LD’)

Focus on yD

Direct Involvement of Data/Models
Role of SU(3) Breaking
Possible Large Effect

D-mixing in the Standard Model



Charm Mixing and the OPE*

Georgi [PL B297 (1992) 353]

Expand in increasing operator dimension:

+                           +  . . .

D=6: Two local 4F operators

D=9:  Fifteen local 6F operators
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Dimension Six

Ignore b quark.  Sum over
intermediate states. 

Expand in powers of 
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Dimension Six



EG & Petrov [PLB 625 (2005) 53]

Expand in αs:

x y Comment
αs

0 (LO) z2 z3 x(LO) >> y(LO) 

αs
1 (NLO) z2 z2 x(NLO) > y(NLO) 

Main  LO + NLO Result:  x  ≅ y ≈ 10-6

Status of Dimension Six



Quark-level Summary

Triple Expansion:

1. Operator dimensions  d = 6, 9, 12, …

2. QCD factors αs/4π

3. Mass ratio z = (ms/mc)2

Largest Claimed Effect ~ O(0.1%):

Bigi & Uraltsev, [NP B592 (2001)  92]

Evidently too small.

SD Summary



Insert hadronic int. states:

Require matrix elements: 

1. Comprehensive model for D decays:  
Naples Group [PRD 51 (1995) 3478]

Find yD ~ 10-3  

Evidently too small!
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2. Use data

(a) Early Work UMass [PRD 33 (1985) 178]
Choose n = P+P-

Back then, SU(3) breaking seemed large.
If so, ‘yD large’.

(b) Recent Work FGLNP [PRD 69 (2004) 114021]

SU(3) breaking ‘small’ (2nd order).
But 4P sector cannot cancel. 
’yD ~ 10-2 possible’.
But uncontrollable uncertainties,

LD (ΔΓ) cont.
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New Physics and xD

EG, Hewett, Pakvasa, Petrov [PR D76 (2007) 095009]

As the LHC era begins, many extras possible: 

• Extra gauge bosons
(LR models, etc)                                   

• Extra scalars
(Multi-Higgs models, etc)

• Extra fermions
(Little Higgs, etc)

• Extra dimensions
(Universal extra dimensions, etc)

• Extra global symmetries
(SUSY, etc)

GHPP study 21 NP models.



Fourth Generation
Q=-1/3 Singlet Quark
Q=+2/3 Singlet Quark
Little Higgs

Generic Z’
Family Symmetries
Left-Right Symmetries
Alternate L-R Symmetries

Vector Leptoquark Bosons
Fl-Cons Two-Higgs Doublet
Fl- Change Neutral Higgs I
Fl-Change Neutral Higgs II 
Scalar Leptoquark Bosons
Higgless
Universal Extra Dimensions
Split Fermion
Warped Geometries
Minimal SUSY Standard

SUSY Alignment
SUSY with RPV
Split SUSY

|Vub’ Vcb’| mb’ < 0.5 GeV
s2 ms < 0.27 GeV
|λuc|  < 2.4 10-4

Tree: Same as Q=-1/3 Singlet Qk
Box: Can reach observed xD
MZ’/C > 2.2 103 TeV
m1/f > 1.2 103 TeV
No Constraint
MR > 1.2 TeV (mD1 = 0.5 TeV)
(Δm/mD1)/MR > 0.4 TeV-1

MVLQ > 55 (λPP/0.1) TeV
No Constraint
mH/C > 2.4 103 TeV
mH/|Δuc| > 600 GeV
See RPV SUSY
M > 100 TeV
No Constraint
M/Δy| >600 GeV
M1 > 3.5 TeV
|(δu

12)LR,LR|  < 0.035 
|(δu

12)LL,RR| < 0.25
M > 2 TeV
λ’12kλ’11k/m < 1.8 10-4/100 GeV
No Constraint

Results of xD Analysis



Ineffective Models: 

Four yield no constraints:
1. Split supersymmetry
2. Universal Extra Dimensions
3. Left-right symmetric
4. FC two-Higgs doublet

Ineffective because NP mass scale too large,
severe cancellations operative, etc.  

Constrainable Models: 

There are 17 which can, in principle,  
exceed the observed xD.  For these, we 
can get constraints on masses and mixing 
parameters.  

NP Constraints



Is D-mixing NP or SM?

Observed mixing at roughly 1% level.  
Could be NP (many NP models large enough).
Could be SM (but prediction might never be
precise [lattice-QCD someday?]).

If both SM & NP, relative phase unknown.

SM

NP

Will lack of a clean separation between SM and
NP remain a fact of life for D-mixing studies?



A Particular NP Model



RPV SUSY (cont)

Feynman Diagrams for D-mixing:

Effective Hamiltonian:

Constrain Parameters: i2ki1k λλ ~~ ′′



RPV SUSY (cont)

Graph xD vs RPV parameters:

Constraints tighten with improved limits on xD.

At present, get 
GeV100

m101.8λλ d3
i2ki1k

~~~ −≤′′



RPV SUSY (cont)

But the same RPV parameters occur in rare D
decays such as D0 → μ+μ- and D+ → π+μ+μ-.  

Burdman, EG, Hewett, Pakvasa,  [PR D66 (2002) 014009]

Current PDG limit:

Br[D0 → μ+μ-] < 1.3 10-6

which implies (preliminary)

See that: D-mixing and rare decays both
interesting, roughly competitive at present,   
and rare decay sensitivity can be improved.

GeV100
m107.λλ d3

22k21k

~~~ −≤′′



Comment on NP Searches 

My Choice: Discovery & Precision

1] Discovery at LHC

If NP revealed then: 

a) Specific model identified, or
b) Situation unclear 

2] Precision at Super-factory and/or LHC-B

Study Rare Modes: 

a) Check/verify LHC finding
b) Clarification via pattern of rare effects



CPV Strategies 

Later this morning (I trust).
CHARM 2007: A. Petrov, ‘CPV in Charm Decay’.
Basic Formalism: Z-Z Xing,  PR D55 (1997) 196

TWO RECENT PAPERS

1] Super B-factory: Li, Yang  PR D74 (2006) 094016

Probe D-mixing and CPV using coherent 
events from         decays.

Why? Boost factor in rest frame (≅ 2.33)
allows precise determination of proper time 
interval t between the two D decays,

Treat symmetric and asymmetric Υ(1S) factories 
Various CPV asymmetries discussed.  Estimate 
107 → 108 D-pairs per year.

00 DD
Υ(1S)
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CPV Strategies (cont) 

2] D → K*K Decays: Xing, Zhou PR D75 (2007) 114006

Run at ψ(3770) and ψ(4140) at τ-charm factory.

Note C[ψ(3770)] = -1, C[ψ(4140)] = +1 

Define:

Γ++
C = Γ(K*+K-,K*+K-)C          Γ--

C = Γ(K*-K+,K*-K+)C

Γ+-
C = Γ(K*+K-,K*-K+)C         Γ-+

C = Γ(K*-K+,K*+K-)C

“Favorable to measure decays of correlated D’s
into (K*+K-,K*+K-), etc states on the ψ(4140).”

Ex: Probe CPV at ψ(4140)

CPV Observable 
−+

+

−−
+

++
+ −
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CPV Theory

Grossman, Kagan, Nir  [PR D75 (2007) 036008]

Consider SCS:

with q = s,d 

Final States:

CP eigenstates: K+K-, π+π-, ϕπ0, etc.
Non-CP eigenstates: KK*, ρπ, etc.

Asymmetry Possibilities: 

‘Current’ (as of 2006) limits at O(10-2).
SM ‘not much larger than O(10-4)’.
Thus NP window of opportunity!

qquc →



Some Results for yD

Asymmetry Mode Value

D0 → K+K-

D0 → π+π-

D0 → K- π+π0

D+→KSπ+

D+ → K+ K-π+

.0015 ± .0034

.0002 ± .0051

.0016 ± .0089

.0086 ± .009

.0059 ± .0075

D0 → K+K,π+π- .0012 ± .0025

CPV Asymmetries (HFAG 1/31/08)

2Γ
ΔΓ

2τ
Δτ



CPV Theory (cont)

Time-integrated Asymmetries:

Ex:                                      

Arising from decay, mixing, interference  

Regarding NP Models

1] Some loop amplitudes can give af
d ~ O(10-2)

Tree amplitudes cannot (D-mixing constraints)
2] Some SUSY models can give af

d ~ O(10-2)
Models with Minimal Flavor Violation cannot.

3] Only SCS decays probe gluonic penguins. Large 
af

d  seen in SCS unlikely for CD, DCS decays.

….plus more….
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Experiment on D-mixing:
Can now claim ‘evidence’ for xD,yD and 
‘observation’ of D-Mixing.  At long last!
Mixing data starts to rule out some theoretical
descriptions.  Progress on ‘strong phase’ δ. 

SM Theory on D-mixing:
Quarks (SD):
To date, find xD ≅ yD ≅ 10-6 Tiny! But triple
expansion very slowly convergent.
Hadrons (LD): 
Might be that xD , yD ~ 10-2 but hadronic physics
messy as always.

NP Theory on D-mixing:
D-mixing values yield many NP constraints. 
Rare D decays also of interest.

CPV Studies:
Charm CPV now at forefront of research.  Window 
for detecting New Physics CPV asymmetries exists
but is starting to narrow.

Concluding Remarks
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