

Reach of future nonaccelerator neutrino efforts

Reyco Henning

U. of North Carolina

and Triangle Universities National Laboratory North Carolina, USA

May 9, 2008

- Current knowledge of neutrino properties
- Non-accelerator based experimental reaches:
 - Neutrinoless double beta-decay
 - Direct mass measurements
 - Limits from cosmology
 - Reactor neutrinos
 - Solar neutrinos
 - Cosmic-rays neutrinos
 - Others
- Conclusion & Open Issues

Neutrino Flavor Mixing

Compelling evidence propagating neutrinos undergo flavor oscillations.

In 3-neutrino mixing model:

Mass to flavor relationship described by PMNS neutrino mixing matrix with 5 parameters:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$c_{ij} = \cos \theta_{ij} \ s_{ij} = \sin \theta_{ij}$$
Majorana Phases

May 9, 2008

Neutrino Masses

Absolute masses weakly constrained. Relative mass-squared differences known. Three possible scenarios: Quasi-degenerate, also:

Current Best Values

(PDG 2007)

Parameter	Value	Method
$sin^2(2\theta_{12})$	0.86+0.03-0.04	Solar+ KamLAND
$sin^2(2\theta_{23})$	>0.92	Atmospheric v
$sin^2(2\theta_{13})$	<0.19	Reactor (CHOOZ)
$ \Delta m^2_{32} $	1.9-3.0x10 ⁻³ eV ²	Super-K+MINOS
$ \Delta m^2_{21} $	8.0±0.3x10 ⁻⁵ eV ²	Solar+ KamLAND
α_1, α_2	?	DBD?
δ	?	Future LBL?

Neutrinoless double-beta decay $(0\nu\beta\beta)$

$$^{Z}A \Rightarrow {}^{Z+2}A + 2e^{-2}$$

Violates Total Lepton Number Conservation

Existence implies Neutrino is Majorana fermion*

Also ECEC, e^+e^+ , EC e^+

 $2\upsilon\beta\beta$: Observed 2nd order weak process.

$$^{Z}A \implies {}^{Z+2}A + 2e^{-} + 2\overline{v}_{e}$$

*Schechter et al, Phys. Rev. D25, 2951 (1982)

May 9, 2008

Majorana vs. Dirac

?=

Ettore

Majorana

DBD implies Majorana mass term in Lagrangian that mixes v and $v\overline{.}$ No good QM # to distinguish between v and \overline{v} .

Experimental evidence consistent with both Majorana or Dirac neutrinos.

Verification difficult due to small neutrino masses.

Paul Dirac

The observation of neutrinoless double-beta decay is the only practical way to show that the neutrino is Majorana.

May 9, 2008

$0\nu\beta\beta$ Rate and Neutrino Mass

$$T_{1/2}^{0\nu} \Big]^{-1} = G^{0\nu} (E_0, Z) \Big| \langle m_{\beta\beta} \rangle \Big|^2 \Big| M^{0\nu} \Big|^2$$

 $T_{1/2}^{0\nu}$: Half-life

 $G^{0\nu}$: Phase Space (Known)

 $M^{0\nu}$: Nuclear Matrix Element (large uncertainty)

 $|\langle m_{\beta\beta} \rangle| = \left| \sum_{i} |U_{ei}|^2 m_{v_i} e^{i\alpha_i} \right|$ Effective Majorana electron neutrino mass*

- $\circ 0 v \beta \beta$ decay can probe **absolute** neutrino mass scale and mixing.
- Current neutrino experiments measure mass squared differences: Δm^2 . * Assumes v_m exchange

Upcoming Experimental Program and Reach

- Experiments require extreme reduction in radioactive backgrounds (underground sites, materials, analysis, etc...)
- Current generation:
 - 10s of kg of enriched isotope
 - $T_{1/2} \sim 10^{26} 10^{27}$ years
 - $m_{\scriptscriptstyle \beta\beta} \sim 100 \; {\rm meV}$
 - ~\$10-20M
- Next Generation (~10 years from now):
 - ~ 1 tonne of enriched isotope
 - $T_{1/2} \sim 10^{28}$ years
 - $m_{\beta\beta} \sim 20 \text{meV}$ (atmospheric mass-scale)
 - ~\$100-200 M

Majorana?

Selected Current and Future Experiments Many different technologies...

Cryogenic Bolometry	CUORE/Cuoricino- ¹³⁰ Te
Scintillation	CAMEO- ¹¹⁶ Cd, CANDLES- ⁴⁸ Ca, EXO- ¹³⁶ Xe, SNO+ ¹⁵⁰ Nd XMASS- ¹³⁶ Xe
Ionization	COBRA-CdTe, GERDA- ⁷⁶ Ge (LA MAJORANA- ⁷⁶ Ge
Time Projection and Tracking	MOON- ¹⁰⁰ Mo, Nemo/Super-Nemo (many), HPXeTPC- ¹³⁶ Xe, DCBA- ¹⁵⁰ Nd

Possible Discovery Requires Confirmation with Different Isotope(s)

May 9, 2008

Direct Mass Measurements

- Tritium beta decay endpoint measurements
- Current: $m_{\beta} < 2eV$
- New Generation: KATRIN (Karlsruhe Tritium Neutrino Experiment)
 - Massive spectrometer
 - Sensitivity to $m_{\beta} = 0.2 \text{eV}$
 - Anticipated Start in 2009, 5 year run.
- Cryogenic bolometers promising future alternative.

$$\langle m_{\beta} \rangle = \sum_{i} \left| U_{ei} \right|^2 m_i^2$$

12

KATRIN Main Spectrometer (world's largest beer keg)

Indirect Limits from Cosmology

- Relic Big Bang Neutrinos
 - T = 1.7 K
 - $-\rho$ ~ 300 cm⁻³
- $m_1 + m_2 + m_3 < 0.17 \text{eV}$
 - JCAP 0610:014,2006. Recent CMB, large scale structure, Lyman- α forest, and SN1a data.
- Model-dependent
- Possible improvement with better understanding of systematics.
- Factor of 2 improvement probes inverted hierarchy.

Combined Mass Limits

Solar Neutrinos Gd Borexino KamLAND **CLEAN SNO** LENS Cl Super-K First evidence of 1012 oscillations Bahcall-Serenelli 2005 1011 ±1% pp→ Constrain θ_{12} via $v_e \rightarrow v_x$ Neutrino Spectrum $(\pm 1\sigma)$ 1010 Measurements of ⁸B ⁷Be→±10.5% 10 9 flux described by Large 10⁸ ⁷lux (cm⁻² s⁻¹) peb Mixing Angle with 10 7 matter (MSW) effects. +16%10 Lower energy (<2 MeV) ²Be⊣ $\pm 10.5\%$ 10 5 solar neutrinos 10 4 insensitive to MSW hep→±16% 10 3 effect. 10 ² Probe vacuum oscillations 10 1 0.1 10 1 Neutrino Energy in MeV

Henning, FPCP 08, Taipei

Solar Neutrino Status

- SNO will present results of final NCD phase soon.
- Borexino and KamLANDsolar running
 - Measure ⁷Be flux
 - Some published early results
 - Verify Solar model
- CLEAN, LENS, others in proposal phase.
 - Measure pp flux, the dominant source of neutrinos from sun.
 - Verify solar model
 - 10 year timescale

6 meters

12 meters

Other Probes

- Cosmic-rays:
 - Atmospheric: Verify LBL results
 - UHECR: Astrophysical Applications
- Coherent neutrino scattering:
 - Unobserved SM process.
 - Magnetic dipole moment Probe for NP.
- Supernovae (prompt and relic)
- Geoneutrinos
- Neutrino-induced nuclear decays: zero-threshold
- Neutron-antineutron oscillations

Conclusion and Current Projects

- Current emphasis on
 - Neutrinoless DBD
 - θ_{13}
- Probe degenerate mass scale with current generation of DBD experiments.
- Improve direct mass measurements to 0.2eV.
- Cosmology a sensitive probe.
- Verify solar neutrino results.

Ονββ-decay and Majorana Neutrinos

Schechter et al, Phys. Rev. D25, 2951 (1982)

Majorana nature verification *independent* of process that mediates $0\nu\beta\beta$ decay!

A Recent Claim

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198

(2004). KKDC used five ⁷⁶Ge crystals, with a total of 10.96 kg of mass, and 71 kg-years of data.

 $T_{1/2} = 1.2 \text{ x } 10^{25} \text{ y}$ 0.24 < $m_v < 0.58 \text{ eV}$ (3 sigma)

Background level depends on intensity fit to other peaks.

A More Recent Claim 6.8 sigma

Neural Net Analysis

May 9, 2008

Current Limits ~40 years of work

Isotope	Half-life Limit (y)	l <m<sub>v>l limit (eV)</m<sub>
Ca-48	>9.5×10 ²¹ (76%)	<8.3
Ge-76	>1.9×10 ²⁵	<0.35
	>1.6×10 ²⁵	< 0.33 - 1.35
Se-82	$>2.7 \times 10^{22} (68\%)$	<5
Mo-100	>5.5×10 ²²	<2.1
Cd-116	>7×10 ²²	<2.6
Te-128,130	From ratio of $T_{1/2}s$	<1.1 – 1.5
Te-128	>7.7×10 ²⁴	<1.1 – 1.5
Te-130	>1.4×10 ²³	<1.1 - 2.6
Xe-136	>4.4×10 ²³	<1.8 - 5.2
Nd-150	>1.2×10 ²¹	<3

Background Identification

- Majorana is background limited.
- Goal: 1 event / ton-year in 4 keV ROI
- Backgrounds:
 - Compton scattered gammas, surface alphas.
 - Natural isotope chains: ²³²Th, ²³⁵U, ²³⁸U, Rn
 - Cosmic Rays:
 - Activation at surface creates ⁶⁸Ge, ⁶⁰Co.
 - Hard neutrons from cosmic rays in rock and shield.
 - $2\nu\beta\beta$ -decays.
- Need factor ~100 reduction over what has been demonstrated.
- Monte Carlo estimates of acceptable levels