Y.Obayashi Kamioka Observatory, ICRR, Univ. of Tokyo The FPCP2008 Conference on flavor physics and CP violation May 09, 2008 Taipei

T2K Tokai-Kamioka Long Baseline Neutrino Oscillation Experiment and Future CP Measurement

Super-Kamiokande

Reach of future accelerator and reactor neutrino efforts

J-PARC

°2007 Google

T2K (Tokai to Kamioka) experiment

- High intensity v_{μ} beam (~10²xK2K) from J-PARC
- Precise meas. of v_{μ} disapp. $\rightarrow \theta_{23}$, Δm_{23}^2 sin²2 θ_{23} >0.92, Δm_{23}^2 =(2~3)x10⁻³eV²
- **Discovery of** v_e app. \rightarrow Determine θ_{13}

current knowledge $\sin^2 2\theta_{23} > 0.92$, $\Delta m_{23}^2 = (2 \sim 3) \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{13} < 0.15 @ \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$

T2K Collaboration

~400 members from 12 Countries

Japan, US, Canada, France, UK, Switzerland, Poland, Korea, Russia, Spain, Italy, Germany

T2K Detector Setup

Muon monitors @ ~120m

 Fast (spill-by-spill) monitoring of neutrino beam direction/intensity

Near detectors @280m

- On-axis detectors
 - Monitor Neutrino Intensity and Direction (profile)
- Off-axis detectors
 - Measure Flux/Spectrum/ve component/Cross-sections to understand Signal/Background systematics
- Far detector @ 295km
 - Super-Kamiokande (22.5kt FV)

Oscillation Parameter fit

Input: sin²2θ₂₃=1.00 Δm²= 2.7 x10⁻³ eV²

Y. Obayashi, May09, 2008, FPCP2008@Taipei

7

• mis-reconstructed π^0 event

8

Sensitivity of v_e appearance search

of events in Evrec=0.35~0.85 [GeV], 5yr

Status of J-PARC

MR commissioning May, Jun, Dec~ in 2008

50 GeV MR

Neutrino

1

Apr. 2009 -

The Hadron Hall

3-50BT

3GeV RCS

Linac

Materials & Life Science Experimental Facility

> Linac succeeded in 181 MeV acceleration in Jan. 2007

3 GeV RCS beam commissioning succeeded in Nov. 2007

兄 181MeV 達成 J-PARC リニアック 1924年

Neutrino Facility in J-PARC

Construction: Apr. 2004 ~ Mar. 2009 (5yrs)

Primary proton beam line

Tunnel completed (Dec. 2006)

26(/28) mags delivered 11(/14) doubles installed

Superconducting Arc section

- 28 combined function magnets
- D2.6T,Q18.6T/m, L=3.3m
- Normal conducting Preparation section and Final focusing (FF) section
 - Installation in progress

Target and horns

Graphite target (26mmøx90cm) Day-1 target delivered Helium gas cooling test successful

Long term test successful @ 320kA Horn1,3 for Day-1 delivered

280m Near Detectors

- On-Axis Detector INGRID
 - Monitor beam direction, flux and stability
 - Start operation from Apr. 2009
- Off-Axis Detectors
 - Measure Spectrum, Cross-sections, ve components
 - FGD, TPC, Ecal, ...
 - In UA1 Magnet
 - Arrived in Apr., Under assembling in Apr – Jun 2008)
 - Operation Starts within 2009 (High Intensity Run)

Far detector: Super-Kamiokande

- 50kton(Fid.Vol=22.5kton)
 Water Cherenkov detector
- L=295km from J-PARC
- Started operation in 1996
- Fully recovered in 2006 from damage @2001 accident.

- Electronics / Online Full Upgrade in Sep. 2008
 - Record ALL PMT hits

Summary of T2K

- T2K Tokai-Kamioka Long Baseline Neutrino Oscillation Experiment starts on Apr. 2009
- Primary Goal:
 - Explore v_e appearance >10x of CHOOZ limit
 - $\circ~$ Precise measurement of ν_{μ} disappearance
 - $\delta(\sin^2 2\theta_{23}) \sim 0.01, \delta(\Delta m_{23}^2) \sim < 1 \times 10^{-4}$
- Start Plan:
 - Neutrino Beam: Fast extraction Starts on Apr. 2009
 - On-Axis detector: Starts on Apr. 2009
 - Off-Axis detector: Starts on Fall 2009
 - Far detector: Upgraded and ready by Apr. 2009

δ CP measurement after discovery of θ_{13}

an example of Expected Signals

Assume large statistics here by Gigantic detector (540kt WC) and Beam power upgrade(1.7MW)

 ν_{μ}

 v_{μ} 2.2yr

 $\overline{v_{\mu}}$ 7.8yr

1049

1050

579

1493

δ=π/2

 $(\sin^2 2\theta_{13} = 0.03)$

354

443

26

610

379

241

δ=0

20

10

415

Neutrino goes NOT Only to Kamioka >Mton Water Ch. In the Sea?

Summary

- T2K Tokai-Kamioka Long Baseline Neutrino Oscillation Experiment starts on Apr. 2009
- Primary Goal:
 - Explore v_e appearance >10x of CHOOZ limit
 - $\circ~$ Precise measurement of ν_{μ} disappearance
 - $\delta(\sin^2 2\theta_{23}) \sim 0.01, \delta(\Delta m_{23}^2) \sim < 1 \times 10^{-4}$
- Start Plan:
 - Neutrino Beam: Fast extraction Starts on Apr. 2009
 - On-Axis detector: Starts on Apr. 2009
 - Off-Axis detector: Starts on Fall 2009
 - Far detector: Upgraded and ready by Apr. 2009
- After ve appearance discovery, CP physics in neutrino is very much Interesting

Suppliments

Physics Introduction

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 v_{α} : Weak eigenstates, $\alpha = e, \mu, \tau$
 v_i : Mass eigenstates $\Delta m_{ij}^2 = m_i^2 - m_j^2$
{NMS Matrix} $S{ij} = \sin\theta_{ij}, c_{ij} = \cos\theta_{ij}$
 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Neutrino Oscillation Probability

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \left\langle v_{\beta}(t) \middle| v_{\alpha}(0) \right\rangle \right|^{2} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \cdot \sin^{2}\phi_{ij} \mp 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \cdot \sin 2\phi_{ij}$$

$$\phi_{ij} = \Delta m_{ij}^{2} (\underline{L}) 4\underline{E}$$

I wo neutrino case when

 $\Delta m_{12} \leq \Delta m_{23} \approx \Delta m_{13}$

 $V\mu$ disappearance probability

$$P_{\nu\mu\to\nu x} \approx 1 - \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \cdot \sin^2 \left(1.27 \Delta m_{23}^2 L / E_{\nu} \right)$$

Ve appearance probability in $V\mu$ beam

$$P_{\nu\mu\to\nu e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(1.27\Delta m_{23}^2 L/E_{\nu}\right)$$

Current Knowledge

(SK atm v, K2K, MINOS)

- $\Delta m_{23}^2 \sim \Delta m_{13}^2 = (2 3) \times 10^{-3} eV^2$ $\sin^2 2\theta_{23} > 0.92$
- $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$ sin²2 $\theta_{12} \sim 0.86$ (KamLAND + solar v (SK + SNO))
- sin²2θ₁₃ < 0.15@ Δ m² =2.5 × 10⁻³ eV² (CHOOZ / Palo Verde)
 < 0.26 (0.13x2) at Δ m² =2.8×10⁻³ eV² (K2K)
- δ_{CP} : UNKNOWN

$$P_{\nu\alpha\to\nu\beta} \approx \sin^2 2\theta_{\alpha\beta} \cdot \sin^2 (1.27\Delta m_{\alpha\beta}^2 L/E_{\nu})$$

The derived ranges for the six parameters at 1σ (3σ) are:

Sensitivity with Systematics

Flux Normalization Non-qe/qe ratio of interaction σ Energy scale of Far detector Spectrum shape Spectrum width

5%)

5%)

2%)

5%)

(20%)

CERN-SPS NA61 (SHINE) experiment Measure #/K prod from Graphite target to predict

- Near and far energy spectra (<2~3%)
- Near to far spectrum extrapolation (<2~3%)
- v_e contami. (from K, μ) (<2~3%)
- First data taking in Oct., 2007 (1month)
 - Beam: 30GeV proton
 - Thin target (2cm^t 4%int):~ 500k int.
 - Replica target (90cm, 80%int): ~180k int.

Measurements in 2008 planned

Schedule of beam commissioning

MR schedule

Dec. 2007-April 2008 :Off beam commissioning

March-April 2008: Modification of the PPS (to add the interlock system of MR&MLF) and government inspection.

May 2008: MR (and MLF)beam commissioning starts.

July -Nov. 2008 : Installation of slow extraction devices, some fast extraction devices and neutrino beamline components.

Expected Sensitivity

Assumed systematics

- signal efficiency 5%
- $\circ \nu\mu, \overline{\nu\mu} BG 5\%$
- beam ve, ve BG 5%
- $\circ \overline{\nu \mu} / \nu \mu$ 5%
- These errors are still challenging but are essentially needed to be small for the CP measurement.

Intensity upgrade plan of the first three years

			JFY 2007					JFY 2008									JFY2009												
		8	9 10 11	12 1	2	3	4	5	6	7	8	9 1	0 1	1 12	1	2	3	4	5	6	7	8	9	10	11	12	1 :	2	3
LINAC	Output power <for kw<="" rcs:="" td=""><td></td><td>5.4<0.2</td><td>25></td><td></td><td></td><td></td><td>5.4</td><td>4<(</td><td>0.6></td><td>. 5</td><td>5.4</td><td><1.</td><td>26</td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td><1</td><td>8></td><td></td><td></td><td></td><td></td><td></td></for>		5.4<0.2	25>				5.4	4<(0.6>	. 5	5.4	<1.	26				15					<1	8>					
	Peak current mA		5-25																										
	Pulse width nsec		50-100					50)-2	50																			
	Beam Rep. pps		single	- 25				si	ngl	le -	25																		
RCS	Output power kW		4					4			4	4		10	00			25	0				(2	80)				
(MLF)	Typical Beam Rep. pps		single	- 25				si	ngl	le -	2 :	sin	gle	- 2	5														
	No. of Bunches		1-2					1.	- 2			1- 3	2	1	- 2	ļ		1-	2				2						
	Particles /bunch for MLF		4.2E11					4.	2E	11	8	8.5	E11	4.	2E	12		1.1	E1	13			1.3	2E1	13				
	Particles /bunch for MR													(4	.28	11)	(4.	2E	11)								
	Particles /ring for MLF													8.	3E	12		2.1	E1	13									
	Particles /ring for MR													(8	.38	E11)	(4.	2E	11)								
MR	Output power kW							0.	12					1.	2			3.6	;				10	0					
	Energy GeV							3						30)														
	Typical Beam Rep. pps							0.3	3														0.3	3 -	0.5				
	No. of Bunches							1 -	- 2					1	- 2	2		6					6						
	Particles /bunch							4.	2E	11				4.	2E	11		4.2	2E1	11			1.3	2E1	13				
	Particles /ring							8.	3E	11				8.	3E	11		2.5	E1	12			7.2	2E1	13				
HD	Output power kW													1.	2														
	Energy GeV													30)														
	Particles /burst													8.	3E	11													
NU	Output power kW																	3.6	;				10	0					
	Energy GeV																	30											
	Particles /burst																	2.5	E	12			7.	2E1	13				

- Requirement from T2K: 2.0E20 protons on the v target by the 2010 summer shutdown.

- Guideline :Beam loss at each extraction point < 25 -100 W to keep residual radiation level < 1mSv/h.

T2K Discovery Potential on $v_{\mu} \rightarrow v_{e}$ as a Function of Integrated Power

Y. Obayashi, May09, 2008, FPCP2008@Taipei 33