

Future b and c experiment with hadron machine

Tomasz Skwarnicki Representing LHCb collaboration

- Flavor physics offers many loop processes to study (FCNC, mixing, CPV):
 - Some spectacular successes in the past (existence of charm quark, 3rd generation, top quark mass)
 - Very existence of flavor sector with puzzling hierarchy hints NP
- Advancing precision of flavor experiments (statistics & systematics) and advancing collision energy for direct NP searches are complementary:
 - Both must continue

LHCb upgrade FPCP'08 Tomasz Skwarnicki

3

Future (beyond first round of LHC experiments)

- Physics beyond Standard Model will have or will not have been observed in direct searches at LHC at a TeV energy scale
- In either case flavor physics experiments must carry on:
 - To reveal flavor structure of NP observed in direct searches
 - To probe for NP in multi-TeV range if no NP observed in direct searches
- Future b and c experiments:
 - At e⁺e⁻ collisions: Super-KEKB, Super-B (previous talks)
 - At hadronic collisions: LHCb upgrade (this talk)

Existing LHCb detector

• Forward geometry:

HCh

- 10¹² bb/2 fb⁻¹ produced
- both B hadrons in acceptance for tagging
- excellent proper time resolution (40 fs)
- Space for RICH detectors (K/π separation 2-100 GeV)
- Adjustable luminosity:
 - (2-5) x 10³² cm⁻²s⁻¹ i.e.
 factor 50-20 below peak luminosity of LHC to limit:
 - number of interactions per bunch crossings
 - radiation dose
 - data rates in trigger
- Hardware & software triggers:
 - Hardware L0: high Pt μ , charged hadron, and e/ γ triggers (10 MHz \rightarrow 1 MHz)
 - Software High Level Triggers (large CPU farm):
 - HLT1: confirm L0 seeds with the tracking detectors, add Impact Parameter cuts
 - HLT2: full event reconstruction and off-line like selections to reduce rate to 2 kHz

LHCb physics program

- By 2013 LHCb expects to accumulate 10 fb⁻¹. Allows for wide range of analyses, with high sensitivity to new physics.
- Some highlights:

HCb

- Observation of $\mathsf{B}_s{\rightarrow}\mu\mu$ at SM value
- B_s mixing phase measured with uncertainty of 0.01 rad (SM expectation: -0.036±0.003)
- $B \rightarrow K^* \mu \mu$: '0-point' of FB asymmetry measured to 7%
- Precise determination of $\boldsymbol{\gamma}$
 - tree-level value known to ~2°
 - NP-sensitive measurements with Penguin modes (eg. $B \rightarrow hh$)
- Search for NP CPV in gluonic penguins, e.g. $B_s \rightarrow \phi \phi$
- D^0 mixing measurements & searches for charm CPV to 10^{-3}

Why LHCb upgrade?

 Many important measurements will be statistics limited in 10 fb⁻¹

7

- Aim at ~100 fb⁻¹ for a significant gain in sensitivity
- LHCb statistics is not limited by the LHC luminosity but by the detector itself:
 - Radiation damage (spec was <20 fb⁻¹)
 - No gain from increased luminosity for channels relying on L0 hadron trigger
 - Significant problems with spill-over in straw tracking stations

- Instantaneous luminosity to be increased by a factor of 10
 - Bunch crossing rate with at least 1 visible ppinteraction up by a factor of 3
 - Number of pp-interactions per non-empty bunch crossing up by a factor of 2 (4 including spillover)
- This luminosity upgrade does not require any changes to the LHC. It is also compatible with SLHC proposed for ATLAS & CMS.

HCh

Upgraded detector – radiation hardness

- Present vertex detector (VELO) has long R & φ strips and is not particularly radiation hard.
 - We are planning to replace it after ~6 fb⁻¹ even without an upgrade.
- Short strips (strixels) or pixels are needed.
 - This will also help pattern recognition and enable stand-alone momentum measurement if magnetic field is generated in the vertex detector area (presently no field, would help moving IP requirements to the lowest trigger level)
 - Number of different technologies are being considered. The R&D program has started.
 - Other possible improvements: removing RF foil (50% of present X₀ budget), moving VELO closer to the beam (presently at 8mm which is conservative)
- Possibly replace inner region of EM calorimeter:
 - With the same technology (shashlik) but smaller segmentation
 - With rad hard crystals (would improve energy resolution)
- Possibly may also have to replace MWPC in the inner region of the first muon superlayer
 - by triple GEM-detectors (already in use in parts of the detector)

HCb

HCD

Upgraded detector – trigger & FE

- Present Front End & trigger electronics:
 - limit readout from detectors not included in L0 trigger (all tracking detectors, RICHes) to 1MHz
 - limit L0 decision time to a few μ s
- As the luminosity is increased by a factor of 10, the trigger • must become more selective
 - visible bb cross-section alone will reach ~0.4 MHz (total ~30 Mhz)
 - the present L0 trigger scheme breaks down.
 - The efficiency (especially for modes with no muons) decreases wiping out the luminosity gain.
 - more selective trigger requires use of tracking information early on and longer decision time (latency):
 - On top of sustaining higher luminosities can improve trigger efficiency for hadronic modes by a factor of 2
- Solution is to readout all detectors synchronously at 40 MHz (bunch crossing frequency) and make all trigger decisions in the CPU farm: Thun munum
 - All FE electronics must be replaced!
 - Requires new photo-detectors in RICH detectors, since present HPDs cannot be readout at this rate

- Tracking stations behind the magnet consists of straw tubes (OT) and silicon strips in the inner part (IT)
- Spill over increases occupancy in OT by a factor of 4 with significant degradation on tracking performance (lower efficiency, higher ghost rate)
- Possible solutions:
 - Faster gas to reduce spill over
 - Increase IT area, decrease OT area
 - Replace straws by new technology (Scintillating Fiber tracker?)

- Since RICH photo-detectors must be replaced, contemplate (optional) more drastic redesign of hadron ID system:
 - Remove RICH1 significantly reducing dead material in the tracking system (improves momentum resolution, e/γ detection)
 - RICH2 then must also be replaced to cover lower particle momenta:
 - Its aperture must be increased by enlarging & moving closer to the interaction point
 - Requires integration with the tracking devices

Physics with the upgraded LHCb detector Mixing phases

- No dedicated physics studies yet; all numbers come from results of LHCb 10 fb⁻¹ simulations scaled by factor of 20 for hadronic channels, and 10 for channels with muons.
- CPV phase in $B_s \rightarrow J/\psi \phi$:
 - Mixing and decay phases are both small in SM.
 - Good place to look for NP in mixing diagram.
 - Large value would exclude MFV hypothesis.
 - LHCb will hopefully see beyond-SM phase.
 - Upgraded LHCb will make precise measurement.

	LHCb		Upgraded LHCb	ϕ_s - SM
Luminosity	2 fb ⁻¹	10 fb ⁻¹	100 fb ⁻¹	expectation
$S(B_s \rightarrow J/\psi \phi)$	±0.02	±0.01	±0.003	-0.036±0.003

- Similar precision in CPV phase in $B_d \rightarrow J/\psi K_s$ (sin2 β).
 - Vast statistics will permit understanding of systematics (e.g. from tagging).
 - Mixing phase is large in SM.
 - Not likely to reveal NP by itself.
 - Providing constraints for interpretation of other measurement.

- Decay channels mediated by penguin diagrams can peak up additional phases from NP in the loops
- Hint of disagreement between mixing phase measured in trees and loops with the present data (Belle & BaBar):
 - $S(B_d \rightarrow \phi K_s) S(B_d \rightarrow J/\psi K_s) = 0.29 \pm 0.17 \text{ (expect ≈ 0 in SM, since each $\approx sin2$}\beta)$
 - Sensitivity of (LHCb) upgraded LHCb with (10fb⁻¹) 100 fb⁻¹: $S(B_d \rightarrow \phi K_s)$ to (±0.1) ±0.025
- Even better to look for extra phases of penguin diagrams in B_s sector, since the mixing phase is small:
 - Golden mode: $B_s \rightarrow \phi \phi$:
 - In SM mixing and decay phase (both small) approximately cancel each other, thus expect S(B_s→ φφ) ≈ 0.
 - (LHCb) upgraded LHCb with (10fb⁻¹) 100 fb⁻¹ can measure: $S(B_s \rightarrow \phi \phi)$ to (±0.05) ±0.01

- $B_s \rightarrow \phi \gamma$ is particularly sensitive to right-handed currents:
 - (LHCb) upgraded LHCb sensitivity: $S(B_s \rightarrow \phi \gamma)$ to (±0.05) ±0.02
 - Additional sensitivity via hyperbolic-sine term in decay width: $A^{\Delta\Gamma} \sinh(\Delta\Gamma t/2)$:
 - $\Delta\Gamma$ Negligible in B_d decays
 - (LHCb) upgraded LHCb sensitivity: $A^{\Delta\Gamma}$ to (±0.1) ±0.03
 - Reach the level of theoretical uncertainties with the upgraded detector

16

Measurements of γ

- Determined via tree-level processes (B[±]→ D⁰ K[±], B_s→ D_s[∓]K[±]), thus serves as another "standard candle" for constraints on unitarity triangle parameters.
- LHCb with 10 fb⁻¹ will measure γ to ±2.5°.
- Very large statistics with upgraded LHCb (examples):
 - − 620,000 $B_s \rightarrow D_s^{\mp}K^{\pm}$ (interference via B_s mixing, very clean way to measure $\gamma + \phi_s$)
 - $500,000 \text{ B}^{\pm} \rightarrow \text{D}^0 (\text{K}_{\text{s}}\pi\pi) \text{ K}^{\pm}$
 - 5,600,000 $B^{\pm} \rightarrow D^{0} (K\pi) K^{\pm}$
- Statistical uncertainty in several modes below 1°
- Systematic uncertainties largely uncorrelated, and often can be measured in control samples
- Upgraded LHCb will allow γ determination to < ±1°

LHCb upgrade FPCP'08 Tomasz Skwarnicki $B_{s,(d)} \rightarrow \mu\mu$ \bar{s} t W^{+} W^{\pm} W^{\pm} \bar{t} W^{\pm} \bar{t} \bar{t} \bar

- Loop decays very sensitive to many extensions of SM.
- LHCb will hopefully detect beyond-SM signal in $B_s \rightarrow \mu\mu$
- To lower experimental error below the theoretical uncertainty on SM prediction (10%), upgraded LHCb will be needed

Expected limits from CDF,D0 with ~6 fb⁻¹: BR < ~(2-3) x 10⁻⁸ (see Donati, Tsybychev) LHCb 10 fb⁻¹

17

- With upgraded LHCb it should also be possible to observe $B_d\!\to\mu\mu$ at SM level (~1 x10^{-10})

 $B_d \rightarrow K^{*0} \mu \mu$

- Sensitive to NP in small tanβ range.
- Zero point of forward-backward asymmetry in $M_{\mu\mu}^2$ will be measured to (±0.3) ±0.07 GeV² with (LHCb-10 fb⁻¹) upgraded LHCb-100 fb⁻¹.
- The latter exceeds present theoretical uncertainty on SM predictions.

- Additional sensitivity via transversity amplitudes (analysis of full angular correlation)
- Measurement of $(|A_{\perp}| |A_{\parallel}|) / (|A_{\perp}| + |A_{\parallel}|)$ for theoretically preferred region $(M_{\mu\mu}^2 < 6 \text{ GeV}^2)$ to $(\pm 0.2) \pm 0.06$ for (LHCb) upgraded LHCb vs theoretical error of ± 0.003
- We will also study $B_d\!\to\!\rho(\omega)\mu\mu$ and $B_s\!\to\!\phi\mu\mu,\,B_s\!\to\!K^{*0}\mu\mu$

- From wrong sign $K\pi$ measure:
 - x'^{2} to $\pm 2x10^{-5}$
 - y' to ±3x10⁻⁴
- From KK measure:
 - y_{CP} to ±1.5x10⁻⁴

Other selected topics

- Lepton flavor violating decay $\tau \rightarrow \mu \mu \mu$.
 - BR($\tau \rightarrow \mu \mu \mu$) sensitivity 2x10⁻⁹ (preliminary estimate)

20

- Sensitivity to long-lived (vertex detector is 1m long) NP particles decaying to bb.
 - For example, "hidden valley" model Higgs $\rightarrow \pi^0_v$ (bb) π^0_v (bb) where π^0_v are new v-flavored particles

HCh

Conclusions

- LHCb about to take over the baton of flavor physics.
 - 10 fb⁻¹ expected by ~2013: wealth of exciting discoveries and measurements in store.
- Require upgraded flavor experiment to capitalize on what is learnt at early LHC, and to exploit fully enormous b production cross-section and access to B_s sector:
 - Updated readout, trigger and vertex detector will be critical in upgrade.
 - Significant changes needed elsewhere (e.g. RICH photodetectors)
 - Experiment compatible with, but not reliant on, machine upgrade.
 - General physics capabilities clear; details under study.
- EOI recently approved by the collaboration and submitted to LHCC (CERN/LHCC/2008-007, April 22, 2008)
 - Aim at upgraded LHCb detector to start taking data in 2015
 - -100 fb^{-1} collected by 2020
 - Starting detector R&D