ATLAS Results and Prospects

LHC Symposium PSROC Meeting, Taipei, Taiwan 26 January 2011 Dave Charlton University of Birmingham

> LHC Status ATLAS Status Physics Results Prospects

LHC Parameters

 $\mathcal{L} \propto rac{N_1 N_2 n_b}{\sigma^2}$

Key parameters: N_i = bunch intensity n_b = number of bunches σ = colliding beam size

Des	ign	Achieved in 2010
√s	= 14 TeV	7 TeV
N,	= 1.1 x 10 ¹¹ p/bunch	1.2 x 10 ¹¹ p/bunch
n	= 2808	up to 368 with collisions
Δť	= 25 ns	150 ns (75ns for tests)
L	$= 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	2.1 x 10 ³² cm ⁻² s ⁻¹ (2010 goal: 10 ³²)
		Dave Charlton, 26 January 2011

30 March 2010: Preparing to collide 3.5 TeV beams...

OP Vistars - Mozilla Firefox

Ele Edit View Uister Dackberger Tack Display

Collision Event at 7 TeV

Frewarks

Luminosity in 2010

beam setup 40%

Heavy Ion Operation

Nov 4th: switched from protons to ²⁰⁸Pb⁸²⁺

Circulating beam quickly established: identical magnetic machine.

First 24 hours

ATLAS Status

Toroids: ∫Bdl=1-7.5 Tm

Tracking $|\eta| < 2.5$

Optical Links

Optical readout links for pixel+SCT, and LAr+Tile calorimeter provided by Academia Sinica ATLAS team

→ Suen Hou talk

One SCT barrel, before mounting detector modules, showing opto-harnesses

iter and the states of

SCT barrel test setup

Data Collected: 2010

Heavy Ion Data

Day in 2010

Pb-Pb Collision Event

8 ET/R(.01) (GeV)

Run Number: 168665, Event Number: 57983

Date: 2010-11-08 11:29:31 CET

Detectors Operational

Subdetector

				Pi	xels			80 M	97.3%
07.400%			so	CT Silicon	Strips		6.3 M	99.2%	
97-100% oper	chanr	ายเร	TF	RT Transiti	on Radiatio	on Tracker	350 k	97.1%	
for all dete	stem	5	LA	r EM Calo	rimeter		170 k	97.9%	
				Til	le calorime	eter		9800	96.8%
85-95% data-t	ficie	ncv	На	adronic en	dcap LAr c	alorimeter	5600	99.9%	
			Fo	rward LAr	calorimete	r	3500	100%	
				LV	/L1 Calo tr	igger		7160	99.9%
				LV	/L1 Muon F	RPC trigger	r	370 k	99.5%
				LV	/L1 Muon T	FGC trigger		320 k	100%
				M	DT Muon D)rift Tubes		350 k	99.5%
				C	SC Cathod	le Strip Cha	ambers	31 k	98.5%
				R	PC Barrel I	Nuon Chan	nbers	370 k	97.0%
				то	G Endcap	Muon Cha	ambers	320 k	98.4%
Inner Tracking Detectors	Calorimeters				Muon [Detector	S		
Pixel SCT TRT	LAr LAr EM HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC		
99 1 99 9 100	907 966	97.8	100	00 0	00.8	96.2	00 8	Data quality (nn data)

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in pp collisions at vs=7 TeV between March 30th and October 31st (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Data quality (pp data)

Number of Channels

Dave Charlton, 26 January 2011

Approximate Operational Fraction

Trigger Operation

Much evolution of trigger during 2010: factor 10⁵ increase in instantaneous luminosity $2x10^{27} \rightarrow 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$

Flexible trigger system: raising thresholds, increasing use of HLT rejection power

LHC Computing Grid

ATLAS has ten Tier-1 sites including ASGC Taipei Dave Charlton, 26 January 2011

Computing Operations

Throughput of ATLAS data through the GRID in 2010

2010 Data Reprocessing

Last subscription: 18 Dec 00:18:06 | Last FC checked: 21 Jan 06:26:38 | Last transfer: 18 Jan 22:05:59

date-tier	CA	CERN	DE	ES	FR	IT	ND	NL	ТW	UK	US	sum
10-10-30	88	0	974	976	908	1047	945	1934	2199	3355	2760	15186
10-10-31	2541	0	1	212	579	77	1475	2272	85	3249	11006	21497
10-11-01	2530	0	3619	73	7420	4448	628	3737	1866	3024	8004	35349
10-11-02	2714	109	5649	954	4463	3771	1295	2154	2670	5720	7902	37401
10-11-03	4891	40	9952	4590	2554	27	1924	2903	2003	3250	14146	46280
10-11-04	7	0	3625	163	3209	17	1511	842	2225	1	15809	27409
10-11-05	1539	10	0	4043	4317	922	2836	2564	1927	9574	21384	49116
10-11-06	2989	0	3598	4598	10722	3309	2482	1029	2584	11235	4648	47194
10-11-07	6917	0	5722	3943	7191	2801	4073	0	2554	20794	14315	68310
10-11-08	6749	0	15858	3643	5807	7003	6103	4084	334	8655	15161	73397
10-11-09	24	3989	1432	3180	6752	319	219	7075	597	298	19584	43469
10-11-10	0	6587	1	4	3026	2	7	9304	1806	193	7777	28707
10-11-11	0	5517	0	3	58	0	1	14324	2722	9	24361	46995
10-11-12	0	2	0	0	239	0	0	6994	2077	0	13677	22989
10-11-13	0	0	0	0	7164	0	0	979	638	0	0	8781
10-11-14	0	0	0	0	4906	0	0	663	0	0	0	5569
10-11-15	0	0	0	0	9402	0	0	0	0	0	0	9402
10-11-16	0	0	0	0	63	0	0	0	0	0	0	63
10-11-17	0	0	0	0	1	0	0	0	0	0	0	1
total jobs	30992	16256	50434	26385	78788	23745	23503	60864	26289	69361	180544	587161
total done	30989	16254	50431	26382	78781	23743	23499	60858	26287	69357	180534	587115
%%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
aborted	3	2	3	3	7	2	4	6	2	4	10	46
%%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
running	0	0	0	0	0	0	0	0	0	0	0	0
%%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Reprocessing campaign in October/November 2010 to rereconstruct full 2010 pp sample with updated alignment and calibration constants, improved code, etc

Processing shared across all ten ATLAS Tier-1 sites plus CERN

Physics Strategy

Strategy for *reliable and fast* results:

- Observe and measure known processes in the new highenergy regime
- Requires detailed detector and performance understanding
- Probe for deviations or excesses that can signify new physics
- Use data to understand backgrounds as far as possible

Measurements go *alongside* searches for new physics

sec for

events

Inclusive Charged Particles

"Minimum Bias" measurements

ATLAS strategy:

- Define several fiducial acceptances
- Correct for detector/trigger effects within these acceptances
- Use data to measure inefficiencies where possible (trigger, vertexing)
- Do not correct for unmeasured regions
- Do not correct for model-dependent diffractive effects, instead define acceptances with different amounts of diffraction

```
Measurements at √s=0.9, 2.36 and 7 TeV
```

Strong discrimination between MC tunes - no tune describes all features well

arXiv:1012.5104 (22 Dec 2010)

Also many other results on soft QCD - see 27 https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Jet Cross-Section

arXiv:1009.5908 (30 Sep 2010)

Jet cross-section is huge for medium p_{τ} jets First measurement paper on high- p_{τ} process Challenge was to understand jet energy scale/resolution

Fully corrected doubledifferential cross-sections Anti- k_{τ} jets, R=0.6

Inclusive Jet Distribution

Highest p_T jet event

p_⊤ jet1=1.3 TeV (p_⊤ jet2=1.2 TeV, m_{ii}=2.6 TeV)

Dijets and Multijets

Leading jet p₁>60 GeV, Subleading p₁>30 GeV Highest dijet mass 3.7 TeV

Count jets with $p_T > 60$ GeV and |y| < 2.8One event with 8 such jets

Eight-Jet Event

8 jets with $p_T > 60 \text{ GeV}$

Highest-Mass Dijet

 p_T jet1=670 GeV, p_T jet2=610 GeV, m_{ii} =3.7 TeV

Dijet Mass Distributions

Dijet Angular Distributions

Phys Lett B694, 327-345

Potential 4-point contact interaction (CI) between quarks characterised by scale Λ

Exclude quark CIs for $\Lambda < 3.4$ TeV @ 95% CL

Tevatron excludes ∧<3.1 TeV @ 95%CL

Jet Shapes

Measure fully corrected jet profiles: p_T flow in annular regions in (η, ϕ)-space around jet axis $30 < p_T^{jet} < 600 \text{ GeV}$

Probes soft gluon radiation, underlying event activity and fragmentation effects

Higher- p_{T} and higher $|\eta|$ jets are narrower, broadly consistent with MC expectations

PYTHIA-Perugia2010 describes profiles well, ALPGEN and PYTHIA-MC09 tunes do less well

Pb-Pb Collision with Jets

Run 168875, Event 1577540 Time 2010-11-10 01:27:38 CET

Jet p_T of ~160 GeV

Jet Quenching

Hard partonic scattering in central (head-on) Pb-Pb collisions

High energy partons propagating through a hot dense medium may lose energy through interactions – one or both jets may be "quenched"

Expect effect to vary strongly with centrality of collision

$$A_{J} = \frac{E_{TI} - E_{T2}}{E_{TI} + E_{T2}}$$

Construct energy asymmetry A_{J} examine as a function of centrality

An Asymmetric Dijet Event

Front cover of December 17th edition of Phys Rev Lett

"Viewpoint" in *Physics*, together with ALICE results on elliptic flow

PHYSICAL Review

LETTERS

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2015

er: 1

Articles published week ending 17 DECEMBER 2010

Volume 105, Number 25

Isolated Photon Production

arXiv:1012.4272 (20 Dec 2010)

Isolated photons: $p_T^{\gamma} > 15 \text{ GeV}$ includes converted photons (~1/3rd)

Efficiencies from simulation, accounting for shower-shapes seen in data QCD backgrounds estimated from data

Differential cross-sections measured in three $|\eta^{\gamma}|$ ranges

JETPHOX NLO predictions tend to overshoot data for p_T^{γ} <25 GeV in central η bins

Search in yy +E^{miss}

arXiv:1012.4272 (20 Dec 2010)

Search for unusual event signatures with two photons and missing E_T Signal models have additional extra dimension ("UED"), scale parameter 1/R (setting AR=20)

Model implementation:

M. El Kacimi et al., Comput. Phys. Commun. 181, 122 (2010)

1/R > 728 GeV at 95% CL (Cf. D0 limit 1/R > 477 GeV)

Dave Charlton, 26 January 2011

W Event Selection

Simple selection criteria, e.g.

- electron ID: E_{T} >20 GeV $|\eta|$ <2.5
- muon ID: p_T>20 GeV |η|<2.5, p_T
 match inner det-muon system
- veto second lepton (Z veto)
- $E_{T}^{miss} > 25 \text{ GeV}, M_{T} > 40 \text{ GeV}$

Clean well-understood signals: lepton ID and missing-E_T working rather well

Dave Charlton, 26 January 2011

W Cross-Section

Event properties consistent with expectation Number of Events Number of Events / 10 GeV ATLAS Preliminary Integrated Luminosity 546 nb⁻⁷ 40 Data 2010 (√s = 7 TeV) 35E 35 QCD background 30 EW background 25 $W \rightarrow \tau_h v_{\tau}$ 20 20E **15**⊟ 15

Observation of $W \rightarrow \tau v$ based on 0.5 pb⁻¹

11.1±2.3±3.2 from QCD

Backgrounds:

 \rightarrow 78 events with hadronic τ decay candidates

 $11.8\pm0.4\pm3.7$ from other W/Z decays

Dave Chartton, 20 January 2011

 \rightarrow Rachid Mazini talk

Run 155697, Event 6769403 Time 2010-05-24, 17:38 CEST

W→τv candidate in 7 TeV collisions

Powerful test of QCD corrections - and a milestone for many new physics searches

Leading and next-to-leading jet p_T spectra measured for $W \rightarrow (e/\mu)v$

W+jets data well described by Alpgen and Sherpa MC models, but not by _____ Pythia

W→µv candidate with 3 jets with $E_T > 40$ GeV Second muon reconstructed in the highest E_T jet

Dave Charlton, 26 January 2011

Z Selection

 $p_{T}(\mu) = 27 \text{ GeV} \quad \eta(\mu) = 0.7$ $p_{T}(\mu) = 45 \text{ GeV} \quad \eta(\mu) = 2.2$

 $M_{\mu\mu} = 87 \text{ GeV}$

Z+μμ candidate in 7 TeV collisions

Z Cross-Section

53

J/ψ, ψ(2S) and Υ→μμ

Use a selection of looser triggers Oppositely charged muons with $p_T(\mu_1,\mu_2)$ >(2.5,4) GeV

For J/ψ , $\psi(2S)$ refit tracks to a common vertex

About 60k $\Upsilon(1S, 2S, 3S)$ candidates over full acceptance

<mark>Β→J/ψ(μμ)Κ</mark>*

Signal for $B^{\pm} \rightarrow J/\psi(\mu\mu)K^{\pm}$

Require transverse decay length >300µm

Unbinned likelihood fit to signal (with event-by-event mass uncertainty) and linear background

Combining K⁺ and K⁻

- 283±22 signal events,
- fitted mass 5283±2.5 MeV

Cf PDG: 5279 MeV

$J/\psi \rightarrow \mu\mu$ in Heavy lons

Production of quarkonium states in heavy ion collisions can be affected by if a hot dense medium is produced - e.g. by colour screening

 $J/\psi{\rightarrow}\mu\mu$ production measured as a function of collision centrality

Yields normalised by number of binary nucleon-nucleon collisions N_{coll}, taken from a Glauber model used at RHIC

Effect seen, similar to that observed at RHIC $\int s_{NN} = 2.76 \text{ TeV}$ instead of 0.2 TeV Dave Charlton, 26 January 2011

CO m J/ CO Yi nu Gl Normalized J/w vield

59

Top-Pair Production

Complete set of ingredients to allow to study production of ttbar:

e, μ , E_T^{miss} , jets, b-tag

Assume all tops decay to Wb: event topology then depends on the two W decays

Of interest: lepton (e or μ), E_T^{miss}, jjbb (37.9%)

> dilepton (ee, $\mu\mu$ or e μ), E_T^{miss}, bb (6.46%)

Data-driven methods to control QCD and W+jets backgrounds

Cross-section measurement published with 2.9 pb⁻¹, some plots updated with full 2010 statistics

Single Lepton Channel

1 e or μ with p_T >20 GeV, E_T^{miss} >20 GeV, E_T^{miss} + $m_T(W)$ >60 GeV N_{jets} with p_T >25 GeV, with no b-tag requirement or at least one b-tag Signal defined to have 4 or more jets, and at least 1 b-tag

Cross-check: 3-jet mass

Invariant mass of the highest p_T 3-jet combination for tagged 3 and 4 jet events used in cross-check analyses Agrees with top hypothesis

Number of jets

Dilepton Channels

ee (µµ) channel:

• require $E_T^{miss} > 40 \text{ GeV}$ (30) GeV

• veto m_z region

eµ: scalar sum of transverse energy H_T>150 GeV

Count events with two or more jets:
2 ee, 3 μμ, 4 eμ
b-tag is not used in the analysis, but is a cross-check

Dileptonic Top-Pair Candidate

Run Number: 160958, Event Number: 9038972

Date: 2010-08-08 12:01:12 CEST

 $p_T(\mu)$ = 51 GeV $p_T(e)$ =66 GeV p_T (b-tagged jets) = 174, 45 GeV E_T^{miss} = 113 GeV, Secondary vertices: distance from primary vertex: 4mm, 3.9 mm vertex mass : ~2 GeV, ~ 4 GeV

ATLAS

EXPERIMEN

2011

Top Pair Cross-Section

Dave Charlton, 26 January 2011

Dibosons

Electroweak diboson production is seen: Wγ, Zγ, WW, WZ, ZZ...

Key signatures close to new physics signal topologies

→ Song-Ming Wang talk

 $m_{\mu\mu} = 94 \text{ GeV}, E_T^{miss} = 161 \text{ GeV}$

Dave Charlton, 26 January 201

Much More Is Coming...

LHC in 2011/12

LHC workshop this week in Chamonix

- Discussing √s for 2011 7 or 8 TeV?
- Whether to continue run in 2012 before long (18m) shutdown which is needed to go to 14 TeV

It seems possible to have a luminosity of a few fb⁻¹ at 8 TeV by the end of 2011

Albert De Roeck will show more on the exciting physics prospects (ATLAS - CMS sensitivities are generally quite similar)

Most interesting question: can we find the SM Higgs boson if it exists?

71

Summary

LHC commissioning and operation during 2010 was gradual and cautious, taking care to understand the collimation and safety systems fully

ATLAS detector, trigger, computing and data preparation systems are working even better than we expected!

The 2010 data have led to a rich harvest of physics results from ATLAS, with many more in production

Closely linked programme of measurements and searches going hand-in-hand - now more sensitive than the Tevatron in many channels

A goal of a few fb⁻¹ at √s=8 TeV by the end of 2012 could allow us finally to solve the Standard Model Higgs puzzle