Wy and Zy Production at ATLAS

PSROC 2011 January 25th-27th, 2011

> Song-Ming Wang Academia Sinica

ATLAS Collaborations

Introduction

TGC

- In Standard Model (SM) non-abelian nature of $SU(2)_L \times U(1)_Y$ allow gauge bosons to interact with one another
 - •Coupling between 3 gauge bosons ⇒ Triple Gauge-Boson Coupling (TGC)
- The study of these gauge couplings can be performed through the measurement of di-boson productions
- At LHC di-boson can be produced through :

• Measurement of di-boson productions at LHC provides an important test of high energy behavior of EWK interactions, and is an key milestone for initial physics program

Gauge Couplings

- SM only allows charged coupling (WWZ,WWγ), does not allow pure neutral coupling (ZZZ, ZZγ, Zγγ, γγγ) since Z/γ has no charge nor weak isospin
- Physics beyond SM can introduce anomalous TGC which may allow neutral couplings, or increased the charged TGC coupling strength
- Effective Lagrangians which characterized the charged and neutral TGC, introduced a few anomalous coupling parameters (assuming C,P symmetry conservation and QED gauge invariance)

Charged TGC:

Neutral TGC:

•
$$\lambda_{\gamma}$$
 , λ_{Z}

• $\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1$, $\Delta \kappa_{Z} = \kappa_{Z} - 1$, $\Delta g_{1}^{Z} = g_{1}^{Z} - 1$

•SM at tree level: $\lambda_{\gamma} = \lambda_Z = \Delta \kappa_{\gamma} = \Delta \kappa_Z = \Delta g^{Z_1} = 0$

•
$$f_{4}^{Z}$$
, f_{5}^{Z} , f_{4}^{Y} , f_{5}^{Y}

•SM at tree level: $f_{4}^{Z} = f_{5}^{Z} = f_{4}^{Y} = f_{5}^{Y} = 0$

Gauge Couplings

- Each diboson production can probe one or more TGC:
 - W γ : WW γ vertex
 - $Z\gamma$: $ZZ\gamma$, $Z\gamma\gamma$ vertex
- Measures the anomalous coupling parameters

- Presence of anomalous TGC could enhance diboson production rate, particularly at high transverse momentum of bosons
- Search for new physics through measuring the anomalous TGCs

Diboson and Searches

•Diboson ($W\gamma$, $Z\gamma$) faking new physics signatures :

- $W^{\pm}\gamma \rightarrow l^{\pm}\nu\gamma \rightarrow l^{\pm}\nu l^{+}l^{-}$ $Z\gamma \rightarrow l^{+}l^{-}\gamma \rightarrow l^{+}l^{-}l^{+}l^{-}$
- Photon conversion leads to same-sign multi-lepton signature
- Background to searches for new physics in this final state

 \Rightarrow Important to understand these production processes !

Large Hadron Collider (LHC) pp, B-Physics, General Purpose, **CP** Violation LHC: 27 km long pp, heavy ions 100m underground ATLA • p-p collider • Design parameters: $\cdot \sqrt{s} = 14 \text{ TeV}$ CERN • $L_{\rm inst} = \sim 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$ •2010 operation: $\cdot \sqrt{s} = 7 \text{ TeV}$ • $L_{\rm inst} = \sim 10^{32} {\rm ~cm^{-2} ~s^{-1}}$ ALICE CMS Heavy ions, pp Width: 22m Diameter: 15m **+TOTEM** General Purpose, pp, heavy ions

ATLAS Detector and Luminosity

Wy, Zy Production at Hadron Colliders

Predicted cross sections :

Diboson	√s=1.96 TeV	√s=7 TeV		
mode	σ(ppbar) [pb]	σ(pp) [pb]		
$W^{\pm}\gamma$	19.3*	69.0** -		
Ζγ	4.7*	13.8**		

* : E_T(
$$\gamma$$
)>7 GeV, $\Delta(l,\gamma)$ >0.7 , $l=e$ or μ

****** : $E_T(\gamma) > 10$ GeV, $\Delta(l,\gamma) > 0.5$, l=e or μ

Measured cross sections :

Diboson	√s=1.96 TeV	√s=7 TeV
mode	σ(ppbar) [pb]	σ(pp) [pb]
$W^{\pm}\gamma$	18.0±2.8* (CDF, 1.1 fb ⁻¹)	?
	14.8±2.1* (D0, 0.16 fb ⁻¹)	
Ζγ	$4.6\pm0.5^{*}$ (CDF, 1.1 fb ⁻¹ (ee), 2.0 fb ⁻¹ (µµ))	?
	4.96±0.42* (D0, 1.1 fb ⁻¹)	

• Production rate at LHC is ~3 times of Tevatron

• Greatly enhance detection sensitivity to anomalous triple-gauge-boson couplings

Wy Production

- •Perform measurement in e, μ decays
- •Final state consists:
 - •High p_T isolated e, μ
 - •Isolated γ
 - •Missing E_T due to escaping v
- •Main background:
 - •W+jets : jet fakes as γ
 - •Z(ee, $\mu\mu$)+ γ /jet (one lepton not Id, jet mis-Id as γ)
 - t-tbar
 - $E_T(\gamma)$ from FSR drops rapidly after ~40 GeV , limited by the momentum carries by the lepton
 - Higher $E_T(\gamma)$ region is dominated by the ISR and WW γ vertex

Wy Production

Understanding Physics Objects

•Physics objects in W γ , Z γ measurements that need to be well understood are :

- •Leptons : e, μ
- •Missing E_T
- •Photon
- •Inclusive W and Z productions are :
 - •Standard candles for calibrating the detector
 - •Z→l⁺l⁻:
 - Measure the EM energy scale of calorimeter and the momentum scale/resolution of tracks
 - Measure the lepton identification and trigger efficiencies
 - W \rightarrow lv :
 - Calibrate high pt lepton, study Missing E_T performance
 - •Major background in the Wy, Zy measurements

Electron Identification

Identification Types:

- Loose : cut on hadronic leakage, shower shapes in 2nd EM sampling
- **Medium** : cut on shower shapes in 1st sampling, cluster/track match
- **Tight** : cut on threshold of transition radiation tracker (TRT), track quality, conversion veto (ID efficiency ~75%)

Electron Identification

Academia Sinica contribution in W(e,v) measurement (~315 nb⁻¹) : $\frac{\text{JHEP 12} (2010) 060}{\text{CERN-PH-EP-2010-037}}$

Electron Identification & Trigger efficiency :

- Common method use "Tag-&-Probe" method on Z→ee decay to select high purity electron sample
 - •Disadvantage : low statistic, low Et range of electron
- •A.S. employed alternative method to extract high purity electron sample :
 - •Use events passing high missing E_T trigger
 - •Apply topology cuts (e.g. $\Delta\phi(MET, jet)$) to reduce QCD di-jet background
 - •Require loose match between track and EM cluster
 - •Select high pt electrons from W decay
 - •Selection has little bias to the identification cuts that we want to study
 - •Advantage : higher statistic, higher reach in Et of electron
 - •Disadvantage : not as pure as "Tag-&-Probe" on $Z \rightarrow$ ee decay
 - •Main measurement of the electron ID efficiency (~5% systematic uncertainty)

Muon Identification

- Several muon identification available
- Most commonly used algorithm in high pt analyses requires
 - •matching of an inner detector track to a muon segment found in the muon spectrometer
 - •Deposit a minimum ionizing particle like signature in the calorimeter
- Id efficiency : ~89%

Photon Identification

Fragmentation

γ Reconstruction :

- Require small hadronic leakage and narrow energy profile
- Cut on variables to discriminate single γ from near by showers (e.g. remove π^0)

• Identification efficiency $>\sim 80\%$ for Et(γ)>25 GeV

Photon Identification

Academia Sinica contribution in direct photon measurement:

- Developed a 2-D side band method to estimate fraction of background faking isolated proton photon in signal region
- Assume isolation profile for background is the same for tight and non-tight regions
- Correct for leakage of signal into control regions (B,C,D)

Isolation [GeV]

Missing E_T Reconstruction

•Missing $E_T (E_t^{miss})$ is constructed from energy deposited in all calorimeter cells

$$\begin{split} E_{\rm x}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \cos \phi_i ,\\ E_{\rm y}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \sin \phi_i ,\\ E_{\rm T}^{\rm miss} &= \sqrt{(E_{\rm x}^{\rm miss})^2 + (E_{\rm y}^{\rm miss})^2} , \end{split}$$

- Measurement is corrected for the presence of muons and the energy lost in the cryostat
- Event is removed in the present of bad jets

• caused by noise

- •out-of-time energy deposition in calorimeter
- Study performance of missing E_T measurement in minimum biased (fake E_t^{miss}) and inclusive W (real E_t^{miss}) productions

Status of Wy, Zy Analyses

- •We perform the analyses in both electron and muon decay channels
- •At final stage of the analysis and are undergoing reviews by the collaboration
- •Have seen experimental signature of their productions

Summary

- Academia Sinica started its first physics analyses on measuring of Standard Model processes
- \bullet Experiences in earlier SM measurements have contributed to the Wy, Zy analyses
- Have observed candidate events of $W\gamma$, $Z\gamma$ production in the leptonic decay channels
- Analyses under review by the ATLAS collaboration
- Group has begun to brunch off into performing searches
- Polishing our analyses techniques to be ready for the next data collection period in March 2011 !

BackUp

Expected Sensitivity

• Expected Wy, Zy signal, backgrounds and sensitivity for 1 fb⁻¹ at $\sqrt{s}=14$ TeV (from simulation studies : CERN-OPEN-2008-020)

Diboson mode	Signal	Background	Signal eff.	σ^{signal}_{stat}	<i>p</i> -value	Sig.
$W\gamma ightarrow e v\gamma$	$1604\pm\!65$	1180 ± 120	5.7% (BDT)	2.5%	significance	> 30
$W\gamma ightarrow \mu u \gamma$	2166 ± 88	1340 ± 130	7.6% (BDT)	2.1%	significance	> 30
$Z\gamma { ightarrow} e^+e^-\gamma$	367 ± 12	187 ± 19	5.4% (BDT)	5.2%	$1.2 imes 10^{-91}$	20.3
$Z\gamma\! ightarrow\!\mu^+\mu^-\gamma$	$751\!\pm\!23$	429 ± 43	11% (BDT)	3.6%	5.9×10^{-171}	27.8

•Anomalous TGC limits at 95% C.L., Λ =2 TeV, ATLAS : \sqrt{s} = 14 TeV, L = 10 fb⁻¹

Diboson	Assumption	$\Delta\kappa_{\gamma}$	λ_{γ}
Wγ(ATLAS)		[0.26,0.07]	[-0.05,0.02]
WW(ATLAS)		[-0.088,0.089]	[-0.074,0.165]
WW+Wγ+WZ (D0, 1 fb ⁻¹)	$(\lambda_{\gamma} = \lambda_{Z}, \Delta \kappa_{Z} = \Delta g^{Z}_{1} - \Delta \kappa_{\gamma} * \tan^{2} \theta_{W})$	[-0.29,0.38]	[-0.08,0.08]
WW (CDF, 3.6 fb ⁻¹)	$(\lambda_{\gamma} = \lambda_{Z}, \Delta \kappa_{Z} = \Delta g^{Z}_{1} - \Delta \kappa_{\gamma} * \tan^{2} \theta_{W})$	[-0.57,0.65]	[-0.14,0.15]
WW (LEP)	$(\lambda_{\gamma} = \lambda_{Z}, \Delta \kappa_{Z} = \Delta g^{Z}_{1} - \Delta \kappa_{\gamma} * \tan^{2} \theta_{W})$	[-0.105,0.069]	[-0.059,0.026]