SEARCH FOR 4TH GENERATION QUARKS AT CMS

Kai-Feng Chen National Taiwan University

LHC symposium in PSROC annual meeting January 26th 2011, National Normal University, Taipei

4TH GENERATIONS: WHY? WHY NOT?

- The possibility of 4th generation is not really excluded by the current experimental data.
- Small mass splitting between the 4th generation quarks is preferred: |M_{t'}-M_{b'}| < M_W.
- Flavor physics data and the tests for unitarity triangle provide some information regarding the "CKM4" matrix, but it is only weakly constrained due to the uncertainties.

4TH GENERATIONS: WHY? WHY NOT?

3

• The direct measurement of invisible Z width from LEP: $N\nu = 2.92 \pm 0.05$, but it does not guarantee that N(gen) = 3 exactly, e.g. heavy neutrino with mass > 0.5 M_Z.

- The electroweak fits constrain the available phase space allowed for the 4th generations.
- Large impact on the Higgs sector: Heavy Higgs (up to 500 GeV) is allowed.

4TH GENERATIONS: WHY? WHY NOT?

SM: $\sin 2\Phi_{Bs} \sim 0$ \implies add $\sim 500 \text{ GeV } t': \sin 2\Phi_{Bs} \sim -0.33$

References: Hou et. al. arXiv: 1004.2186

Adding 4th generation quarks will pull down the sin2\$\Phi_{Bs}\$ value from the 3 generation SM. Agreement with data is improved, but the tension is reduced since recent Tevatron updates.
Wait for the results from LHCb to verify it.

A BIG MOTIVATION: BAU

Ingredients of CPV in the Standard Model:

#1: At least THREE generations;#2: Non-trivial *CP* phase; Non-trivial unitarity triangle.#3: Non-degenerate like-charge quarks.

Jarlskog Invariant

proportional to <u>quarks masses</u> and <u>triangle area</u> A:

$$J = (m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2)A$$

The SM contributes only $J/T^{12} \sim 10^{-20}$ $\frac{n(B)}{n(\gamma)} = (5.1^{+0.3}_{-0.2}) \times 10^{-10}$ (WMAP)

"Something" is definitely necessary to enlarge the asymmetry by O(10¹⁰)!

A BIG MOTIVATION: BAU

If we simply shift the invariant by one generation:

$$J' = (m_{t'}^2 - m_c^2)(m_{t'}^2 - m_t^2)(m_t^2 - m_c^2)(m_{b'}^2 - m_s^2)(m_{b'}^2 - m_b^2)(m_b^2 - m_s^2)A'$$

6

$$\rightarrow \quad \frac{J'}{J} \approx \frac{m_{t'}^2}{m_c^2} \left(\frac{m_{t'}^2}{m_t^2} - 1\right) \frac{m_{b'}^4}{m_b^2 m_s^2} \frac{A'}{A}$$

References: Hou arXiv: 0803.1234

By inserting M(b',t') ~ $300 \sim 600 \text{ GeV}/c^2$, it already gives us a huge boost on *J*, of O($10^{13} \sim 10^{15}$) Replacing the unitary triangle contributes a factor of 30.

A low cost solution: only needs heavier quarks!

FOUR STATEMENTS ABOUT THE FOURTH GENERATION Ref. Holdem *et al.* arXiv: 0904.4698

The 4th generation is not excluded by EW precision data;
SM4 addresses some of the currently open questions;
SM4 can accommodate emerging possible hints of new physics;

4) LHC has the potential to discover or fully exclude SM4!

THE DECAY PATTERN

ť

Mostly $t' \rightarrow bW$ (simply a heaver top quark) or $t' \rightarrow b'W$

Depends on the mass hypothesis of *b*':

Today we only focus on the "heavy scenario", $b' \rightarrow tW$ decays.

SIGNATURE OF HEAVY b'b'→tWtW

The full decay chain: $b'b' \rightarrow tWtW \rightarrow bbW^+W^-W^+W^-$ (4 *W*-bosons + 2 *b*-jets)

CMS EXPERIMENT

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO, crystals

> > PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

SUPERCONDUCTING SOLENOID Niobium-titanium coil

HADRON CALORIMETER (HCAL)

FORWARD CALORIMETER Steel + quartz fibres ~2k channels

MUON CHAMBERS Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

3170 scientists and engineers from 169 institutes in 39 countries. From Taiwan: NTU and NCU

ANALYSIS OF HEAVY b'b'→tWtW

Ref. CMS PAS EXO-10-018

 Data set analyzed: <u>34 pb⁻¹ at 7 TeV</u> recorded by the CMS detector.
Trigger: double electron trigger or single muon trigger.

Lepton selections:

Muons: cut-based ID, isolated from other activities, $p_T > 20 \text{ GeV}/c$.

Electrons: cut-based ID, isolated from other activities, $p_T > 20 \text{ GeV}/c$. Requiring exact 2L with the same charge, or 3L in the final state.

■ **Jet selections:** Anti- K_T algorithm R = 0.5 with particle flow candidates.

11

Same-sign 2L: at least 4 or more jets $p_T > 25 \text{ GeV}/\text{c}$.

→ **3L**: at least 2 or more jets p_T > 25 GeV/c.

Other requirements:

- A Z-boson veto: $|M(\ell \ell) M_Z| > 10 \text{ GeV}/c^2$.
- Objects isolation: $\Delta R(e,\mu) > 0.1$ and $\Delta R(\text{jet},\ell) > 0.4$.
- \implies $S_{\rm T}$ [= MET + $\Sigma p_{\rm T}$ (jets) + $\Sigma p_{\rm T}$ (leptons)] > 350 GeV

RESULTING FIGURES (MC Distributions)

RESULTING FIGURES (MC Distributions)

EXPECTED YIELDS

b' Signal

<i>b'</i> mass (GeV/c ²)	Cross section (pb)	Yield	S/N
300	7.29 (NLO)	7.7	23
350	2.94 (NLO)	3.8	12
400	1.30 (NLO)	1.8	5.5
450	0.617 (NLO)	0.91	2.8
500	0.310 (NLO)	0.49	0.9

- S/N is high, up to $300 \sim 400 \text{ GeV}/c^2$ b' masses.
- Background is dominated by the *tt*+jets events.

Background Sources

Process	Cross section (pb)	Yield
<i>tt</i> +jets	194 (CMS)	0.27
<i>tt</i> +W (+j)	0.144 (LO)	0.033
tt+Z(+j)	0.094 (LO)	0.016
W+jets	29850 (CMS)	<0.11
Z+jets	2919 (CMS)	< 0.09
WW	43 (NLO)	< 0.012
WZ	18 (NLO)	< 0.005
ZZ	5.9 (NLO)	0.006
Same-sign WW+jj	0.15 (LO)	0.002
MC background expectation	_	0.33

QCD contributions are estimated to be small (<0.09)

BACKGROUND ESTIMATION WITH DATA

Use a data-driven based estimation instead of the MC expected value (ie. the 0.33 events)

BACKGROUND ESTIMATION WITH DATA

- This estimation has little dependency on luminosity and background cross section.
- Systematic uncertainty from a MC closure test.

1500 2000 S_T (GeV)

1000

500

DATA RESULTS

Only two events failed with the last step selection

EXCLUSION LIMITS

<u>No signal observed in data</u>: we set the exclusion limit at <u>95% C.L.</u>
We use a Bayesian limit for null hypothesis tests, with all the systematic uncertainties included:

19

Observed limit is consistent with the (median) expected limit

b' production cross section as a function of its mass.

SUMMARY

 We report the search of heavy bottom-like 4th generation quark in *tW* final state at 7 TeV LHC pp collisions.

- The analysis with 34.1 pb⁻¹ CMS data is presented:
 - The expected signal yield for b' $(300 \sim 500 \text{ GeV}/\text{c}^2)$ is 7.7~0.5 events with this data set.
 - No event found in the signal region.
 - A limit for $b' \rightarrow tW$ signal is set: M(b')>357 GeV/ c^2 at 95% C.L., comparing to the NLO production cross sections.

This result extends the current CDF published limit based on an analysis of the same decay signature.
[M(b')>338 GeV/c2, PRL 104, 091801 (2010)]

BACKUP SLIDES

TEVATRON LIMITS

SYSTEMATIC UNCERTAINTIES

Signal Efficiencies: $\Delta \epsilon / \epsilon$

Source	Input	M(b') =300	M(b') =350	M(b') =400	M(b') =450	M(b') =500
JES	JME-10-010	2.1%	1.8%	1.1%	1.3%	1.1%
JE resolution	10% of $p_{\rm T}$	0.3%	0.6%	0.2%	0.1%	0.4%
MET	±10	1.2%	0.5%	0.2%	0.1%	0.1%
Leptons	e: 5.8%, µ: 5.4%	13%	13%	13%	13%	13%
Pile-up jets	o PU vs 5 PU	1.2%	1.2%	1.1%	1.1%	1.0%
PDF	CTEQ6 uncertainty sets	15%	17%	20%	21%	21%
MC Statistics	-	3.0%	2.7%	2.7%	2.5%	2.4%
Sum		20%	22%	24%	24%	24%

Background Estimation:

Source	Input	$\Delta B/B$
Luminosity	±11%	0%
Method error	-	56%
background cross sections	tt ±39%, etc.	5.7%
QCD	±100%	29%
JES	JME-10-010	1.0%
JE resolution	10% of p_{T}	1.5%
MET	±10	5.6%
Leptons	e: 5.8%, µ: 5.4%	1.5%
pile-ups	o PU vs 5 PU	<0.1%
PDF	CTEQ6 uncertainty sets	2.1%
Control reg. statistics	-	13%
Sum		65%