Results and Prospects from LHCb

PSROC2011 LHC Symposium 25 January -27 January 2011, Taipei, Taiwan

Tatsuya NAKADA

Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

LHCb at CERN

Two general purpose experiments (ATLAS and CMS), one dedicated b-experiment (LHCb), and one dedicated heavy ion experiment (ALICE).

B Physics@Hadron machineb-qark first discovered by a hadron machine in 1977

B Physics@Hadron machine

- b-qark first discovered by a hadron machine in 1977
- For many years, B physics had been dominated by the e⁺e⁻ machines: DORIS, CESR, VEPP, LEP, ... Tradition continued with PEP-II and KEKB

B Physics@Hadron machine

- b-qark first discovered by a hadron machine in 1977
- For many years, B physics had been dominated by the e⁺e⁻ machines: DORIS, CESR, VEPP, LEP, ... Tradition continued with PEP-II and KEKB
- Experiments at hadron machines, i.e. fixed target, with "limited" results: CERN: Beatrice FNAL:E866/E789/E772, E771 b cross section measurements (with large error bars) \rightarrow simply not enough b's and too small $\sigma_b/\sigma_{inelastic}$ The last attempt being HERA-B

T. Nakada

• 1992 CDF reconstructed $B \rightarrow J/\psi K$

B Physics@Hadron machine

- b-qark first discovered by a hadron machine in 1977
- For many years, B physics had been dominated by the e⁺e⁻ machines: DORIS, CESR, VEPP, LEP, ... Tradition continues till PEP-II and KEKB
- Experiments at hadron machines, i.e. fixed target, with "limited" results: CERN: Beatrice FNAL:E866/E789/E772, E771 b cross section measurements (with large error bars) \rightarrow simply not enough b's and too small $\sigma_b/\sigma_{inelastic}$ The last attempt being HERA-B
- 1992 CDF reconstructed $B \rightarrow J/\psi K$ B physics with a hadron machine at high energy looks feasible! D0 and CDF contributed a lot in lifetimes, CPV, and oscillations. (in particular for B_s)

New physics in B_s @ hadron machine? CPV in B_s - \overline{B}_s oscillations

$$Pr(\overline{B}_{s} \rightarrow B_{s}) \neq Pr(B_{s} \rightarrow \overline{B}_{s})$$

New physics in B_s @ hadron machine?

- $B_s \rightarrow \mu^+ \mu^-$ GIM and helicity surpressed in the Standard Model.
- New physics can introduce large enhancement
- Current Tevatron observed limits still large

New physics in B_d @ hadron machine? • A_{FB} in $B_d \rightarrow K^{*0}\mu + \mu -$

PSROC 2011 LHC Symposium, Taipei, Taiwan, 25-27.1.2011

T. Nakada

PSROC 2011 LHC Symposium, Taipei, Taiwan, 25-27.1.2011

T. Nakada

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in b→sX ≠ b→cX?
 Was a "suggestive" case for new physics...

PSROC 2011 LHC Symposium, Taipei, Taiwan, 25-27.1.2011

T. Nakada

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in $b \rightarrow sX \neq b \rightarrow cX$?
 - Was a "suggestive" case for new physics...
 - Hadron machine: add high statistics $B_s \rightarrow \phi \phi$

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in $b \rightarrow sX \neq b \rightarrow cX$?
 - Was a "suggestive" case for new physics...
 - Hadron machine: add high statistics $B_s \rightarrow \phi \phi$
- $C_{\pi\pi} \neq 0$? (CP violation in B $\rightarrow \pi^+\pi^-$ decay amplitudes)

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in $b \rightarrow sX \neq b \rightarrow cX$?
 - Was a "suggestive" case for new physics...
 - Hadron machine: add high statistics $B_s \rightarrow \phi \phi$
- $C_{\pi\pi} \neq 0$? (CP violation in $B \rightarrow \pi^+\pi^-$ decay amplitudes) - Hadron Machine: much more statistics

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in $b \rightarrow sX \neq b \rightarrow cX$?
 - Was a "suggestive" case for new physics...
 - Hadron machine: add high statistics $B_s \rightarrow \phi \phi$
- $C_{\pi\pi} \neq 0$? (CP violation in $B \rightarrow \pi^+\pi^-$ decay amplitudes) - Hadron Machine: much more statistics
- γ from the tree = γ from the loop?

- CP asymmetries in $B_u \rightarrow K^{\pm} \pi^0 \neq B_d \rightarrow K^{\pm} \pi^{\mp}!$
 - Experimentally established effect by Belle (Nature 2008)
 - Physics interpretation, Standard Model due to hadrnic interaction effect or New Physics
 - Hadron machine: studies with more channels, e.g. $B_u \rightarrow K^{\pm} \rho^0, B_S \rightarrow K^{\mp} \pi^{\pm},$
- CP asymmetries in $b \rightarrow sX \neq b \rightarrow cX$?
 - Was a "suggestive" case for new physics...
 - Hadron machine: add high statistics $B_s \rightarrow \phi \phi$
- $C_{\pi\pi} \neq 0$? (CP violation in $B \rightarrow \pi^+\pi^-$ decay amplitudes) - Hadron Machine: much more statistics
- γ from the tree = γ from the loop?
 - Hadron machine: much more statistics

LHCb Detector

LHCb is a forward spectrometer dedicated for flavour physics

Forward: $p_{\rm T}$ threshold can be set low: \rightarrow high b efficiency

Can exploit low $p_{\rm T}$ particles to trigger more b-hadron events

 $\sigma_{b\overline{b}}$ expected in pp collisions at $\sqrt{s} = 14$ TeV: 500µb 5×10^{11} bb pairs in 10⁷ s with $L = 10^{32}$ cm⁻²s⁻¹

First level trigger based on medium p_T trigger (hardware) $40MHz \rightarrow 1MHz$ readout@1 MHz to PC farm Software trigger for the rest $1MHz \rightarrow 2 \text{ kHz}$ data logging@2 KHz for offline Very flexible and efficient trigger

23rd November 2009

- First collisions took place at LHC
- 2009 run: $\int L dt \approx 7 \ \mu b^{-1}$, at $\sqrt{s} = 900 \ \text{GeV}$

LHC running in 2010

• Since March 2010, running at $\sqrt{s} = 7$ TeV with a steady improvement in $\int Ldt$ and very high DAQ efficiency

$\sigma_{b\bar{b}}$ measurements with very early data b detection from b \rightarrow D⁰(K⁻ π^+) μ^- X (PLB 2010) $\int L dt = 25 \text{ nb}^{-1} \text{ data}$

Inclusive D:

$\sigma_{b\overline{b}}$ measurements with very early data

b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

 $IP(D \text{ from } b \rightarrow D) > IP (prompt D)$

 $\sigma_{b\bar{b}}$ measurements with very early data b detection from b $\rightarrow D^0(K^-\pi^+)\mu^-X$

Adding μ with a right sign enhances D from b: e.g. $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \mu^- X [B^- \rightarrow D^0 (\rightarrow K^+ \pi^-) \mu^- X \text{ only through DCSD}]$

 $\sigma_{b\bar{b}}$ measurements with very early data b detection from b $\rightarrow D^0(K^-\pi^+)\mu^-X$

Adding μ with a right sign enhances D from b: e.g. $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \mu^- X [B^- \rightarrow D^0 (\rightarrow K^+ \pi^-) \mu^- X \text{ only through DCSD}]$

$\sigma_{b\bar{b}}$ measurements with very early data b detection from b $\rightarrow D^0(K^-\pi^+)\mu^-X$

$\sigma_{b\overline{b}}$ measurements with very early data

b detection from $b \rightarrow J/\psi X$

$\sigma_{b\overline{b}}$ measurements with very early data

```
b detection from b \rightarrow J/\psi X
```

```
proper time distribution of J/\psi
```


$\sigma_{b\overline{b}}$ measurements with very early data

b detection from $b \rightarrow J/\psi X$

negative proper time important for studying resolution

negative proper time important for studying resolution

$\sigma_{b\overline{b}}$ measurements with very early data b detection from b $\rightarrow J/\psi X$

Proper time distribution with $\int L dt = 14 \text{ nb}^{-1} \text{ data}$

PSROC 2011 LHC Symposium, Taipei, Taiwan, 25-27.1.2011

T. Nakada

$\sigma_{b\overline{b}}$ measurements with very early data LHCb $\sigma_{b\overline{b}}$ from b \rightarrow D⁰ μ X and \rightarrow J/ ψ X

 σ_{bb} in $4\pi = 292 \pm 15 \pm 43 \ \mu b$ (with LEP $B_u/B_d/B_s/\Lambda_b$)

→agree with the Pythia used for the performance studies PSROC 2011 LHC Symposium, Taipei, Taiwan, 25-27.1.2011 T. Nakada 43

Comments on 2010 running condition

• Most of the data at $\sqrt{s} = 7$ TeV with

Comments on 2010 running condition

Most of the data at √s = 7 TeV at 80% of the LHCb nominal luminosity (2×10³²) with 10% of bunches, i.e.
> 6 times more pp interactions/bunch-crossing than designed

• Particle identification is crucial

No particle identification \rightarrow any 2 hadrons!

- Particle identification is crucial
- Promising signature in the raw charge asymmetries

Prospect for CPV in $B_s \rightarrow J/\psi \phi$ • First step is to observe $B^0-\overline{B}^0$ oscillations

- First step is to observe $B^0-\overline{B}^0$ oscillations
- Reconstruct $B^+ \rightarrow J/\psi K^+$ final states

- First step is to observe $B^0-\overline{B}^0$ oscillations
- Reconstruct $B^+ \rightarrow J/\psi K^+$ final states
- Reconstruct $B^0 \rightarrow J/\psi K_S$ final states

- First step is to observe $B^0-\overline{B}^0$ oscillations
- Reconstruct $B^+ \rightarrow J/\psi K^+$ final states
- Reconstruct $B^0 \rightarrow J/\psi K_S$ final states
- Reconstruct $B_s \rightarrow J/\psi \phi$ final states

- First step is to observe $B^0-\overline{B}^0$ oscillations
- Reconstruct $B^+ \rightarrow J/\psi K^+$ final states
- Reconstruct $B^0 \rightarrow J/\psi K_S$ final states
- Reconstruct $B_s \rightarrow J/\psi \phi$ final states
- On going work:
 - $-B_s$ - \overline{B}_s oscillations
 - angular acceptance
 - fit model
 - etc.
 - and other final sates, e.g. $B_s \rightarrow J/\psi f_0(980)$ observed (pure CP eigenstate)

• Based on, measured b cross sections and $B_s \rightarrow J/\psi \phi$ reconstruction performance,

Prospect for $B_s \rightarrow \mu^+ \mu^-$

- Decays can be characterised by
 - Invariant mass
 - $-B \rightarrow$ two-particle decay topology
 - Muon identification
- All can be studied by data:
 - invariant mass and topology by $B \rightarrow \pi^+\pi^-$ decays
 - Muon ID by $K_s \rightarrow \pi^+ \pi^-$, semileptonic decays, etc.

Background well described by MC

all the cuts are being tuned with a smaller sample

Prospect for $B_s \rightarrow \mu^+ \mu^-$

LHCb how about $B_d \rightarrow K^{*0} \mu^+ \mu^-$?

With 1 fb⁻¹ LHCb expects 1200 events

If the current BABAR and Belle results are correct, LHCb could exclude SM prediction with 4σ significance

Fantastic charm potential of LHCb Initial flavour tagged D⁰ decays: 34 pb⁻¹ $D^{*+} \rightarrow D^{0}\pi^{+}, D^{0} \rightarrow K^{+}K^{-}$ and $\pi^{+}\pi^{-}$

(162k for K⁺ π^{-})

Promising start for D⁰ oscillation and CP violation studies

Current situation with a^{s}_{SL} ?

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

Time dependent B_s decay asymmetry $D_s^+(K^+K^-\pi^+)\pi^- vs D_s^-(K^+K^-\pi^+)\pi^+$ production or detection asymmetry from data

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

Time dependent B_s decay asymmetry $D_s^+(K^+K^-\pi^+)\pi^- vs D_s^-(K^+K^-\pi^+)\pi^+$ production or detection asymmetry from data

B_d and B_s time depended CP asymmetries from the same final ftates: i.e. B_d→D⁺(K⁺K⁻π⁺)μ⁻X - c.c. and B_s→D_s⁺(K⁺K⁻π⁺)μ⁻X - c.c. difference depends only on $a^{s}_{SL} - a^{d}_{SL}$

Systematic errors still to be investigated

LHCb expected performance with 1 fb⁻¹ data assuming Δ_{SL} (LHCb measured) = A^{b}_{SL} (D0 now)

B reconstruction in hadronic modes

• For B_s oscillation studies

• Bench mark channels for γ studies

And even radiative B decays

• with an ultimate goal to study CPV in $B_s \rightarrow \phi \gamma$ photon polarization studies

Conclusions

- LHCb has started successful data taking at $\sqrt{s} = 7$ TeV, publishing physics results, including b physics
- Majority of data collected were at close to the LHCb nominal luminosities, ~10³²cm⁻²s⁻¹, but with almost one order of magnitude less number of bunches, resulting in many events with more than one pp interactions.
- However, LHCb detector could reconstruct clean B signals, due to excellent PID, momentum measurement and vertex determination even in those conditions.
- High event readout rate (~1 MHz) followed by complete software based trigger allowed LHCb to follow the luminosity evolution effectively.
Conclusions

- We expect to collect 1 fb⁻¹ data in 2011, in a condition close to the nominal running, i.e. average pp interaction per bunch crossing of <1. (number of bunches will be steadily increased)
- Extrapolating the 2010 studies, with 1 fb⁻¹ data we expect to produce interesting results in $B_s \rightarrow \mu\mu$, CPV in J/ $\psi\phi$, B_s oscillations, $B_s \rightarrow K^{\mp}\pi^{\pm}$, $B_d \rightarrow \pi^{+}\pi^{-}$, as well as many charm studies including D⁰ oscillations and CP violation. If we continue to run in 2012, improved γ measurements and K*⁰ $\mu^{+}\mu^{-}$ studies could emerge.
- Finally it gets exciting!

Now

May be a surprise! LHCb with 10 fb⁻¹

