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It IS the LHC era !

The collider and detectors all perform superbly!

Experiments reached the crucial step:

The Standard Model has been re-discovered,

marching to the discovery!

Congratulations to the LHC accelerator physicists!

Congratulations to the detector designers/makers!

Congratulations to the HEP community!



The SM re-discovery:
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Hadronic production cross section:

σ(S) =
∑

ij

∫

dτ
dLij

dτ
σij(s), τ = s/S = (pi + pj)

2/S, s > (1 GeV)2,

dLij

dτ
≡

∫ 1

τ

dx1

∫ 1

τ/x1

dx2 fi(x1)fj(x2) δ(x1x2 − τ) =

∫ 1

τ

dx1

x1

fi(x1, Q
2) fj(

τ

x1

, Q2).

• Beautiful confirmation of the discovery history;

• Powerful experiments for future discovery.
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Some results have gone BEYOND the Tevatron !

ATLAS jet distributions: m2(jj) = (pj1 + pj2)
2.

We are in the stage of discovery at the Tera-scale!
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Theoretical Expectations

Despite the tremendous success of SM,
there are more questions than answers.

• The origin of masses and their hierarchy?

• Flavor mixing, new sources of CP violation?

• Baryon-Antibaryon asymmetry?

• Dark matter particle(s)?

• Unification of strong-electro-weak interactions?

• Space-time property, gravitation, extra-dimensions?

• ... ... ... ...

But theorists are not short of ideas (imagination)!



All BSM:
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#1 : “Most-wanted” New Physics:
• Electroweak Symmetry Breaking and Mass Generation

Normal phase⇒
E2 = p2c2

Long-range force

⇐Superconducting phase

E2 = p2c2 + m2c4

gap leads to ∼ exp(−r/λ)

λ ∼ m−1 penetration depth

In “conventional” electro-magnetic superconductivity:

mγ ∼ me/1000, T em
c ∼ O(few K). BCS theory.

In “electro-weak superconductivity”:

mw ∼ G
−1

2
F ∼ 100 GeV, Tw

c ∼ 1015K!What at work?
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• A “No-Lose Theorem”

Recollection: In Fermi’s weak interaction theory

M(eν → eν) ∼ GFE2
ν .

Due to Lee and Yang (1960):

Partial-wave unitarity (probability conservation) demands

New Physics to enter for rescue, before Eν < 300 GeV.

(a)

E < MW

W

(b)

E > MW

⇒ MW ≈ 80 GeV!

W±/Z0 discovery (1983)!
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(b)

E > mh

M(WLWL → WLWL) ∼


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

E2
cm/v2 no light Higgs,

m2
h/v2 with a SM Higgs.

Partial-wave unitarity demands

a0 =
1

16π

m2
h or E2

cm

v2
<∼ 1

⇒ mh or Ecm <∼ O(1 TeV).

We thus expect

Higgs or alike: h0, H0, A0, H±...

Or related new dynamics: πTC, ρTC , VKK, ...

to show up below O(1 TeV)!
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#2 : “Most natural” New Physics:

A lonely Higgs boson is NOT enough!

Due to quantum corrections, the Higgs mass is quadratically sensitive

to the new physics (cutoff) scale: ∼ Λ2.

(a) (c)(b)

t
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hh h h
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tc

m2
H = m2

H0 − 3

8π2
y2
t Λ

2 +
1

16π2
g2Λ2 +

1

16π2
λ2Λ2

If Λ2 ≫ m2
H, then unnaturally large cancellations must occur.
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Put the “fine tune” in perspective:

higgs

tree

(200 GeV)
2

~2
hm

gaugetop

loops

(200 GeV)2 = m2
H0 +

[

−(2 TeV)2 + (700 GeV)2 + (500 GeV)2
]

(

Λt,W,H

10 TeV

)2

If believing Λ → MPL, then the cancellation IS ... !!! ???

“Naturalness requirement”: less than 90% cancellation on m2
H

Λt <∼ 3 TeV ΛW <∼ 9 TeV ΛH <∼ 12 TeV

⇒ Need SM-particle “partners”:

Supersymmetry: t ↔ t̃, W ↔ W̃ , G ↔ G̃, ...

Little Higgs: t ↔ T, W ↔ WH, γ ↔ AH, ...

to keep the Higgs “naturally” light mH ∼ 200 GeV.
⇒ Oftern the new symmetry leads to a light DM particle.
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#3 : “Likely” New Physics:

⇒ Gauge extensions:

Z′, for U(1)χ, B−L, KK;

W±
R , for SU(2)R, H, KK;

g′, for SU(3)Ax, KK;

Associated exotic states, such as lepto-quarks lq...

⇒ Fermionic extensions:

Heavy leptons: N0, T±... for neutrino masses;

4th family: N0, L±, U, D;

Exotic (vector-like) quarks: X5/3, −4/3....
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#4 :“Most exciting” (unlikely) New Physics:

⇒ Low scale string resonances

Mn =
√

n Ms, J = 0, 1, 2...; 1/2, 3/2....

TeV-scale black holes, string balls

to light up the detector.

Monopole that leads to large missing energy.

A hidden (valley) sector?

A new dynamical sector, weakly coupled to us.

Unparticles?

Theorists have a first thought.
Experimenters have the last words.
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Phenomenology

in The Discovery Era

Traditional phenomenological approach:
For a favorite theoretical model (of yours):

(1). Lay out the particle spectrum and their interactions;

(2). Propose unique observable signatures;

(3). Estimate the experimental sensitivities: S/B.

Game change: For a given data set,

(1). Provide adequate (theoretical) explanation;

(2). Search for deviations from known physics;

(3). Identify new physics.

“Lamp-post approach.”
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Event rates dictate the search:

• Jet inclusive or di-jet events

⇒ search for colored exotics.

• Single photon + jet

⇒ search for colored exotics.

• Lepton + X

⇒ charged leptons, lepto-quarks, W ′.
• High-mass DY lepton pairs

⇒ color-singlet resonances J = 1,2

• Jet, ℓ’s+missing ET

⇒ g̃, χ̃±,0, models with DM candidates.

• tt̄

⇒ (un)colored resonances J = 0,1,2.

• W±W∓, W±Z, ZZ, W±γ, Zγ, γγ

⇒ H0, Z ′, W ′, ρTC; L±, Q...

• ... ...

This is likely the order of experimental (and thus theory) publications.
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• Strong interactions: g2
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• High partonic luminosity: uv, dv, g.

σ(S) =
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∫
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(b). TeV scale new physics
with simplest topology/cleanest signatures:

• Resonance production, with simple decays:

R → jj, ℓ+ℓ−, ℓj, ℓ±ν, ...

• Large energy release:

heavy pair or exotic states production,

g̃g̃, q̃q̃, T T̄ , BH... → E/T+multiple jets, leptons ...

Plenty of Examples (in well-motivated theories).
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Mq∗ > 1.53 TeV (ATLAS), 1.58 TeV (CMS);
Mstringy > 2.5 TeV (CMS);

Contact interaction Λ > 3.4 TeV (ATLAS), 4 TeV (CMS).

First BSM physics search beyond the Tevatron reach!



Colored resonances: Theoretical extension∗

Particle Names J SUC(3) |Qe| B Related models
(leading coupling)

Eµ
3,6 (uu) 0, 1 3, 6

4
3

−2
3

scalar/vector diquarks

Dµ
3,6 (ud) 0, 1 3, 6

1
3

−2
3

scalar/vector diquarks; d̃

Uµ
3,6 (dd) 0, 1 3, 6

2
3

−2
3

scalar/vector diquarks; ũ

u∗
3,6 (ug) 1

2
, 3

2
3, 6̄

2
3

1
3

excited u; quixes; stringy

d∗
3,6 (dg) 1

2
, 3

2
3, 6̄

1
3

1
3

excited d; quixes; stringy

S8 (gg) 0 8S 0 0 πTC, ηTC

T8 (gg) 2 8S 0 0 stringy

V 0
8 (uū, dd̄) 1 8 0 0 axigluon; gKK, ρTC; coloron

V ±
8 (ud̄) 1 8 1 0 ρ±

TC

∗TH, Ian Lewis, Zhen Liu, arXiv:1010.4309 [hep-ph].



Mass bounds (coupling constant and BR of unity):
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Eµ
6 2.5 TeV (CMS) E6 2.1 TeV

Dµ
6 2.3 TeV (CMS) D6 1.9 TeV

Uµ
6 0.8,0.9 − 1.1,1.4 − 1.6 TeV (CMS) U6 0.5 TeV

Dµ
3 1.9 TeV (CMS) D3 0.8,0.9 − 1.2,1.3 − 1.7 TeV

u∗
6 1.7 TeV (CMS), 1.6 TeV (ATLAS) d∗

6 1.1 TeV, 1.2 TeV

V ±
8 1.7 TeV (CMS) V 0

8 1.6 TeV

S8 0.8 TeV (CMS) T8 0.7 TeV ,

This is NOT our goal. This is for preparation.

Hopefully, this preparation will be paid off for discovery!



Example II: W ′ Search: ℓ± + E/T channel



Example II: W ′ Search: ℓ± + E/T channel

Already way beyond the Tevatron bound (∼ 900 GeV)!

The Z ′ bound is slightly weaker.



Theoretical extension∗

∗Cheng-Wei Chiang, G. Ding, N. Christensen, TH, arXiv:11xx.xxxx [hep-ph].



Theoretical extension∗

Once observed, we will need the details studies.

∗Cheng-Wei Chiang, G. Ding, N. Christensen, TH, arXiv:11xx.xxxx [hep-ph].



Example III: MSUGRA exclusion in E/T+jets channel:



Example III: MSUGRA exclusion in E/T+jets channel:

More results will come in the near future.

We are marching toward discoveries!
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Recap:

• We are in the ”discovery era”!

• LHC will fully explore the Tera-scale: a “No Lose theorem”.

• The rule of game changed: “data-driven phenomenology”.

• Many theoretically motivated scenarios

will be put in test one by one.

• Powerful theoretical tools available, and being developed.

Real excitement for discovery and thereafter
yet to come !


