

LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Cheng-Wei Chiang (蔣正偉) National Central Univ. and Academia Sinica

A. G. Akeroyd and CC: PRD **80**, 113010 (2009) (0909.4419 [hep-ph]) A. G. Akeroyd, CC, and N. Gaur: JHEP **11**, 005 (2010) (1009.2780 [hep-ph])

OUTLINE

- Motivation of Higgs Triplet Model (HTM)
- Properties of charged Higgs bosons (H^{±±} and H[±])
- Production and signature of H^{±±} at hadron colliders
- Summary

PHYSICS BEYOND SM

- Theoretical considerations suggest new physics:
 - Naturalness (fine-tuning or hierarchy problem)
 - Cosmological constant problem
 - Origin of CP violation and Baryon Asymmetry of Universe (BAU)
 - Flavor problem and GUT's
- Experimental evidence *demands* physics beyond the SM:
 - Terrestrial: neutrino oscillation phenomena
 - Celestial: dark matter (DM) and dark energy (DE)

NEUTRINO MASS DATA

- Cosmic and astronomical observations: $\Sigma m_v \le 1 \text{ eV}$. Seljak 2004
- Solar and atmospheric neutrino experiments give: $\Delta m_{21}^2 \simeq 8 \times 10^{-5} \text{eV}^2 , \qquad |\Delta m_{31}^2| \simeq 2.5 \times 10^{-3} \text{eV}^2 ,$ $\sin^2 2\theta_{12} \simeq 0.8 , \qquad \sin^2 \theta_{23} = 0.5 , \qquad \sin^2 2\theta_{13} \simeq 0 ,$ Maltoni, Schwetz, Tortola, Valle 2004
- Normal hierarchy (NH): $\Delta m_{31}^2 > 0 \Rightarrow m_3 > m_2 > m_1$.
- Inverted hierarchy (IH): $\Delta m_{31}^2 < 0 \Rightarrow m_2 > m_1 > m_3$.

ORIGIN OF MASSES

- Masses of most particles in SM are given through the VEV of the Higgs boson:
 - EW gauge bosons: Higgs mechanism
 - Quarks and charged leptons: Yukawa couplings with Higgs boson
- What is the mechanism responsible for neutrino masses?
 - Same as others \Rightarrow Yukawa couplings $\leq 10^{-11} \Rightarrow$ fine-tuning
 - Explore possibilities beyond SM

SEESAW MECHANISM

Minkowski 1977; Gell-Mann, Ramond, Slansky 1979; Yanagida 1979; Glashow 1980; Mohapatra, Senjanovic 1980

- SM neutrinos can be naturally much lighter than their charged partners and of *Majorana* nature.
- Achieve seesaw while:
- ⇒ keeping the SM gauge group $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$.
- ➡ adding at most one type of new particles to the spectrum.

"The 'most natural' new physics: A lonely Higgs boson is NOT enough!"

-- Han's talk

SEESAW TYPE II (AKA HTM)

• Introduce a triplet Higgs field Δ (1,3,2): $\Delta = \begin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}$

Konetschny, Kummer 1977; Schechter, Valle 1980; Cheng, Li 1980; Gelmini, Roncadelli 1981

with gauge invariant potential $(m^2 < 0, M_{\Delta}^2 > 0 \text{ and } \mu > 0)$: $\mathcal{L} \supset (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - m^2(\Phi^{\dagger}\Phi) - \lambda(\Phi^{\dagger}\Phi)^2$ $+ \operatorname{Tr}(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) - M_{\Delta}^2\operatorname{Tr}(\Delta^{\dagger}\Delta) - \frac{\mu}{\sqrt{2}}(\Phi^T i\sigma_2\Delta^{\dagger}\Phi)$ $-\lambda_1(\Phi^{\dagger}\Phi)\operatorname{Tr}\Delta^{\dagger}\Delta + \lambda_2(\operatorname{Tr}\Delta^{\dagger}\Delta)^2 + \lambda_3\operatorname{Tr}(\Delta^{\dagger}\Delta)^2 + \lambda_4\Phi^{\dagger}\Delta\Delta^{\dagger}\Phi$ $-h_{ij}\psi_{iL}^T C i\sigma_2\Delta\psi_{jL} + \text{h.c.}$ $\times \Phi_{\mu} \Phi_{\mu}$

Triplet VEV and Majorana neutrino mass

$$\langle \delta^0 \rangle = \frac{v_\Delta}{\sqrt{2}} , \quad v_\Delta = \frac{\mu v_0^2}{\sqrt{2}M_\Delta^2} , \quad M_\nu = \sqrt{2}hv_\Delta$$

HIGGS BOSON SPECTRUM

- The HTM has 7 Higgs bosons: $H^{\pm\pm}$, H^{\pm} , H^{0} , A^{0} , and h^{0} .
- $H^{\pm\pm}$ is purely triplet $\delta^{\pm\pm}$, a very unique feature.

• Higgs boson masses as a function of the μ parameter. (e.g., $v_{\Delta} = 1$ GeV, $\lambda = 0.566$, $\lambda_1 = 0$, $\lambda_{2,3} = 1$, $\lambda_4 = 0, -1$)

CONSTRAINTS ON V_{Δ}

- Based on realistic neutrino masses, perturbation is allowed for $v_{\Delta} \ge 1$ eV.
- Non-zero Higgs triplet VEV leads to $\rho \equiv \frac{M_W^2}{M_Z^2\cos^2\theta_W} \neq 1$

Current $\varrho^{exp} \approx 1.0004^{+0.0008}_{-0.0004}$ requires that $v_{\Delta} \leq a \text{ few GeV.}$

PDG 2008; Abada et al 2007

DECAY MODES

 Both H^{±±} and H[±] can decay dominantly into *leptonic* final states -- more desirable at hadron colliders.

• Concentrate on small v_{Δ} scheme (< 10⁻⁴ GeV) and assume $M_{H^{\pm\pm}} = M_{H^{\pm}}$ for simplicity.

LEPTONIC H^{±±} DECAYS

• BF's of leptonic modes versus lightest neutrino mass, assuming zero Majorana phases: Perez et. al. 2008

SEARCHES AT TEVATRON

- Smoking gun of the model: production of doubly-charged Higgs boson that then decays into like-sign lepton pairs.
- CDF and D0 at Tevatron started first searches in 2003.
- The searches have assumed
 - $q\bar{q} \to \gamma^*/Z \to H^{++}H^{--}$ is the only significant production channel
 - H^{±±} decays into like-sign muon pairs at 100% rate.

RESULTS

D0 2008

- Left panel: look for two same-sign $\mu^{\pm}\mu^{\pm}$.
- Right panel: look for two same-sign $\mu^{\pm}\mu^{\pm}$ and one μ^{\mp} .

LOWER MASS LIMIT

D0 2008

• D0 concludes that $m_{H^{\pm\pm}} \ge 150$ GeV, based on $p\bar{p} \rightarrow H^{++}(\rightarrow \mu^{+}\mu^{+})H^{--}(\rightarrow \mu^{-}\mu^{-})$

However, they have overlooked:
(A) one important mechanism, and (B) other final states.

H^{±±} Production

• $\sigma_{H^{\pm\pm}H^{\mp\mp}}$ is a function of $m_{H^{\pm\pm}}$ and independent of h_{ij} .

Barger et al 1982; Gunion et al 1989; Huitu et al 1997

• $\sigma_{H^{\pm\pm}H^{\mp}}$ is a function of $m_{H^{\pm\pm}}$ and $m_{H^{\pm}}$. Gunion 1998, Dion et. al 1999

 If m_H^{±±} ~ m_H[±], then σ_H^{±±}_H[∓] and σ_H⁺⁺_H⁻⁻ are about same order of magnitude ⇒ equally important!

 $(\partial^{\mu} H^{--}) H^{++} (g W_{3\mu} + g' B_{\mu}) + \text{h.c.}$

 $ig \left[(\partial^{\mu} H^{++}) H^{-} - (\partial^{\mu} H^{--}) H^{+} \right] W^{+}_{\mu} + \text{h.c.}$

TOTAL CROSS SECTION

MULTI-LEPTON CHANNELS

- 4-lepton final states are clear channels from pair production of doubly-charged Higgs boson.
- 3-lepton final states with two same-signs and the other opposite-sign have a higher production rate and are best for discovery. del Aguila, Aguilar-Saavedra 2009
- Consider only light charged leptons (l =e,μ), because τ is more difficult to identify as it often decays hadronically.
 D0 has only looked for μ[±]μ[±]μ[∓], whereas there are totally
- six light 3-lepton channels:

 $e^{\pm}e^{\pm}e^{\mp}, e^{\pm}e^{\pm}\mu^{\mp}, e^{\pm}\mu^{\pm}e^{\mp}, e^{\pm}\mu^{\pm}\mu^{\mp}, \mu^{\pm}\mu^{\pm}e^{\mp}, \text{ and } \mu^{\pm}\mu^{\pm}\mu^{\mp}$

TRI-LEPTON CROSS SECTION

• Define reduced (normalized) cross section through $\sigma_{\ell\ell\ell} = \hat{\sigma}_{\ell\ell\ell} \times \sigma(pp \to H^{++}H^{--})$

first t

last o

• Reduced cross sections of the six channels are (for LHC):

$$\hat{\sigma}_{eee} = \mathcal{B}_{ee} \left[\mathcal{B}_{ee} + 2(\mathcal{B}_{e\mu} + \mathcal{B}_{e\tau}) + 1.8\mathcal{B}_{e\nu} \right] , \hat{\sigma}_{ee\mu} = \mathcal{B}_{ee} \left[2(\mathcal{B}_{\mu\mu} + \mathcal{B}_{e\mu} + \mathcal{B}_{\mu\tau}) + 1.8\mathcal{B}_{\mu\nu} \right] , \hat{\sigma}_{e\mue} = \mathcal{B}_{e\mu} \left[\mathcal{B}_{e\mu} + 2(\mathcal{B}_{ee} + \mathcal{B}_{e\tau}) + 1.8\mathcal{B}_{e\nu} \right] , \hat{\sigma}_{e\mu\mu} = \mathcal{B}_{e\mu} \left[\mathcal{B}_{e\mu} + 2(\mathcal{B}_{\mu\mu} + \mathcal{B}_{\mu\tau}) + 1.8\mathcal{B}_{\mu\nu} \right] , \hat{\sigma}_{\mu\mue} = \mathcal{B}_{\mu\mu} \left[2(\mathcal{B}_{ee} + \mathcal{B}_{e\mu} + \mathcal{B}_{e\tau}) + 1.8\mathcal{B}_{e\nu} \right] , \hat{\sigma}_{\mu\mu\mu} = \mathcal{B}_{\mu\mu} \left[\mathcal{B}_{\mu\mu} + 2(\mathcal{B}_{e\mu} + \mathcal{B}_{\mu\tau}) + 1.8\mathcal{B}_{\mu\nu} \right]$$

wo of same sign and ne of opposite sign and ditional contribution to these processes than CDF and D0 considerations, 1.2 for Tevatron

IMPACT OF SINGLE PRODUCTION

• With or without the single production at LHC, assuming zero Majorana phases and NH:

RESULTS

• Reduced cross section as a function of lightest neutrino mass at LHC, assuming zero Majorana phases:

EFFECTS OF MAJORANA PHASES

• Reduced cross sections for $m_0 = 0.2 \text{ eV}$.

NUMBER OF EVENTS

• Expected number of tri-lepton events being produced at hadron colliders for different masses of doubly-charged Higgs boson under certain integrated luminosities:

	\mathcal{L} (fb $^{-1}$)	$m_{H^{\pm\pm}}$	$\sigma_{\ell\ell\ell}$	$N_{\ell\ell\ell}$	
Tevatron	10	150 GeV	$\sim 20~{ m fb}$	~ 200	
LHC	10	150 GeV	$\sim 200~{\rm fb}$	~ 2000	
LHC	100	250 GeV	\sim 30 fb	~ 3000	

• What are the prospects after imposing cuts and comparing to backgrounds?

≥ 3 LEPTON SEARCHES

- A search for 3 leptons and more (≥ 3 leptons) will improve the discovery prospects and have more sensitivity to the doubly-charged Higgs boson.
- Impose universal cuts, include detection efficiency, and compare with the 4-lepton search.

EVENT GENERATION

- Implement model in CalcHEP to generate signal events.
- Pass results to Pythia via the LHE interface.
- Include ISR/FSR in Pythia.
- Generate background events in Pythia.
- Use ATLFAST for simple detector simulations (jet construction, particle ID, etc).

PRE-SELECTION CUTS

- Exactly four leptons with two for each charge sign (for 4ℓ); 3 or more leptons of different signs (for $\geq 3 \ell$).
- Each lepton has $|p_T| > 5$ GeV and $|\eta| < 2.5$.
- At least two of the leptons have $|p_T| > 30$ GeV.
- Opposite-sign dilepton invariant mass > 20GeV.

HT AND MISSING ET DISTRIBUTIONS

 After imposing pre-selection cuts for CM energy = 14 TeV and L = 10 fb⁻¹.

INVARIANT MASS DISTRIBUTIONS

Opposite-sign (left) and same-sign (right) dilepton invariant mass distributions.

4-LEPTON SIGNATURE

- Only pair production mechanism contributes to this.
- For definiteness, take $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = BR(H^{\pm} \rightarrow \ell^{\pm}\nu) = 100\%$
- H_T = total transverse energy of leptons, including missing E_T from neutrinos.

	Backgrounds					Signal $(M_{H^{\pm\pm}})$		
Cut	WZ	ZZ	$t\bar{t}$	Zbb	Ztt	Wtt	$200{ m GeV}$	$600{ m GeV}$
Pre-selection	0.2	130.5	1.3	0.2	122.6	0.1	400.1	4.2
$ m_{\ell^+\ell^-} - m_Z > 10 \text{GeV}$	0.1	2.1	0.3	0	2.1	0.1	330.6	4.1
$H_T > 300 \mathrm{GeV}$	0	0.4	0	0	1.2	0	327.9	4.1
$H_T > 500 \mathrm{GeV}$	0	0.1	0	0	0.3	0	222.9	4.1
S							48.7	3.7

Table 4. Background and signal events surviving the cuts for exactly 4-lepton final states. For these numbers we have taken $\mathcal{L} = 10 \,\text{fb}^{-1}$ and $\sqrt{s} = 14 \,\text{TeV}$.

≥ 3-LEPTONS SIGNATURE

- Both production mechanisms contribute.
- Same assumptions and cuts imposed.

• Increased significance
$$S = \sqrt{2\left[(s+b)\log\left(1+\frac{s}{b}\right)-s\right]}$$

	Backgrounds						Signal $(M_{H^{\pm\pm}})$		
$\mathrm{Cuts} \Downarrow$	WZ	WWW	ZZ	$t\bar{t}$	Zbb	Ztt	Wtt	200	600
Pre-selection	591.7	3.5	203.6	159.9	57.7	212.5	9.7	1570.4	17.6
$ m_{\ell^+\ell^-} - m_Z > 10{\rm GeV}$	50.9	2.7	12.1	113.2	0.9	33.4	7.4	1397.8	17.3
$H_T > 300 \mathrm{GeV}$	7.5	1.1	1.6	8.9	0	17	3.4	1351.1	17.3
$H_T > 500 \mathrm{GeV}$	1.7	0.3	0.4	0.9	0	3.2	0.6	796.2	17.3
S								77.4	5

Table 5. Background and Signal events surviving the cuts for <u>at least 3 leptons</u> in the final state. We have taken $\mathcal{L} = 10 \,\text{fb}^{-1}$ and $\sqrt{s} = 14 \,\text{TeV}$.

5σ DISCOVERY POTENTIAL

SUMMARY

- HTM is motivated by neutrino masses and involves only a few model parameters in the Higgs sector, rendering the model relatively predictive and interesting at LHC.
- Distinctive features of the model:
 - doubly-charged Higgs boson;
 - possibly dominant like-sign dilepton decays;
 - possible lepton flavor violating processes.
- Promising final states depend on the lightest neutrino mass, assumed mass hierarchy, and Majorana phases

SUMMARY

- We include an important production channel for H^{±±} that has been ignored by the experimentalists at Tevatron.
- We have performed detailed simulations for LHC and compared the ≥ 3 ℓ signature with the 4 ℓ signature for the search of H^{±±}.

• CMS colleagues at NCU have started analyzing data!