## Simulation tools for the LHC

#### Johan Alwall 歐友涵 Fermi National Accelerator Laboratory

#### PSROC 2011 meeting, NTNU, Taipei, Taiwan, 26 Jan 2011

#### The LHC is on track!



#### but where are we heading ...?

Johan Alwall - MadGraph 5

# Are we ready?

- NLO
   Exp-TH communication
   Very exotic models

   Sectic models
   Effective theories
- DECAY CHAINS MATRIX Advanced analysis Multi-jet samples ELEMENTS techniques Cluster/Grid
  - Merging ME/PS DECAY PACKAGES
    - Testing/robustness

User friendliness

computing

# Yes! (but still work to do)

Amazing progress in simulations in recent years! Some selected topics:

- Automatic LO matrix element + parton shower matching (SM + BSM)
- Multi-parton NLO calculations
- NLO calculations + parton showers
- Public/general fast detector simulation
- BSM: From Lagrangean to simulation
- And at the end: Model communication and model building approaches!

# QCD radiation in SM backgrounds

Proper simulation of QCD radiation necessary in SM backgrounds



#### QCD radiation in BSM production [arXiv:0810.5350]

- What about BSM production?
  - Hard jets from decays
  - Large masses → Standard simulation (parton shower) expected to be more accurate
- Example: Gluino-squark separation



## **QCD** radiation in BSM production

600 GeV gluino pair production ISR = Initial state radiation



## **QCD** radiation in BSM production

600 GeV gluino pair production ISR = Initial state radiation



## **QCD** radiation in BSM production

- Especially for small mass splittings need proper QCD simulation
- Standard Pythia/Herwig doesn't do the job
- Need Matrix Element Parton Shower matching
- MadGraph/MadEvent + Pythia can do automatic matching for SM or any BSM models!

- The matrix element and parton shower formulations apply to different regions of phase space
  - Parton showers are necessary in the regions where radiation is soft or collinear
  - Matrix elements are necessary for description of high-  $p_{_{\! T}}$ , widely separated jets
- To correctly describe full phase space, they must be combined
- Criteria:
  - No overcounting or undercounting of radiation
  - Reproduce the inclusive cross section
  - Smooth distributions in all kinematical observables









#### Reglarization of matrix element divergence



2<sup>nd</sup> QCD radiation jet in top pair production at the LHC

#### Shower parameter dependence

QCD radiation for different Pythia shower params



600 GeV gluino pair production at the LHC

## Shower parameter dependence

#### QCD radiation after matching with MG/ME



600 GeV gluino pair production at the LHC

## Matching at the Tevatron



- Very good agreement in shapes (left) and in relative normalization (right).
- Different matching schemes in excellent agreement ME-PS matching by now mature and well-tested

#### **NLO Calculations**



## Multi-parton loop calculations

- Automatized loop calculations:
  - BlackHat: p p  $\rightarrow$  W + 4 j [arXiv:1009.2338]
  - GOLEM: q  $\overline{q} \rightarrow 4$  b [1001.4905], ZZ + 1j [0911.3181]
  - NLO MadGraph (using CutTools/OPP approach [arXiv:0711.3596])
- By-hand multi-parton loop calculations:
  - ROCKET:  $p p \rightarrow W + 3 j [arXiv:0901.4101]$
- Comparison (BlackHat + Rocket + Sherpa CKKW)
  - 1003.1241 (sec. 12) shows excellent agreement

#### NLO + CKKW comparison



#### Automatic real corrections

- Catani-Seymore dipole subtraction
  - Sherpa [arXiv:0709.2881]
  - MadDipole [arXiv:0808.2128, 1004.2905]
- FKS (Frixione, Kunszt, Signer) subtraction
  - MadFKS [arXiv:0908.4272]
  - Used for MC@NLO
- Work for both SM and BSM

## NLO + parton showers

Two approaches:

- MC@NLO: Counterterms for parton shower
  - Implemented processes: Higgs boson, single vector boson, vector boson pair, heavy quark pair, single top, Drell-Yan, Higgs+W/Z (with Herwig 6.5)
  - Now also with Pythia (arXiv:1002.4293)
  - Automatization under way! (Frederix, Frixione)
- POWHEG: Parton shower independent, all-posive weights
  - POWHEG BOX, allows easy implementation of new processes (arXiv:1001.2747, 1002.2581)

## **Detector simulation**

Two main candidates for fast public semi-realistic detector simulation:

- PGS (by now all theorists' favorite)
- Delphes (new and hot)



## **Detector simulation**

Two main candidates for fast public semi-realistic detector simulation:

- PGS (by now all theorists' favorite)
  - Works fine for most signal efficiencies (~20% or so)
  - Not as good for fakes (in particular tau), so background simulations not as great
  - Pretty slow (slow jet algoritm)

## **Detector simulation**

Two main candidates for fast public semi-realistic detector simulation:

- Delphes (new and hot)
  - Written by CMS experimentalists, validated to CMS
  - Considerably more realistic than PGS (e.g. includes magnetic field)
  - Considerably faster than PGS (uses FastJet for jet reconstruction)
  - Detector and trigger settings in separate input cards
  - See arXiv:0903.2225, Delphes homepage

## **BSM: From Lagrangian to simulation**

Two programs to calculate Feynman rules and generate generator-specific model files from Lagrangians:

- LanHep
  - Only for CalcHep/CompHep
- FeynRules [arXiv:0806.4194]
  - Interfaces for FeynArts/FormCalc, CalcHep, MadGraph/MadEvent, Sherpa, Whizard, Herwig++, ...

## FeynRules



## Available models in ME generators

#### Built-in models:

|       | CalcHep | Herwig       | MadGraph | Sherpa | Whizard |
|-------|---------|--------------|----------|--------|---------|
| SM    | ~       | $\checkmark$ | ✓        | ~      | ~       |
| cMSSM | ~       | ~            | ✓        | ~      | ~       |
| MSSM  | ~       |              |          | ~      | ~       |
| NMSSM |         |              |          |        | ~       |
| 2HDM  |         |              | 1        |        |         |
| UED   | ~       |              |          |        | ~       |

## Available models in ME generators

#### Models from FeynRules:

|       | CalcHep | Herwig       | MadGraph | Sherpa       | Whizard      |
|-------|---------|--------------|----------|--------------|--------------|
| SM    | ~       | ~            | ✓        | $\checkmark$ | ~            |
| cMSSM | ~       | ~            | ✓        | ~            | ~            |
| MSSM  | ~       | ~            | ~        | 1            | √            |
| NMSSM | ~       | ~            | ~        | 1            | ~            |
| 2HDM  | ~       | $\checkmark$ | ✓        | 1            | $\checkmark$ |
| UED   | ~       | $\checkmark$ | ~        | ~            | ~            |

See http://feynrules.phys.ucl.ac.be/ for latest model directory

## Model-building approaches

Three general approaches for model-building at the LHC:

- 1.Bottom-up:
  - Simple extensions to the Standard Model, perhaps inspired by subsets of larger models
  - Easy either directly in ME generator or using FeynRules (modify SM Lagrangean)
  - In MadGraph/MadEvent: USRMOD, USRMOD2
  - See e.g. arXiv:0810.3921

## Model-building approaches

Three general approaches for model-building at the LHC:

- 2.Top-down:
  - Implement complete Lagrangean, look for large range of signatures (including SMPD, cosmology...)
  - Best done using FeynRules (and after publication, submit model to model directory)
  - In MadGraph/MadEvent 4 + most other generators: Allow simulation of renormalizable theories

## Model-building approaches

Three general approaches for model-building at the LHC: 3. Effective theories:



- High-scale new physics can show up as multiparticle (contact) interactions
- With FeynRules + MadGraph 5, direct implementation/simulation of effective vertices! No limitation on allowed Lorentz structures/particle multiplicity – see http://launchpad.net/madgraph5

## Communicating models Th-Exp









## Worst solution



- Error prone
- Impossible to control for theorist
- Proliferation of private codes
- Non-repeatable

# Slightly better solution



- + Well-controled by theorist
- Difficult to control for experimentalist
- Proliferation of files
- Possibly nonrepeatable
- Difficult to vary parameter selection

## **Optimum solution**



## Towards an archive of models?

| oDel.org > SuperSym > moDel:1004.1424                                                                                                      | All papers \$ Go!                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| persymmetric models                                                                                                                        | Download:                                                                     |  |
| SSM + Z'                                                                                                                                   | <ul><li>Model files</li><li>Benchmark Points</li></ul>                        |  |
| . X                                                                                                                                        | Validation Tables                                                             |  |
| bmitted on 14 Apr 2010)                                                                                                                    | Other formats                                                                 |  |
| We present the FeynRules implementation of the extnsion of the MSSM with<br>a Z' boson. This model was first presented in arXiv:1003.1234. | Current browse context:<br>SuperSym<br>< prev   next ><br>new   recent   1004 |  |
| bjects: MSSM – Extensions (SuperSym)<br>e as: moDel:1004.0123v1 [SuperSym]                                                                 | References & Citations<br>• SLAC-SPIRES HEP<br>(refers to   cited by)         |  |
| lidation                                                                                                                                   | Bookmark (what is this?)                                                      |  |
| s model implemetation is known to work with                                                                                                | <b>• • • • • • • • • •</b>                                                    |  |
| lem                                                                                                                                        |                                                                               |  |
| rwig<br>dGraph                                                                                                                             |                                                                               |  |
| erpa                                                                                                                                       |                                                                               |  |
| ults of the validation are available here .                                                                                                |                                                                               |  |
| bmission history                                                                                                                           |                                                                               |  |
| : Mr. X [view email]                                                                                                                       |                                                                               |  |
|                                                                                                                                            |                                                                               |  |

#### Conclusions

Considerable progress in simulation tools in recent years, not least in:

- Simulation of multi-jets in SM and BSM
- NLO automatization (now up to W+4 jets!)
- Fast detector simulation
- Tools for automatized new physics simulation
  - Directly from Lagrangian to simulation
  - Effective vertices/contact interactions