Accelerator Overview

Kaoru Yokoya, KEK

7th ACFA Workshop, Taipei, Nov.9.2004

Status Design Review Test Facility Plans

A Decision

ICFA chose Superconducting Technology at ICHEP04 Beijing

ITRP Report lists advantages of SC
 http://www.ligo.caltech.edu/~skammer/ITRP/ITRP_Report_Final2.pdf
 http://www.ligo.caltech.edu/~skammer/ITRP/execsumm_final1.pdf

- Simpler operation
 - \circ Large cavity aperture \Rightarrow less sensitive to ground motion
 - \circ Large bunch distance \Rightarrow inter-bunch feedback
- Lower risk of main linac
- XFEL provides prototype
- Industrialization underway
- Less power consumption

The report also states

- We are recommending a technology, not a design
- We expect the final design to be developed by a team drawn from the combined warm and cold linear collider communities

Next Step

- Formation of international collaboration
 - We needed ITRP because 1 region alone cannot build LC
 LC never built if warm proponents give up collaboration
- Review of all the design aspects of Superconducting LC
- List up remaining R&D
- Refinements towards industrial design

Depressed?

Honestly yes, for a while, but

Quickly reforming ourselves

- Forming SCRF group
 - Fortunately we have rich manpower and experience for SCRF (Tristan, KEKB, J-Parc)
 - Planning a test facility
- ATF continues
 - The only ring that can create low emittance beam
 - May even create TESLA format beam
- Strengthening Asian collaboration (\Rightarrow Kurokawa)
- Even more enthusiastic participation of industries

Can **TESLA** be the baseline?

Still many alternatives remain after the SC/NC decision

- Accelerating gradient: 35MV/m or higher ?
- Tunnel: Single or double (or triple) ?
- Damping ring: dogbone or small ?
- Positron production: undulator or conventional ?
- Crossing angle: zero or small or large ?

Gradient

- Must reach 1TeV
- Gradient gives an impact on the site length
- Presumably not an issue for US, but
- Is an issue for Japan and, perhaps, for Germany too.
- A few candidates in Japan ≳45km, but prefer higher gradient

Site length vs. Gradient for 1TeV

Higher Gradient Cavities

- Today's data seems to indicate the SC breakdown limit already nearly reached. Max.surface magnetic field \approx 1750 Oe
- With TESLA cavity (Max.surface magnetic field)/(Accelerating electric field)=45.6 Oe/(MV/m)
- Other possible shape LL(Low Loss) type designed at JLab : 37.4 Oe/(MV/m) or reentrant type
- Can presumably reach ≥45MV/m
 At KEK Single-cell test : Dec.2004 9(8)-cell test: Sep.2005
 TESLA LL Reentrant Not to be accuarate

1/2 Tunnels?

- TESLA design adopts single tunnel, accomodating
 - Klystron
 - Linac cryomodule
 - \circ 2 Damping Ring lines
- TESLA says
 - \circ Save cost ${\sim}300 MEuro$
 - Double tunnel has ground motion problem
- But many problems of operation
- Not a big impact on overall design

Positron Production

Pros

- Polarized positron
- Single target

Cf: X-band e⁺ source requires 3 targets

 Better emittance of created e⁺ beam

Cons

- Complex commiss./operation (e⁺/e⁻ operation coupled)
- Low energy operation
- IP energy spread of e⁻ beam $0.05\% \Rightarrow 0.15\%$

Low-Energy TESLA

According to TESLA estimation

- $N(e^+)_{produced}/N_{needed}=2$ at $E_{CM}=500 \text{GeV}$
- pprox 1 at 340GeV
- pprox 1/2 at 300GeV
- Use every other pulse for e^+ generation for <300GeV Luminosity \Rightarrow half
- Special configuration for Giga-Z

Conventional Positron Production

- Hit electrom beam on target rather than photon.
- Can decouple e^+/e^- beams
- Thick target (several rad length) \Rightarrow more energy deposit
- TESLA rejected the conventional method since the design start, because of the large pulse charge (40 times X-band)
- But, later turned out 1ms pulse is long enough to prevent stress accumulation.
- US estimation says comparable to X-band
- Target damage test possible at KEKB
 - $\circ\,$ Ring total charge $\sim 10 \mu \text{C},$ close to TESLA pulse charge
 - Extraction in 10μ s by existing abort system (Extraction in 1ms requires advanced kickers)
- No polarized positron

Damping Ring

- (a) Commissioning/operation
 - DR commissioning only after linac completion
 - No DR tuning during linac repair
- (b) Stray field from linac can disturb beam extraction from DR. $O(\mu \text{Tesla})$ matters.
- (c) The long straight sections
 - Space-charge force (Coulomb force within a bunch)
 Long wiggler section needed ⇒beam stability range
- (d) Fast kicker (\leq 20ns) needed for injection/extraction

(a)+(b) (coming from sharing tunnel) can be partially solved by

in the 500GeV stage (But not in 1TeV stage)

- Space-charge problem is solved by 'coupling bump' in theoretical/computer level
- Kicker under development at DESY (data as of Apr.2004)

	spec.	measured	
Rise time (10%-90%)	8ns	4.9ns	
Micro pulse rep rate	3MHz	2MHz	
Macro pulse rep rate	5Hz	5Hz	
Amplitude stability	0.05%	1.2%	(0.2% with 30 kickers)
Residual kick	0.5%	2.75%	

Alternative Design of DR Is a smaller ring possible?

- Compress more the bunch interval
- Main motivation is to avoid interference with linac
- but not the cost issue

Numerous ideas on injection/extraction

- Stripline kicker
- Fourier kicker

$$\sum_{k=0}^{N-1} e^{i(\omega_0 + k\Delta\omega)t}$$

Difficulties of Small DR

- Even more ambitious kickers required
- Collective instabilities harder (higher beam current)

Also, note:

- We are going to adopt 35MV/m as baseline
- TESLA 35MV/m (800GeV) requires 4886 bunches (11.5ns in DR), not 2820 bunches (20ns)
- Even more bunches preferred at higher gradient (in order not to loose power efficiency)

Crossing Angle

- Basically no big difference from warm design
- except for items related to the bunch distance
 - $\circ~$ No bunch-to-bunch interference
 - IP fast feedback easier
- Three different designs

Original TE	SLA zero crossing angle
GLC	small angle (7mrad)
	\rightarrow bunch-to-bunch interference
NLC	large angle (20mrad)

- 2nd IP: e^+e^- and γ - γ compatible?
- Linac orientation is another issue

Test Facilities

blue:existing, red:near future

- US
 - SMTF at FNAL
- Europe
 - \circ TTF at DESY
 - Euro X-FEL at DESY
- Japan
 - \circ STF at KEK
 - \circ ATF at KEK

SMTF Superconducting Module & Test Facility

FNAL Meson Area SM&TF Layout Concept

Collaboration of

- FNAL, ANL, BNL, JLab, LBL, SNS, SLAC...
- DESY, INFN, KEK

SMTF Program

FNAL Meson Experimental Area: Not an LC-dedicated facility

• ILC R&D

- cryomodule fabrication
- $\circ\,$ module test with upgraded A0 injector
- \circ establish 35MV/m
- CW test area (for light source)
 - RF, cryogenics, controls
 - 20MV/m CW
- Proton Driver and RIA (Rare Isotope Accelerator) R&D
 - $\circ v < c$, 325MHz

1.3 GHz Cryomodule Test Facility

STF

Superconducting RF Test Facility

- An ideal space available at KEK near ATF
- Length: 93m tunnel
- Has been in use for J-Parc linac R&D
 To be evecuated by summer

To be evacuated by summer 2005

- Move existing refrigerator from AR East bldg
- Second-hand power system available for the first step

Here comes Hayano's SCTF_tunnel_plan4.pdf

Here comes Hayano's SCTF_detail_plan4.pdf

Present View \leftarrow Ground

\Downarrow Underground

What can be done at STF?

- 35MV/m Baseline Development
 - Establish 35MV/m
 - $\circ\,$ complete TESLA unit
 - * 3 sets of 17meter cryomodule
 - * fed by 1 klystron+1 modulator
- Higher Gradient (\sim 45MV/m) Test
 - $\circ\,$ Challenge for higher gradient
 - \circ 1 cryomodule with 2 or 4 cavities
 - \circ long module if R&D fast enough

High Grad capture section

Here comes Hayano's STF_blockdiagram.pdf

Higher Gradient Cavity R&D at KEK Pressing Nb plate

Half cells

Ater trimming

ATF

- The only machine that can reach TESLA emittance
- Cannot simulate TESLA DR in some aspects
 - o dogbone (space-charge, stray field, etc)
 - positron
- Beam dynamics items that can be studied to some extent
 - o ion instability (revisit soon)o wiggler effects (starts this month)
- Development of fast kickers
 - \circ important item for next fyscal year

Possible Extension of ATF ?

- FFTB at SLAC succeeded in getting \sim 60nm beam
- But there are still many issues on Final Focus
- We can get \sim 36nm beam by extending ATF extraction line.
- Energy spread comparable to ILC FFS, but Beam energy $200 \times$ lower \Rightarrow Geometric emittance $200 \times$ larger

Here comes Tauchi's ffir.test.layout.pdf

GDI

- Central GDI (Global Design Initiative) to be formed in Feb.2005
 - Location and director search
 - Location candidates:
 - FNALSLACLBLBNLCornell UTRIUMFDESYCCLRCKEK
- 3 Regional GDIs (North America, Europe, Asia) soon
 - $\circ\,$ Asian GDI at KEK

Most Optimistic Schedule

- CDR (Conceptual Design Report) by 2005 or early 2006
- TDR (Technical Design Report) by end of 2007
- Site selection
- Ground breaking in 2009
- Commissioning in 2014

First ILC Workshop Nov.13-15 at KEK

http://lcdev.kek.jp/ILCWS/

Participants	
Asia	79
(Japan)	(62)
Europe	46
North America	62
ILCSC	14
else	5
Total	206

Working Groups

- WG1 Overall design, facility
- WG2 RF system
- WG3 Injectors
- WG4 Beam Delivery
- WG5 Cavity