A medium size detector for the linear collider:

- The concept behind the TESLA/ LD detector
 - precision tracking
 - particle flow based event reconstruction

Ways to proceed: global detector optimization
Linear Collider precision physics:

Measurement of Higgs Mass (recoil method)
Top mass threshold measurements

Needed: excellent momentum resolution

Challenge: factor 10 better resolution than at LEP (or Tevatron) detectors
 - needs excellent resolution
 - needs excellent control of systematics

Higgs recoil Signal for changing tracker resolutions

\[\sigma \left(\frac{1}{p} \right) = 7 \times 10^{-5} / \text{GeV} \]

\[\sigma \left(\frac{1}{p} \right) = 3 \times 10^{-4} / \text{GeV} \]
The Precision Side: Vertexing

Heavy Flavor Physics at the LC

Higgs branching ratio measurements

general flavour physics (top physics,)

Needs excellent vertex detector

$$\delta(\text{IP}_{r, \text{Phi}, z}) < 5 \mu m + \frac{10 \mu m \, \text{GeV}}{p \sin^{3/2}(\theta)}$$

Significant improvement over previous detectors (SLC)
Ties Behnke: A medium size LC detector

Ansatz from the TESLA TDR:

(see e.g. Paolo Checcia's talk at LCWS04)

- large volume gaseous tracker
- medium precision SI tracker
to join the two devices
- high precision VTX
- forward SI tracking for low angles
- forward tracking behind TPC endplate
A Precision Tracker

Ansatz from the TESLA TDR:

(see e.g. Paolo Checcia's talk at LCWS04)

large volume gaseous tracker

medium precision SI tracker
to join the two devices

high precision VTX

forward SI tracking for low angles

forward tracking behind TPC endplate

result from simulation of complete system, including backgrounds

98% efficiency
Gaseous Tracking

\[e^+ e^- \rightarrow H^0 A^0 \rightarrow b \bar{b} b \bar{b} \]

advantages of gaseous tracking:
- many points
- simple pattern recognition
- redundancy

but be careful with these comparisons! Much more detailed studies are needed!
Why a TPC?

advantages of a gaseous detector:

- many space points (200 for current design)
- good precision
- TPC is true 3D device: very robust against backgrounds
- long lived particles (new particles)
- Thin (little material)

disadvantage:

- gas amplification structures needed
- HV needed (REAL HV in case of a TPC)
- “fairly” massive endplates seem unavoidable
- readout speed is limited by gas properties
Why a VTX

High precision VTX detector

- unprecedented tagging of long lived particles
 - b-, c-tagging, ...
- first layer at lowest possible radius
- excellent coverage of the solid angle
- stand alone tracking

BUT: VTX detector is most prone to suffer from backgrounds!

- pattern recognition in VTX backed up by other detectors
- design VTX with enough layers to afford “loosing” the innermost one
Combining things

The complete tracking system:
- VTX to do precise vertexing
- TPC to do precise pattern recognition
- FTD (forward SI) for full coverage to small angles
- SIT to join the two
- possibly external precise detectors (SET, FCH) to help extrapolate

K0 reconstruction:

Fraction of K0 in WW, ZZ events at 500 GeV: > 50% in general!

needed: system studies in addition to single subsystem studies
Combined Tracker: Materials etc

combined performance: adding more Silicon to the system:

momentum resolution \(1/p\) as a function of \(p\) for TPC+VTX and TPC+VTX+SIT

more material hurts \(p\)-resolution

improved resolution at large \(p\)

multiple scattering reduces resolution at small \(p\)

careful management of material budget is extremely important!
Precision Tracking?

VTX-SIT-TPC + FCH/SET: the current concept

- Optimization of the TPC:
 - Length and radius
 - Point resolution
 - dE/dx resolution
 - Material budget

- Example:
 - R = 168 cm: σ = 190 μm
 - R = 122 cm: σ = 80 μm

- Optimal SI components:
 - Number and parameters of SIT: do we need one? Extend VTX?
 - Is the VTX optimized as it stands?
 - Backed up by external SI components (SET, FCH)?

Re-visit the goals:
- What precision do we really need? Is the current goal
 - Too ambitious?
 - Not ambitious enough?
- Rely currently on (important) Higgs recoil. Other physics channels?
Jet physics: event reconstruction need excellent jet-energy (= parton energy) reconstruction

Complex hadronic final states:

- need complete topological event reconstruction
- Needed: new approach which stresses event reconstruction over individual particles:

 Particle flow

More like a revolution (though many have tried this before...)
Resolution is dominated by HCAL and by “confusion” resolution.

\[
\sigma(\text{Jet}) = \sqrt{\sum \epsilon_T^2 E_i^4 + \sum \epsilon_{\text{ECAL}}^2 E_i + \sum \epsilon_{\text{HCAL}}^2 E_i}
\]

Jet energy resolution is nearly independent from tracker res.
- driven by HCAL res

ASSUMING:
- perfect separation of particles

Effect of changing the resolutions by a scale factor
Particle Flow is influencing the detector design:

- Large inner radius of ECAL to have good separation at “moderate” fields
- Both ECAL and HCAL inside the coil
- Excellent spatial resolution of ECAL and HCAL to maximize the “shower tracking”

ECAL: “obvious” choice is Tungsten absorber, fine grained readout (SI seems accepted technology)

HCAL: less obvious, different options are under study (analogue, digital)

But all push the granularity (= number of channels = cost) to new limits

Try to really optimize the size and granularity requirements to optimize the cost
Study confusion between charged and neutral particles as function of radius:

physics and CMS energy drive the relevant length scale

numbers:

\[E = 20 \text{ GeV} \text{ photon energy within } 2.5\text{cm of track for } R=168 \text{ cm (4T, SiW)} \]
\[E = 65 \text{ GeV} \text{ photon energy within } 2.5\text{cm of track for } R=127 \text{ cm (5T, SiW)} \]
Calorimeter Concepts

The medium detector concepts: SI-W ECAL calorimeter
- excellent granularity
- excellent coverage
- dense

followed by dense and segmented HCAL
- scintillator tile
- digital option

more conventional solution studied:
- compensating lead-scintillator calorimeter
- hybrid solutions (SI layers in conventional)

My personal opinion: we want the first, but maybe can only afford the second solution: need to wait for R&D program results!
The current Calorimeter Concept

compact SI-W ECAL
highly modular
highly segmented

CALICE R&D group
with participants from all three regions

backed up by HCAL within coil
Digital or analogue highly segmented
Status of Detector Concept

Current "invariants" of the concept:

- Tracking based on TPC plus Silicon Tracker
- Fine grained ECAL and HCAL to optimize particle flow
- Aggressive coverage to very small polar angles

The rest of the parameter space is wide open:

- Need to start a real optimization
- Need to fold in the results from the detector R&D which will be coming in during the next few years
Detector R&D

Ongoing detector R&D with participants from the “Medium size detector”

VTX detector R&D (CCD, MAPS,)

LC-TPC (Europe - North America - Japan (recently joined)
 only R&D activity relevant only to medium/ large size

CALICE (Europe - North America - Asia)

LC-CAL (Europe)

Forward Detector Collaboration (Europe Asia)

SiLC (Europe - North America - Asia)
Results from detector R&D will influence detector design heavily:

example: LC-TPC:
- Size of TPC is driven by precision requirement.
- Smaller TPC is possible, if we can achieve better resolution
- Have to demonstrate, that this is possible (not yet done...)

example: ECAL- HCAL
- Demonstration experiment is missing for the proposed system
- Modeling of hadronic shower needs to be verified
- Proposed construction needs to be verified

The detector R&D will play a crucial role in the further optimization of the detector (true for all concepts)
The TESLA/LD detector is a **starting point** for the design of a medium sized detector concept.

- The concept stresses high precision, robust track reconstruction and excellent particle reconstruction capabilities (particle flow).

- The ongoing detector R&D together with improved and more realistic simulations will provide crucial inputs for the further development of this concept.

- We are looking forward to exciting results over the next few years as things start to come together.

- We need to make a real effort to make the tools available for the optimization study on a short timescale!