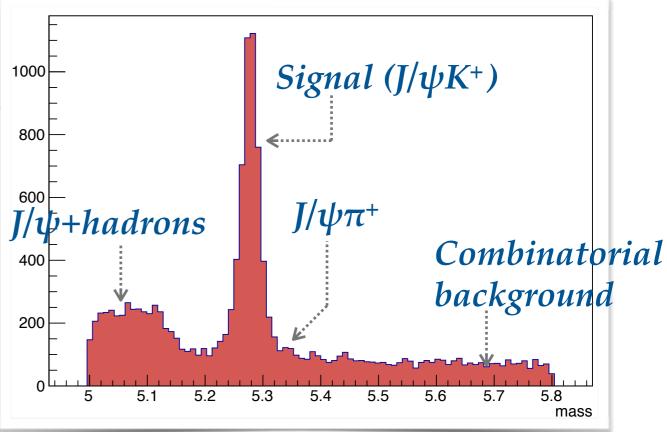

STATISTICAL **ANALYSIS IN** EXPERIMENTAL PARTICLE PHYSICS

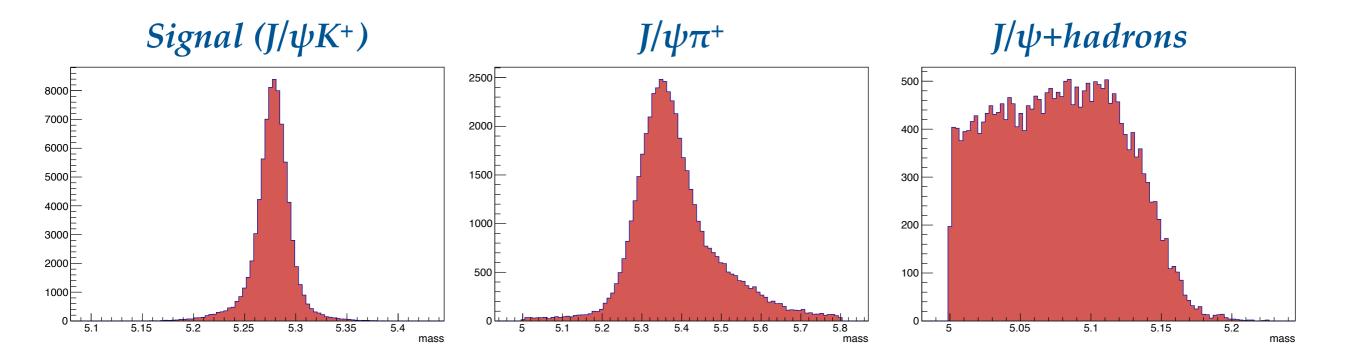
Kai-Feng Chen National Taiwan University

EXAMPLE DATA SAMPLES

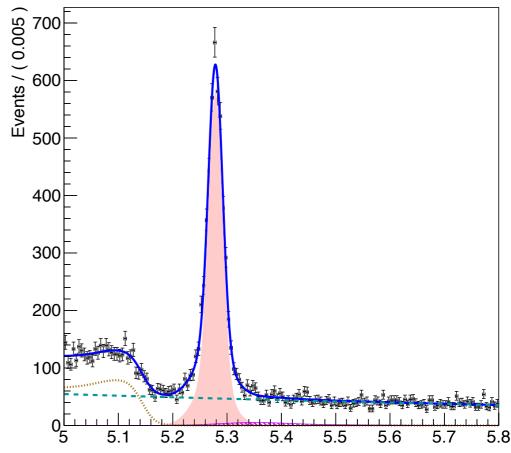

- Today we are going to have a "chained" exercises and the example data samples are given below:
 - "Experimental data":
 http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_exdata.root
 - "J/ψK⁺ Monte Carlo":
 <u>http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_signal.root</u>
 - "J/ψπ⁺ Monte Carlo":
 <u>http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_psipi.root</u>
 - "J/ψ+hadrons Monte Carlo":
 http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_psihadrons.root
- Let's practice model building and structure your own maximum likelihood fitter with these samples!

THE DATA FILES CONTAIN...

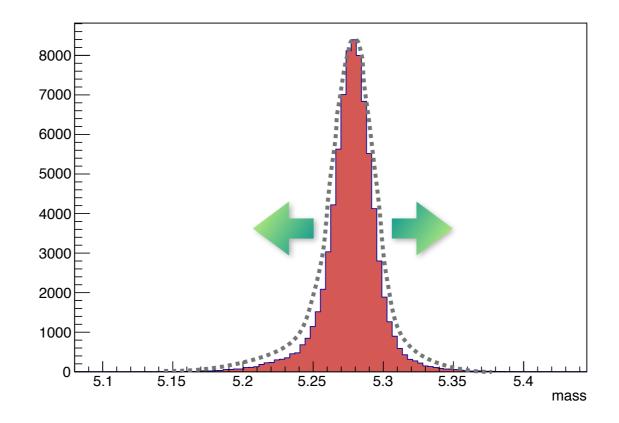
➤ The data files contain some "B⁺→J/ψK⁺" reconstructed events, and in this exercise you are requested to perform a proper maximum likelihood fit to the events, and extract the parameter(s) of interests.


```
{
    TFile *fin = new TFile("example_exdata.root");
    TNtupleD *nt = (TNtupleD*)fin->Get("nt");
    nt->SetFillColor(50);
    nt->Draw("mass");
}
Signal(J/ψK+)
```

Note there are also other variables in the ntuple: charge = candidate charge pt = transverse momentum (in GeV) eta = pseudorapidity tau = decay time (in ps)


#1: PREPARE MASS MODELS FOR EACH COMPONENT

- > Please model the mass distribution of the three components which have "Monte Carlo" samples: signal, $J/\psi\pi^+$, $J/\psi+hadrons$.
- ➤ You choose (guess) what is the best function to model them.
- Present your fit results and fit projection plots!


#2: JOINT THEM TOGETHER

- Now you have the PDF for all the components, signal, J/ψπ⁺, J/ψ +hadrons, plus a combinatorial background which does not have Monte Carlo samples, into a single extended likelihood function and perform a fit to the "experimental data".
- Present your result of the fits (*plot*) and the yields for each component!
- You can fix most of the PDFs to the Monte Carlo shapes first.
- This is more-or-less close to you can have:

#3: A CORRECTION TO THE SIGNAL WIDTH

- You may find that the signal width is somewhat not exactly the same between data and MC.
- Please try to apply an additional correction (scaling factor) to the width of your signal peak model and fit it with data.
- Present your results again.

#4: CONSTRAINING IT

- > You may find the $J/\psi\pi^+$ component is hiding under the $J/\psi K^+$ signal peak, and the fit is not so nice.
- But however we can adding more information by constraining it according to the ratio of branching fractions from PDG:

$$\frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B^+ \to J/\psi \pi^+)} = (4.00 \pm 0.39)\%$$

Hint: you can replace the yield of J/ψπ⁺ by this ratio times the yield of J/ψK⁺, and then add a Gaussian constrain term on the given ratio to your fit.

#5: IN BINS OF PT AND ETA

- Now let's study the dependence of pt and eta (these variables are also stored in the same ntuple!)
- Make a plot which shows the "fitted yields per GeV in pt" in the following bins of pt: pt = [15-16,16-17,17-19,19-21,21-25,25-30,30-40,40-60,60-100]
- Make another plot which shows the "fitted yields per 0.2 in eta", according to the following binning: eta = [0.0-0.2,0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0, 1.0-1.2,1.2-1.4,1.4-1.6,1.6-1.8,1.8-2.0]

► Note the signal shapes could be different for different bins!

#6: CHARGE ASYMMETRIC?

Please calculate the following quantity by separating the fits to the events with positive charge and negative charge:

$$A_{CP} = \frac{N_{-} - N_{+}}{N_{-} + N_{+}}$$

Try to include this A_{CP} in your fit to the data and extract the value directly within a single fit, without separating the samples! (*Hint: this requires a simultaneous fit!*)