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INTERVAL ESTIMATION

➤ The general goal of interval estimation –– with a given 
probability β, we want to find the range  
 
which can contain the true value of the parameter of interest θ0. 

➤ One can choose a large probability β (e.g. 90% or 99%), such 
that the interval indeed contains the true value.  

➤ One can choose β=68.3% or 95.5%, and derives the 
corresponding “errors” for “1σ” and “2σ”, although this is 
obviously only works for Normal distribution. 

➤ Surely this estimate depends on the definitions of the probability 
used here. Thus the meaning of the interval, will be rather 
different for the Bayesian method and frequentist method.
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INTERVAL ESTIMATION (CONT.)

➤ Different methods of interval estimation which are usually considered: 
- Normal theory interval estimation, a text-book/elementary 

frequentist method. It is an asymptotic theory, which only works 
when the estimates are approximately Gaussian distributed (very often 
the case?). 

- Likelihood-based method, which is used by Minuit and already 
touched during the last lecture! 

- Neyman construction, which is an exact frequentist method. It was 
developed by Jerzy Neyman et al around 1930. 

- Bayesian interval estimation, again, is based on the Bayes Theorem. 
It can be treated as a relatively straightforward(?) extension of the 
Bayesian point estimation.  One has to take care of the prior problems 
as usual.
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Let’s start with Bayesian method this time!



INTERVAL ESTIMATION: BAYESIAN 

➤ Remember: one can claim that all the knowledge about the 
parameter is already summarized in the posterior density  
P(θ|X) in the Bayesian parameter estimation. 

➤ To compute an interval [θL,θU] which contains a given probability 
β, one has to find two points that fulfill the condition: 
 

➤ The usual choice of β either 68.3% or 90%. This represents the 
degree of belief that the true value of θ lies within the given range.  

➤ A Bayesian interval with probability β is named as a  
credible interval, while the frequentist version is called the 
confidence interval.
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INTERVAL ESTIMATION: BAYESIAN  (CONT.)

➤ Just with the given probability β, the construction 
of the credible interval is not unique. It is common 
to impose additional choice: 

- Shortest interval: integrate over the region 
with highest posterior density, until it reaches 
the given β. This interval is not invariant under 
parameter transformation. 

- Central interval: such that the integral of 
central part is β and in each side is (1– β)/2. 
Central interval is invariant under parameter 
transformation. 

- One-sided interval: usually for obtaining an 
upper limit, especially the case when θ is near 
the end of the allowed region. One-sided 
intervals are invariant.
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NEAR THE PHYSICAL BOUNDARIES

➤ As a good feature: the prior is always zero 
in the non-physical region in the Bayesian 
method, this drives the credible interval 
must be in the allowed region. 

➤ However a measurement near the edge of 
the physical region will be biased toward 
the (interior) physically allowed region. 

- In general this is a result since the 
credible interval represents the belief 
itself.  

- But this also means that now we cannot 
distinguish the information from the 
actual measurement or from the prior.

6

Bayesian posterior 
for Poisson with 

uniform prior

0 1 2 3 4 5 6 7 8 9 10
µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
st

er
io

r d
en

si
ty

n=0

n=1
n=2

n=3
n=4



EXAMPLE: POISSON POSTERIOR WITH UNIFORM PRIOR

➤ Here we provide you an example code to produce the Bayesian 
posterior distributions for Poisson with uniform prior, with 
observed n=0,1,2,3,4:
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  TH2D *frame = new TH2D(“frame","",10,0.,10.,10,0.,1.0); 
  frame->SetStats(false); 
  frame->Draw(); 
  

  for (int n=0; n<=4; n++) {  
      TH1D *P = new TH1D(Form("P%d",n),"",500,0.,10.); 
      for (int i=1; i<=P->GetNbinsX(); i++) { 
          double mu = P->GetBinCenter(i); 
          P->SetBinContent(i, 
             TMath::Poisson(n,mu)); 
      } 
      P->SetLineWidth(3); 
      P->SetLineColor(kRed+n); 
      P->Draw("csame"); 
  }

example_01.cc
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POISSON WITH BACKGROUND

One can separate the following two cases: 

➤ Exactly known background expectation: the 
amount of background b is known and is 
fixed. e.g.  
- Expected b=3.0, observed n=0 
- Expected b=2.5, observed n=8 

➤ Background expectation is measured with 
some uncertainty: the amount of background 
b has an error associated with it. e.g. 

- Expected b=3.2±1.4 

In this case b should be treated as a nuisance 
parameter.
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EXPECTED BACKGROUND AS NUISANCE PARAMETER

➤ Everything has a probability distribution in the Bayesian 
framework, including the nuisance parameters!  

➤ For example the distribution of background is described by a  
PDF P(b). In the calculation of the posterior density, one 
has to integrate over the nuisance parameters, e.g.  
 

➤ This calculation might be heavy in terms of computing. 
However if background b is exactly known as b0, the P(b) is 
just a delta function and the integration becomes trivial. 
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EXAMPLE: POISSON POSTERIOR WITH NUISANCE
➤ Here are an example of calculating the Poisson posterior probability 

density with a nuisance parameter for background and is constrained 
by a Gaussian model.  

➤ To make our life easier, the code is based on 
RooStats::BayesianCalculator. Surely you can also do all the 
calculation by yourself!
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  using namespace RooFit; 
  using namespace RooStats; 
     

  RooRealVar x("x","dummy obs",0.,1.); 
  RooUniform pdf_x("pdf_x","dummy pdf of x",x); 
     

  RooRealVar s("s","# of signal",0.,10.); 
  RooRealVar b("b","# of background",3.2,0.,10.); 
  RooAddPdf pdf_splusb("pdf_splusb","total PDF”, 
      RooArgList(pdf_x,pdf_x),RooArgList(s,b)); 
     

  RooUniform prior_s("prior_s","prior for signal",s); 
  RooGaussian prior_b("prior_b","priot for background”, 
      b,RooConst(3.2),RooConst(1.4)); 
  RooProdPdf model("model","constrained model",pdf_splusb,prior_b);

partial example_02.cc

Build���������	
��������������������  a���������	
��������������������  dummy���������	
��������������������  extended 
s+b���������	
��������������������  PDF���������	
��������������������  for���������	
��������������������  further���������	
��������������������  use

times���������	
��������������������   
background���������	
��������������������  prior 
(=constrained���������	
��������������������  model) 



EXAMPLE: POISSON POSTERIOR WITH NUISANCE (CONT.)
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  RooWorkspace wspace("wspace"); 
  ModelConfig cfg(&wspace); 
  cfg.SetPdf(model); 
  cfg.SetParametersOfInterest(s); 
  cfg.SetPriorPdf(prior_s); 
  cfg.SetNuisanceParameters(b); 
     

  RooPlot *frame = s.frame(); 
  for (int n=0; n<=4; n++) { 
      RooRealVar nevt("nevt","# of observed event",n); 
      RooDataSet data("data","data",RooArgSet(x,nevt),WeightVar("nevt")); 
      data.add(RooArgSet(x),n); 
         

      BayesianCalculator bcalc(data,cfg); 
      RooAbsPdf *posterior = bcalc.GetPosteriorPdf(); 
      posterior->plotOn(frame, LineColor(kRed+n),LineWidth(3)); 
  } 
  frame->Draw();

partial example_02.cc
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weighted���������	
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��������������������  dummy���������	
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observable



POISSON WITH KNOWN BACKGROUND

➤ For the case of Poisson with known background and a uniform 
prior, the posterior density can be expressed as 

➤ Let’s practice the calculation of the 90% upper limit: 
 
 
 
 
 

➤ However a uniform prior PDF P(μ) cannot represent the belief:
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Observed 0 1 2 3
bkg = 0.0 2.30 3.89 5.32 6.68

0.5 2.30 3.51 4.84 6.18
1.0 2.30 3.27 4.44 5.71
2.0 2.30 2.99 3.88 4.93
3.0 2.30 2.84 3.52 4.36

P (µ|n) / (µ+ b)n

n!
e�(µ+b)

You may find the results looks 
quite reasonable, no matter with or 

with our the background. 
In particular when n=0, the limits 
decouple from the background.

Z b

a
P (µ)dµ = 0

this will happen for any finite [a,b],  
since P(μ) has to be normalized in [0,∞]



THEN…TRY SOMETHING ELSE?

➤ Since the uniform prior has such a “brief” problem, let’s examine 
the case of Jeffreys priors.  

➤ Recall: Jeffreys priors are derived to be invariant under  coordinate 
transformations.  

➤ In particular the prior 1/μ is scale-invariant; it could represent the 
belief, since it goes to zero at infinity. But this does not work either 
since it goes to infinity when μ=0.
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Observed 0 1 2 3
bkg = 0.0 0.00 2.30 3.89 5.32

0.5 0.00 0.00 0.00 0.00
1.0 0.00 0.00 0.00 0.00
2.0 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00

Bayesian 90% upper limit with 1/μ prior

The upper limits goes to zero since 
the posterior density goes to infinity 

when μ approaches zero.



THEN…TRY SOMETHING ELSE? (CONT.)

➤ There is another Jeffreys prior that 
minimizes the Fisher information 
contained in the prior: 
 
 
but obviously this does not solve the 
divergences problem with background. 

➤ The suggested Jeffreys prior to solve the 
case of Poisson with the expected 
background b is  
 
 
but this also means the prior has to 
depend on the background level.
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Observed 0 1 2 3
bkg = 0.0 1.35 3.13 4.62 6.01

0.5 1.81 2.88 4.17 5.52
1.0 1.92 2.76 3.84 5.07
2.0 2.03 2.63 3.41 4.38
3.0 2.08 2.55 3.16 3.92

Bayesian 90% upper limit  
with prior
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EXAMPLE: POISSON WITH KNOWN BACKGROUND
➤ Here are an example of calculating the upper limit table for the 

case of Poisson with known background and a uniform prior. 
Again we are using RooStats::BayesianCalculator here.
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  RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL); 
     

  TCanvas *c1 = new TCanvas("c1","",800,600); 
  c1->SetMargin(0.05,0.05,0.22,0.05); 
  c1->Divide(4,4,0.,0.); 
     

  printf("\nObserved    0    1    2    3\n"); 
  for (int b_set=0; b_set<4; b_set++) { 
      printf("bkg = %d  ",b_set); 
      for (int n_set=0; n_set<4; n_set++) { 
   

          RooRealVar x("x","dummy obs",0.,1.); 
          RooUniform pdf_x("pdf_x","dummy pdf of x",x); 
             

          RooRealVar s("s","# of signal",1E-5,15.); 
          RooRealVar b("b","# of background",b_set); 
          RooAddPdf model("model","total PDF”, 
              RooArgList(pdf_x,pdf_x),RooArgList(s,b)); 
          RooUniform prior_s("prior_s","prior for signal",s);

partial example_03.cc

Build���������	
��������������������  a���������	
��������������������  dummy���������	
��������������������   
extended���������	
��������������������  PDF



EXAMPLE: POISSON WITH KNOWN BACKGROUND (II)
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          RooWorkspace wspace("wspace"); 
          ModelConfig cfg(&wspace); 
          cfg.SetPdf(model); 
          cfg.SetParametersOfInterest(s); 
          cfg.SetPriorPdf(prior_s); 
             

          RooRealVar nevt("nevt","# of event",n_set); 
          RooDataSet data(“data","data", 
              RooArgSet(x,nevt),WeightVar("nevt")); 
          data.add(RooArgSet(x),n_set); 
         

          BayesianCalculator bcalc(data,cfg); 
          bcalc.SetLeftSideTailFraction(0.); 
          bcalc.SetConfidenceLevel(0.9); 
          SimpleInterval* interval = bcalc.GetInterval(); 
          printf("%.2f ",interval->UpperLimit()); 
             

          c1->cd(b_set*4+n_set+1); 
          RooPlot *frame = bcalc.GetPosteriorPlot(); 
          frame->Draw(); 
      } 
      printf("\n"); 
  }

partial example_03.cc Observed    0    1    2    3 
bkg = 0  2.30 3.89 5.32 6.68  
bkg = 1  2.30 3.27 4.44 5.71  
bkg = 2  2.30 2.99 3.88 4.93  
bkg = 3  2.30 2.84 3.52 4.36 

Ask���������	
��������������������  the���������	
��������������������  calculator���������	
��������������������  to���������	
��������������������  
evaluate���������	
��������������������  1-side���������	
��������������������  upper���������	
��������������������  limit

You are encouraged to 
play with different priors 

& adding background 
nuisance PDF!



EXAMPLE: POISSON WITH KNOWN BACKGROUND (III)

➤ Also get the posterior density for each configuration:
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Remark: if you want 
to try non-uniform 

prior + fixed 
background, the 

BayesianCalculator 
will be very slow. 
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Then how about those frequentist 
based methods?



INTERVAL ESTIMATION: FREQUENTIST

➤ The central problem: given a probability β, find the optimal range 
[θa,θb] in the space of θ and: 
 
where θ0 is the true value of θ. The interval (θa,θb) is a confidence 
interval. 

➤ A method gives an intervals (θa,θb) satisfying the equation above is 
said to have the property of coverage. Note: the (θa,θb) are random 
variables, θ0 is not. 

- If an interval does not hold the property of coverage, it cannot be a 
confidence interval in fact. Although one can still consider 
approximate confidence intervals, which have only approximate 
coverage. 
- Over-coverage means when P > β.  
- Under-coverage means when P < β (bad!)
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NORMAL THEORY INTERVAL ESTIMATION

➤ A data X is sampling from a Gaussian distribution N(μ,σ). 

➤ The relation between the given probability and the interval is 
straightforward when both the mean μ and variance σ2 are known: 
 

➤ When μ is unknown, the probability content of the interval [a, b] 
cannot be calculated anymore. But it is possible to evaluate the 
probability β where X lies in some interval relative to its unknown 
mean, e.g. [μ+c , μ+d], with a simple transformation Y=(X–μ)/σ: 
 

➤ Re-arrange the inequalities inside the probability gives:
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NORMAL THEORY INTERVAL ESTIMATION (II)

➤ This is working since (by shifting the calculation of probability β around the 
given data X): 

- The data are distributed according to Gaussian, and the Gaussian 
PDF is symmetric in X and μ, since it is a function only of (X−μ)2. 

- We have assumed that the integration of both variables can be 
carried out in both directions, as far as they go, i.e., there is no 
colliding of physical boundaries. 

➤ According to the theory of point estimation discussed in the previous 
lecture, both of the above bullets are true for the maximum likelihood 
and least squares estimators, asymptotically (valid when N→∞). 

➤ So we already have an asymptotically working theory of interval 
estimation!
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The extension to multiple 
variables is also straightforward!



NORMAL THEORY INTERVAL ESTIMATION (III)

➤ This is something very similar to what we already discussed when 
introducing Gaussian distribution itself! 

➤ Given a random variable X with Gaussian PDF f(X) and the 
cumulative distribution F(X), the “α-point” Xα is defined by 
 

➤ The interval [c,d] is just [Zα,Zα+β]  
obviously, as shown below for a  
Gaussian PDF with μ=0, σ=1:
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α

β

1–α–β

0c=Zα d=Zα+β

Z X↵

�1
f(X)dX = F (X↵) = ↵



NORMAL THEORY INTERVAL ESTIMATION (IV)

➤ For a given value of β, there are many possible choice of value 
α, and hence there are multiple intervals as a result.  

➤ Surely the most common choice is α=(1–β)/2, which gives 
the central interval, and is symmetric around zero. 

➤ This is what we have seen before, for a standard Normal 
distribution:
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β=(1–α)/2 Zα Zα+β

0.6827 -1.00 +1.00 
0.9000 -1.65 +1.65 
0.9500 -1.96 +1.96 
0.9545 -2.00 +2.00 
0.9900 -2.58 +2.58 
0.9973 -3.00 +3.00



INTERVAL IN MULTIPLE VARIABLES

➤ In the case of more than one dimension, the Gaussian PDF 
can be expressed as (note we have discussed this in the earlier 
lecture once!): 

➤ The quantity Q=(X–μ)TV–1(X–μ) is the covariance form of X, 
and it follows a χ2 distribution with k degrees of freedom. 
This means Q is not really dependent on μ, we can use χ2 
distribution to define the β point (Kβ2): 

➤ Thus the confidence interval becomes a confidence region 
with probability content β, defined by Q ≤ Kβ2.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Two Variables

For two Normally-distributed variables with covariance matrix
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Shown here is the case ⇢ = 0.5.
If ⇢ is negative, the major axis of the ellipse has a slope of �1.
If ⇢ = 0, the axes of the ellipse coincide with the coordinate axes.
If ⇢ = 1, the ellipse degenerates to a diagonal line.

F. James (CERN) Statistics for Physicists, 3: Interval Estimation May 2011, Stockholm 20 / 52

CONFIDENCE REGION IN 2D

➤ Consider two Normally distributed variables (t1,t2) with the 
corresponding covariance matrix V (which contains the 
correlation parameter ρ). 

➤ This is just the standard error ellipse:
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- If ρ is positive (negative), the major 
axis of the ellipse has a slope of +1(–1). 

- If ρ=0, the axes of the ellipse coincide 
with the coordinate axes.  

- If ρ=1, the ellipse degenerates to a 
diagonal line.



CONFIDENCE REGION IN 2D (CONT.)

➤ For two Gaussian-distributed variables, the probability 
contents of the three regions for different values of Kβ and 
different correlation ρ.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Two Variables
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Confidence regions for the Normal estimators t
1

, t
2

, with K� = 1, ⇢ = 0.5. The

probability content is �
1

for the elliptic regions, �
2

for the circumscribed rectangle, and

�
3

for the infinite horizontal band.

F. James (CERN) Statistics for Physicists, 3: Interval Estimation May 2011, Stockholm 21 / 52

Kβ=1 Kβ=2 Kβ=3
β1 0.393 0.865 0.989

β2

ρ=0.00 0.466 0.911 0.995
ρ=0.50 0.498 0.917 0.995
ρ=0.80 0.561 0.929 0.996
ρ=0.90 0.596 0.936 0.996
ρ=0.95 0.622 0.941 0.996
ρ=1.00 0.683 0.954 0.997
β3 0.683 0.954 0.997

 β1 β2 β3
β1 & β3 are independent of ρ!
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EXAMPLE: DRAWING THE CORRELATED 2D GAUSSIAN
➤ Here we try to draw the contours with a 2D correlated Gaussian 

distribution, as a straightforward demonstration of the 
correlation ρ!
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  TF2 *func = new TF2("func","exp(-0.5*(x*x+y*y-2*[0]*x*y)/(1-[0]*[0]))",-3,3,-3,3); 
  func->SetParameter(0,0.9); 
     

  func->SetContour(10); 
  func->SetNpx(100); 
  func->SetNpy(100); 
  func->Draw(“cont0z"); 

example_04.cc

⤺Put���������	
��������������������  the���������	
��������������������  ρ���������	
��������������������  value���������	
��������������������  here!

ρ=0 ρ=0.5 ρ=0.95



LIKELIHOOD-BASED CONFIDENCE INTERVALS

➤ Now we quickly revisit the method we already touched in the 
previous lecture: likelihood-based confidence intervals. It is kind 
of intermediate method between the Normal theory intervals 
(discussed above!) and the exact frequentist method (to be discussed 
afterwards). 

➤ This method was suggested by D. Hudson, a statistician working at 
CERN in 1964 –– it was implemented already in Minuit since 1966! 
At the time, the properties of this method were not fully understood 
and only works for simple (single-parameter) problems. 

➤ This is exactly the “MINOS” method, as the Minuit command 
which calculates this confidence interval. Statisticians started to 
study it for the multi-parameter case, ie. the profile likelihood 
method. It turns out to have a good coverage!
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LIKELIHOOD-BASED CONFIDENCE INTERVALS (II)

➤ Recall the Normal Theory, we have showed how to convert 
the PDF into a likelihood function. Now if one takes the 
logarithm of the likelihood function, the Gaussian becomes a 
parabola.
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals

µ

X

X � � X + �X � 2� X + 2�

�1/2

�2

lnL

Log-likelihood function for Gaussian X , distributed N(µ,�

2).
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α

β

1–α–β

0c=Zα d=Zα+β

lnL

Log-likelihood function for 
Gaussian X, distributed N(μ,σ).Gaussian distributed N(μ,σ).

logarithmic



LIKELIHOOD-BASED CONFIDENCE INTERVALS (III)

➤ When the data are Gaussian-distributed, the Normal Theory can 
be applied. In this case the confidence intervals can be calculated 
easily, the log-likelihood would have an exact parabolic shape as 
shown before. 

➤ Then how about an inverse case: a parabolic log-likelihood 
function also implies that the Normal theory is applicable! 

- Generally if the log-likelihood function is not parabolic, it can 
be (mostly always) transformed to a parabola by a 
transformation of the parameter ⇒ Normal theory applied. 

- However, the values of the likelihood are actually invariant 
under transformation, it is not necessary to find what is 
exactly the transformation, if we just need the likelihood itself.
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LIKELIHOOD-BASED CONFIDENCE INTERVALS (IV)

➤ Since the likelihood values are invariant, one only needs to 
catch the parameter values when 2lnL=2lnLmax−1, for the 
standard one-sigma confidence interval.
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals
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lnL

θL θU

transform θ⇔μ  
forward/backward

The interval [θL, θU] are the likelihood 
values are basically invariant 

Non-parabolic 
log-likelihood



LIKELIHOOD-BASED CONFIDENCE INTERVALS (V)

➤ In fact this method does not have good coverage for the 
simplest problem, i.e. Poisson distribution with very few 
events and no background, or some cases with “pathological” 
log-likelihood  
function, e.g. 
 
 
 
 

➤ However this method turns out to have very good coverage 
for large numbers of parameters, so it is good for handling the 
nuisance parameters.
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals
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lnL

“Pathological” log-likelihood function.

F. James (CERN) Statistics for Physicists, 3: Interval Estimation May 2011, Stockholm 48 / 52

lnL

You will run into the 
problem of local 

minimum in this case.



Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals
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THE “MINOS” COMMAND

➤ The command MINOS in Minuit finds the intersection of the 
log-likelihood function with 2lnL/Lmax=1. This gives an 
asymmetric confidence interval in general case.  

➤ The Normal theory always gives a symmetric interval around 
the best the estimated value. 

➤ When there are multiple parameters,  
the MINOS error is calculated by  
maximizing the likelihood function  
with respect to all other floated  
parameters, a.k.a. the  
profile likelihood method.
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NEYMAN CONSTRUCTION OF CONFIDENCE INTERVALS

➤ Polish mathematician Jerzy Neyman, together with Egon 
Pearson produced two major contributions in statistics: 

- The Neyman construction of confidence intervals 

- The Neyman-Pearson Test (to be discussed in the next lecture) 

➤ As for finding the exact frequentist intervals, the first 
important step is to work in the right space:  
P(data|hypothesis) –– with one axis for data, and another one for 
hypotheses 

- In fact trying to place “true values” and “measured values” 
on the same axis is not a good approach, since hypotheses 
and data are living in different spaces.
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Interval Estimation Exact Frequentist

The Neyman Construction

The confidence belt is constructed horizontally in the space of P(t|✓).

data t
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m
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t

1
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(✓)

t1(✓1)
t2(✓1)
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✓2
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1

< data < t
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) = �

where � is usually chosen to be 0.683 or 0.900.
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Remark: the solutions of t1 
and t2 are not unique for 

each θ; here we just assume 
they can be obtained/defined 

using some way! 
(e.g. central interval)

NEYMAN CONSTRUCTION

➤ Construct the confidence belt horizontally –– for each hypothetical 
value of θ, the points t1(θ) and t2(θ) are determined such that: 
 

➤ Typical choices of β are 68.3% or 90%. 
➤ Repeating the calculation for  

t1(θ) and t2(θ) and draw the  
confidence belt:
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Z t2

t1

f(t|✓)dt = � where f(t|θ) is the PDF.



NEYMAN CONSTRUCTION (II)

➤ Now the two curves of t1(θ) and t2(θ) are re-labelled as θ(t), 
then the confidence interval can be read vertically.
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Interval Estimation Exact Frequentist

The Neyman Construction 2

The two curves of t(✓) are re-labelled as ✓(t), and
the confidence limit is read vertically.
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For given observed data t0, 
the confidence interval is 

then [θL(t0), θU (t0)].

Question: how could we 
claim the coverage, e.g. 

P(θL<θtrue<θU)=β ?

confidence  
interval



NEYMAN CONSTRUCTION (III)

➤ Suppose the true value is θ0. Depending on the observed data, 
one could get the intervals either indicated as red, or as green 
vertical lines:
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Interval Estimation Exact Frequentist

The Neyman Construction 3

Suppose the true value is ✓

0

. Then, depending on the observed data,
we could get the intervals indicated as red and green vertical lines below:

data t
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Only the green confidence 
intervals cover the true 

value; red intervals are not. 
  

However, by definition  
P(t1(θ)<data<t2(θ))=β 

   

The chance of getting a 
green interval is just β.

i.e. for any value of θ0, 
P(θL<θ0<θU)=β 



Interval Estimation Exact Frequentist

Upper limits and Central Intervals

When the parameter cannot be negative but is very close to zero, one
often reports an Upper limit rather than a two-sided interval.

Confidence belts for a
Gaussian measurement
(µ unknown, � = 1).

The solid lines delimit
the central 90% confi-
dence belt, the dashed
line the 90% upper
limit.

measured mean x
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n
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0.9 central
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CHOICES OF INTERVAL

➤ As mentioned earlier, there are 
multiple choices of interval, even 
for a fixed probability β. The most 
common choice is the central 
interval, but it is also very 
common to discuss “one-side” 
only: upper limit.   

➤ In particular if the parameter has a 
physical boundary (e.g. cannot be 
negative or so). 

➤ Figure shows the confidence belts 
for a Gaussian measurement with 
unknown μ, and known σ=1.
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the central confidence belt  
P(θL>θ0)=P(θ0>θU)=(1–β)/2

   

versus the upper limit 
P(θL<θ0)=β or P(θ0<θU)=β



CONFIDENCE INTERVALS FOR DISCRETE DATA

➤ Reminder: Frequentist description of the confidence interval with a 
coverage probability β: 

➤ For the case discrete observable, one has to sum over the cases to 
fulfill the coverage: 

- A slightly over-coverage may happen when adding discrete 
probabilities.  

➤ Note the over-coverage case (P>β), it just loses the statistic power 
and results more conservative intervals, while the under-coverage 
case (P<β) is something bad and would like to be avoided definitely. 
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Z t2

t1

f(t|✓)dt = �

UX

i=L

P (ti|✓) � �



2− 1− 0 1 2 3 4
Measured Mean x

0

1

2

3

4

5

6

7µ
M

ea
n 

central  
interval

upper  
limit

PROBLEMS IN NEYMAN CONSTRUCTION

➤ Consider an example of 
Gaussian distribution (with 
σ=1) with a physical boundary 
of μ>0: 
 

➤ Empty interval: if the measured 
value of x is very negative (e.g.  
x=–2, due to some possible 
statistical fluctuations), the 
resulting confidence interval is 
an empty set since negative 
values of μ are unphysical.
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If the measured x is here, then the 
mapped interval is empty

P (x|µ) = 1p
2⇡

exp


�1

2

(x� µ)

2

�

Here are fine

X



PROBLEMS IN NEYMAN CONSTRUCTION (II)

➤ Flip-flop: physicist tend  
to decide what to report 
based on the observed 
data, e.g.  

- if measured x>3σ, 
report the central 
interval 

- if measured x<3σ, 
report the upper limit 

- if measured x<0 
(unphysical), report the 
limit obtained from x=0
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PROBLEMS IN NEYMAN CONSTRUCTION (III)

➤ Let’s examine another example, 
Poisson with background b=3: 
 

➤ Empty interval: if the measured 
n=0, the resulting confidence 
interval is an empty set since 
negative values of μ are 
unphysical. 

➤ Flip-flop: choice of interval 
based on the observed data; lead 
to under-coverage. 
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If the measured n is 0, then the 
resulting interval is empty

P (n|µ) = (µ+ 3)n

n!
e�(µ+3)

b=3



SOLUTION: THE FELDMAN-COUSINS UNIFIED APPROACH
➤ Feldman and Cousins have proposed an unified approach to solve 

the problems (flip-flopping and empty intervals due to physical boundary). 
See PRD 57 (1998) 3873. 

➤ This elegant method is to find an ordering principle which 
automatically gives the intervals with desired properties. 

➤ The key idea is the likelihood ratio ordering principle: 
 
 
where f(x|θ) is the likelihood of parameter θ given data x, 
   f(x|θ)̂ is the maximized likelihood (over θ)̂ for given data x. 

➤ Then replace the interval integration by

43

R =
f(x|✓)
f(x|✓̂)

Z t2

t1

f(t|✓)dt )
Z

R>Rmin(�)
f(t|✓)dt = �

integrate over  
the space w/ larger  
likelihood ratio R



FELDMAN-COUSINS FOR POISSON WITH BACKGROUND

➤ Let’s practice the likelihood ratio 
ordering: Poisson with background 
b=3. 

➤ Start with a target μ, and for each 
possible n, determine the P(n|μ). 

➤ Evaluate μ ̂which maximize P(n|μ) 
and the likelihood ratio R is given by 
R= P(n|μ)/P(n|μ)̂. 

➤ Add up P(n|μ) according to the  
R-ranking, until Σ P(n|μ)≥β 

➤ Repeat this for all μ, then extract the 
interval [μL,μU] with the same 
procedure.
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P (n|µ) = (µ+ 3)n

n!
e�(µ+3)

n P(n|μ) μ̂ P(n|μ̂) R Rank
0 0.030 0 0.050 0.607 6
1 0.106 0 0.149 0.708 5
2 0.185 0 0.224 0.826 3
3 0.216 0 0.224 0.963 2
4 0.189 1 0.195 0.966 1
5 0.132 2 0.175 0.753 4
6 0.077 3 0.161 0.480 7
7 0.039 4 0.149 0.259
8 0.017 5 0.140 0.121
9 0.007 6 0.132 0.050

10 0.002 7 0.125 0.018
11 0.001 8 0.119 0.006

(μ=0.5)
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FELDMAN-COUSINS FOR POISSON WITH BACKGROUND (II)

➤ For each μ, apply the likelihood 
ordering and evaluate the 
probability content over n; 

➤ Repeat for all μ, and perform the 
Neyman construction, then 
extract the resulting interval 
according to the observed data. 

➤ With this method there is no 
empty interval and no flip-
flopping. 

➤ Slightly falling into conservative 
side due to the discreteness of n.
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No problem here anymore!

central  
interval

μ=0.5 
(previous table)

upper  
limit

b=3
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FELDMAN-COUSINS FOR POISSON WITH BACKGROUND (III)

➤ The Feldman-Cousins unified 
approach has had its greatest 
success when applied to 
Poisson data, where all 
previously used methods had 
some undesirable properties. 

➤ The Feldman-Cousins coverage 
versus true mean μ “Dinosaur 
Plot”: it shows a good coverage 
(all above 90% in this Poisson 
example with background 
b=3). The “teeth” are just due 
to the discreteness of n.
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Observed 0 1 2 3
bkg = 0.0 2.44

0.5 1.94 3.86
1.0 1.61 3.36 4.91
2.0 1.26 2.53 3.91 5.42
3.0 1.08 1.88 3.04 4.42

F&C 90%  
Poisson  

upper bound



EXAMPLE: F&C INTERVAL FOR POISSON WITH BACKGROUND

➤ Here are an example code for the Feldman-Cousins calculation 
for the case of Poisson distribution with known background, 
using the RooStats::FeldmanCousins tool here!
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    using namespace RooFit; 
    using namespace RooStats; 
     

    RooRealVar n("n","observed yield",0.,50.); 
     

    RooRealVar s("s","# of signal",1.,0.,10.); 
    RooConstVar b("b","# of background",3.); 
    RooAddition mean("mean","s+b",RooArgList(s,b)); 
    RooPoisson pois("pois","Poisson PDF",n, mean); 
     

    RooDataSet data("data","data",RooArgSet(n)); 
    n.setVal(3); 
    data.add(RooArgSet(n)); 
     

    RooWorkspace *wspace = new RooWorkspace("wspace"); 
    ModelConfig cfg(wspace); 
    cfg.SetPdf(pois); 
    cfg.SetParametersOfInterest(s); 
    cfg.SetObservables(n);

⤺���������	
��������������������  set���������	
��������������������  a���������	
��������������������  constant  
���������	
��������������������  ���������	
��������������������  ���������	
��������������������  ���������	
��������������������  background���������	
��������������������  of���������	
��������������������  3���������	
��������������������  events

⤺���������	
��������������������  also���������	
��������������������  observed���������	
��������������������  3���������	
��������������������  events!

partial example_05.cc



EXAMPLE: F&C INTERVAL FOR POISSON WITH BACKGROUND (CONT.)

➤ You may find the code gives you somewhat not exactly the same 
results as we saw in the earlier slides! 

➤ This is due to the fact that the RooStats::FeldmanCousins tool is 
using Monte Carlo integration.
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    FeldmanCousins *fc = new FeldmanCousins(data,cfg); 
    fc->SetConfidenceLevel(0.9); 
    fc->UseAdaptiveSampling(true); 
    fc->FluctuateNumDataEntries(false); 
    fc->SetNBins(100); 
     
    PointSetInterval* interval = fc->GetInterval(); 
    printf("F&C interval: [%.2f, %.2f]\n”, 
         interval->LowerLimit(s),interval->UpperLimit(s));

⤺���������	
��������������������  scan���������	
��������������������  over���������	
��������������������  true���������	
��������������������  “s”���������	
��������������������  with���������	
��������������������  100���������	
��������������������  bins

partial example_05.cc

NeymanConstruction: Prog: 100/100 total MC = 40 this test stat = 
5.56255 s=9.95 [-1e+30, 1.6437]  in interval = 0 
   

[#1] INFO:Eval -- 44 points in interval 
F&C interval: [0.05, 4.55]



BACK TO THE GAUSSIAN WITH BOUNDARY EXAMPLE

➤ Let’s roll back a little bit to the previous example, Gaussian 
distribution with physical boundary at zero, and adopt the 
Feldman-Cousins method on it: 

➤ For each target μ, find μ ̂which maximize P(x|μ): 
 

➤ The likelihood ratio R can be computed: 
 

➤ Now integrated over the R-ranked interval [x1,x2], where
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P (x|µ) = 1p
2⇡

exp


�1

2

(x� µ)

2

�

µ̂ =

⇢
0 x < 0

x x � 0

P (x|µ̂) =
⇢
exp(�x

2
/2)/

p
2⇡ x < 0

1/

p
2⇡ x � 0

R =

⇢
exp[�(x� µ)

2
/2]/ exp(�x

2
/2) x < 0

exp[�(x� µ)

2
/2] x � 0

Z
x2

x1

P (x|µ)dx = � over the space R(x)≥R(x1)=R(x2)



GAUSSIAN WITH BOUNDARY

➤ Feldman-Cousins belts of 90% central 
intervals for a Gaussian measurement. 

➤ No empty intervals and no flip-flopping.
50

2− 1− 0 1 2 3 4
Measured Mean x

0

1

2

3

4

5

6

7µ
M

ea
n 

2− 1− 0 1 2 3 40
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5)

µ
P(

x|

2− 1− 0 1 2 3 4
Measured Mean x

0

0.2

0.4

0.6

0.8

1

1.2

Li
ke

lih
oo

d 
R

at
io

 R

2− 1− 0 1 2 3 40
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5)

µ
P(

x|

2− 1− 0 1 2 3 4
Measured Mean x

0

0.2

0.4

0.6

0.8

1

1.2

Li
ke

lih
oo

d 
R

at
io

 R

2− 1− 0 1 2 3 40
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5)

µ
P(

x|

2− 1− 0 1 2 3 4
Measured Mean x

0

0.2

0.4

0.6

0.8

1

1.2

Li
ke

lih
oo

d 
R

at
io

 R

μ=0.4

μ=1.6

μ=0

central  
interval

upper  
limit



COMMENT: NUISANCE PARAMETERS TREATMENT
➤ Generally in the Neyman construction, adding nuisance parameters is kind 

of awkward and easily gives an over-coverage result. This is due to the fact 
one is requiring the coverage for every possible value of the nuisance 
parameters (remember our 2D Normal theory example!). 

➤ A proper solution has been suggested by Feldman (which is beyond the F&C 
paper), it looks for a coverage in the “worst case” of the nuisance parameter. 
By modify the ranking likelihood ratio as:
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θ: signal parameter 
η: background (nuisance) parameter  
x: a measurement of θ+η 
b: a measurement of η

R =
P (x|✓, ˆ̂⌘)P (b|ˆ̂⌘)
P (x|✓̂, ⌘̂)P (b|⌘̂)

maximizes the numerator

maximizes the denominator as usual

In fact this is nothing different from making 
the nuisance parameters “profiled”!

Then proceed to the usual confidence belt construction.

⤺nuisance���������	
��������������������  PDF



COMMENT: UNIFIED APPROACH WITH 2 PARAMETERS

➤ The Feldman-Cousins approach does give good statistical 
properties: tight limit and correct coverage even with 2 
parameters. It has been demonstrated already in the original paper. 

➤ However, it is clear that the calculation becomes rather 
complicated and very difficult to use (also requires a lot of CPU 
power). 

➤ A usual alternative solution to this is to take profile likelihood 
again, i.e. when dealing with the parameter X, and make another 
parameter Y profiled.  

➤ Remark: Bayesian method can be also very problematic with 2D or 
more. Constructing a proper multidimensional prior will pose a 
great problem, and hard to be “uninformative”.
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F&C CALCULATION FOR A MORE PRACTICAL CASE

➤ As we already pointed out, the computing for Feldman-Cousins 
approach is rather heavy, in particular if one really wants follow 
the principle of confidence belt construction: 

- For each value of true θ, scanning over the possible measure x. 

- Integrate the probabilities according to the likelihood ratio 
ordering until it reaches the desired probability β. 

➤ Even if there is only one parameter of interests, the construction 
is still in 2D: true θ and measure x.  

➤ Generally if the model is complicated (and with multiple nuisance 
parameters), a quick integration is almost impossible. In many 
cases this has to be carried out by Monte Carlo integration (as you 
already seen when we are playing with the RooStats tool).
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F&C CALCULATION FOR A MORE PRACTICAL CASE (II)

➤ On the other hand, we do not really need to calculate for all possible 
value of measure x, given you may only want to study the situation for 
your observed data (only one set / one measurement!) 

➤ Based on the likelihood ratio ordering, one can in fact calculate the 
confidence level for any point of (x, θ) with toy Monte Carlo. 

➤ If we only scan over the true θ, only only for the observed data x, it 
would be a great reduction of the computing time; this is should produce  
a similar result as profile likelihood scan if everything is close to 
Normal distribution. 

➤ We will demonstrate how to do this (without RooStats tool) in the next 
example. 
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Why no RooStats tool? For easy problem this kind of heavy 
study is not really needed; for difficult problem it is already 

beyond the capability of the standard tool… 
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F&C CALCULATION FOR A MORE PRACTICAL CASE (III)

➤ Remember our confidence belt 
constructed for a Gaussian model 
with physical boundary. 

➤ You can see the confidence belt  
we saw earlier is just an extraction 
for the points with β=0.9.  

➤ For a practical case, one only need 
to scan over the true μ for a single 
value of measured x, without 
doing the full construction of the 
belt. 

➤ RooStats tool is doing the same 
thing in fact.
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scan over  
this line
if x = 2

Z
x2

x1

P (x|µ)dx = �

over the space R(x)≥R(x1)=R(x2)



EXAMPLE: STEP-BY-STEP F&C CALCULATIONS
➤ Here are a demonstration of adopting Feldman-Cousins approach. Assuming 

this is the data you received, and already fitted with a very simple model  
(note: data file is available on the lecture web!):
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  TFile *fin = new TFile("example_06.root"); 
  TNtupleD* nt = (TNtupleD *)fin->Get("nt"); 
     
  RooRealVar mass("mass","mass obs",0.,2.); 
     
  RooRealVar mu("mu","signal mean",1.0); 
  RooRealVar sigma("sigma","signal width",0.05); 
  RooGaussian gaus("gaus","signal PDF",mass,mu,sigma); 
  RooRealVar slope("slope","background slope",-0.3,-5.,5.); 
  RooPolynomial linear("linear","background PDF",mass,RooArgSet(slope)); 
     
  RooRealVar ns("ns","ns",10,0.,1000.); 
  RooRealVar nb("nb","nb",90,0.,1000.); 
  RooAddPdf model("model","PDF",RooArgList(gaus,linear),RooArgList(ns,nb)); 
     
  RooDataSet data("data","data",nt,RooArgSet(mass)); 
  model.fitTo(data,Minos(true));

example_06.cc
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A RooPlot of "mass obs"

   1  nb     8.97806e+01  1.00129e+01  -9.66491e+00  1.03692e+01 
   2  ns     1.02353e+01  4.55361e+00  -4.21951e+00  4.90387e+00 
   3  slope -4.22156e-01  4.63662e-02  -3.87779e-02  5.51910e-02

~10 signal events



void buildModel(RooWorkspace *wspace) { 
    TFile *fin = new TFile("example_06.root"); 
    TNtupleD* nt = (TNtupleD *)fin->Get("nt"); 
. . . . . .  
    wspace->import(model); 
    wspace->import(data); 
   
    delete fin; 
} 
   
void example_07() { 
    RooWorkspace *wspace = new RooWorkspace("wspace"); 
    buildModel(wspace); 
     
    RooFitResult *res0 = wspace->pdf(“model")->fitTo( 
        *wspace->data("data"),Save(true),Minos(true)); 
     
    TH1D *scan_2nll = new TH1D("scan_2nll","",101,-0.1,20.1); 
    TH1D *scan_beta = new TH1D("scan_beta","",101,-0.1,20.1); 
     
    for (int i=1; i<=scan_2nll->GetNbinsX(); i++) { 
        wspace->var("ns")->setVal(scan_2nll->GetBinCenter(i)); 
        wspace->var("ns")->setConstant(true); 
        RooFitResult *res1 =  
             wspace->pdf("model")->fitTo(*wspace->data("data"),Save(true)); 
        double d2NLL = (res1->minNll()-res0->minNll())*2.; 
   
        scan_2nll->SetBinContent(i,d2NLL); 
        scan_beta->SetBinContent(i,1.-TMath::Prob(d2NLL,1)); 
         
        delete res1; 
    }

partial example_07.cc
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➤ First perform a profile likelihood scan (with background part being 
profiled!), and convert the resulting –2lnL/Lmax to corresponding 
confidence level β: 

Before introducing a heavy F&C 
calculation, one should start from 
a lighter profile likelihood scan to 

get a rough idea!import���������	
��������������������  the���������	
��������������������  model���������	
��������������������  
into���������	
��������������������  a���������	
��������������������  RooWorkspace���������	
��������������������   
for���������	
��������������������  further���������	
��������������������  use.

Full���������	
��������������������  both���������	
��������������������  the���������	
��������������������  –ln(L/Lmax)���������	
��������������������  & 
confidence���������	
��������������������  level
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    RooRealVar* best_ns = (RooRealVar*)res0->floatParsFinal().find("ns"); 
      
    c1->cd(1); 
    scan_2nll->SetStats(false); 
    scan_2nll->GetYaxis()->SetTitle("-2ln(L/L_{max})"); 
    scan_2nll->Draw("axis"); 
     
    box.DrawBox(best_ns->getVal()+best_ns->getErrorLo(),0., 
                best_ns->getVal()+best_ns->getErrorHi(),scan_2nll->GetMaximum()); 
    for(int n=0; n<=2; n++) 
        lin.DrawLine(0.,n*n,20.,n*n); 
   
    scan_2nll->Draw("csame"); 
     
    c1->cd(2); 
    scan_beta->SetStats(false); 
    scan_beta->GetYaxis()->SetTitle("Confidence Level (#beta)"); 
    scan_beta->Draw("axis"); 
     
    box.DrawBox(best_ns->getVal()+best_ns->getErrorLo(),0., 
                best_ns->getVal()+best_ns->getErrorHi(),scan_beta->GetMaximum()); 
    for(auto prob: {0.,0.6827,0.9545}) 
        lin.DrawLine(0.,prob,20.,prob); 
     
    scan_beta->Draw("csame"); 
}

partial example_07.cc
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One can find a good match 
between MINOS error band, and 
the 68% C.L. cross points.

Proceed to F&C 
study now!



EXAMPLE: STEP-BY-STEP F&C CALCULATIONS (CONT.)

➤ Now let’s perform a Feldman-Cousins study for a given target (true) signal 
strength. 

➤ The procedure can be carried out as following: 

- Fit to data with the signal fixed to the target value, using this resulting 
model to generate toy data sets. 

- For each set of toy data, two fits are performed: one with signal fixed, 
one with signal floated. Calculate the difference in the resulting –ln(L) 
value, this actually gives the expected distribution of ln(R), where R is the 
likelihood ratio for F&C ordering. 

- Perform the same two fits to data and obtain the ln(R) for data. 

- The fraction of toy sets which has a ln(R) value greater than the value 
from data gives the estimate of confidence level β at the target signal 
strength and with the observed data.
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Example code is given in the next page.
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double FC_scan(double target_ns = 10., int ntoys = 100) 
{ 
    RooWorkspace *wspace = new RooWorkspace("wspace"); 
    buildModel(wspace); 
   
    RooFitResult *res0 = wspace->pdf("model")->fitTo(*wspace->data("data"),Save(true)); 
    wspace->var("ns")->setVal(target_ns); 
    wspace->var("ns")->setConstant(true); 
    RooFitResult *res1 = wspace->pdf("model")->fitTo(*wspace->data("data"),Save(true)); 
    double logR_data = res0->minNll()-res1->minNll(); 
     
    double beta = 0.; 
    for (int idx=0; idx<ntoys; idx++) { 
        RooWorkspace* wspace_toy = new RooWorkspace(*wspace); 
        RooDataSet *toy = wspace_toy->pdf("model")->generate(*wspace_toy->var("mass")); 
         
        RooFitResult *res1 = wspace_toy->pdf("model")->fitTo(*toy,Save(true)); 
        wspace_toy->var("ns")->setConstant(false); 
        RooFitResult *res0 = wspace_toy->pdf("model")->fitTo(*toy,Save(true)); 
         
        double logR = res0->minNll()-res1->minNll(); 
        if (logR>logR_data) beta += 1.; 
         
        delete . . . 
   } 
    beta /= (double)ntoys; 
    
    delete . . . 
    return beta; 
}

partial example_08.cc
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SCAN OVER TARGET (TRUE) SIGNAL

➤ This is what one should be able to observe: when the scanned point of 
signal strength is away from the data fitted value, the probability 
content increases. 
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ns=0 ns=2 ns=4 ns=6

ns=8 ns=10 ns=12 ns=14

99.8% 98.6% 88.2% 68.7%

39.1% 5.0% 30.0% 55.9%



void example_08() 
{ 
    RooWorkspace *wspace = new RooWorkspace("wspace"); 
    buildModel(wspace); 
     
    RooFitResult *res0 = wspace->pdf(“model")->fitTo( 
        *wspace->data("data"),Save(true),Minos(true)); 
     
    TH1D *scan_beta = new TH1D("scan_beta","",101,-0.1,20.1); 
    TH1D *scan_fc = new TH1D("scan_fc","",101,-0.1,20.1); 
     
    for (int i=1; i<=scan_beta->GetNbinsX(); i++) { 
        wspace->var("ns")->setVal(scan_beta->GetBinCenter(i)); 
        wspace->var("ns")->setConstant(true); 
        RooFitResult *res1 = wspace->pdf(“model")->fitTo( 
            *wspace->data("data"),Save(true)); 
        double d2NLL = (res1->minNll()-res0->minNll())*2.; 
        scan_beta->SetBinContent(i,1.-TMath::Prob(d2NLL,1)); 
         
        if ((i%5)==1) { 
            double beta = FC_scan(scan_beta->GetBinCenter(i),100); 
            double beta_err = sqrt(beta*(1.-beta)/100); 
            scan_fc->SetBinContent(i,beta); 
            scan_fc->SetBinError(i,beta_err); 
        } 
    }

partial example_08.cc

F&C APPROACH VERSUS PROFILE LIKELIHOOD SCAN
➤ Now we can easily calculate the confidence level for any given target 

signal strength using the F&C approach. The results can be compared 
with the result of likelihood scan:
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F&C VERSUS PROFILE LIKELIHOOD

➤ Let’s do a little bit interpolation to 
get the confidence intervals from 
F&C results (very consistent with 
MINOS = profile likelihood!)
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. . . . . .  
    scan_beta->Draw("csame"); 
    scan_fc->SetMarkerStyle(20); 
    scan_fc->Draw("esame"); 

    TF1 fl("fl", "pol3", 0.,best_ns->getVal()); 
    TF1 fr("fr", "pol3",best_ns->getVal(),20.); 
    scan_fc->Fit("fl","+R"); 
    scan_fc->Fit("fr","+R"); 
     
    printf("MINOS 68.3%% interval: [%.2f, %.2f]\n", 
           best_ns->getVal()+best_ns->getErrorLo(), 
           best_ns->getVal()+best_ns->getErrorHi()); 
    printf("F&C   68.3%% interval: [%.2f, %.2f]\n”, 
           fl.GetX(0.6827),fr.GetX(0.6827)); 
}

partial example_08.cc
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COMMENT: STEP-BY-STEP F&C CALCULATIONS

➤ We have demonstrated how to 
perform a confidence interval 
calculation using the unified 
approach, by ourselves.  

➤ The calculation is heavy even with 
such a simple model and small data 
set. The real application will require 
far more computing power.  

➤ The resulting confidence interval is 
generally consistent (with only minor 
deviations) with the profile likelihood 
scan, which is asymptotically valid.
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A finer F&C scan with more toys! 
Start to see some deviations from 

likelihood method!



COMMENT: NUISANCE PARAMETERS IN TOY MC

➤ In the previous example there are two floated nuisance parameters 
(nb and slope), in general there is no special treatment but just have 
them profiled during the generation of the test statistics distribution. 

➤ However if there is any constrained parameter, the constraint PDF 
term has to be randomized for each toy data as well. For 
example, consider a Gaussian constrained likelihood: 
 
 
The model P(λ) is generally not handled by RooFit in the event 
generation. Thus one has to either randomize the constrained mean 
(μλ) for the fitting model or λ value in the generation for each set of 
toy, according to the constraint PDF. 

➤ Otherwise the toy data will not have the proper statistical behavior!
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L0 = L(X|✓,�)⇥ P (�|µ�,��)



COMMENT: ISSUES OF THE UNIFIED APPROACH

➤ As we already see: the Feldman-Cousins unified approach solves 
the main problems when the parameter close to its physical 
boundary, within the framework of the classical Neyman 
construction. It also ensures a proper statistical coverage! 

➤ However there are some issues still: 

- constructing the confidence intervals is rather complicated, 
CPU-intensive calculation are generally required (e.g. large toy 
Monte Carlo set generation); 

- In case of zero observed events, gives better limits for 
experiments that expect higher background unlike Bayesian 
method with uniform prior (although this also happens for the 
case of non-uniform prior). 
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COMMENT: PROBLEMS WITH FREQUENTIST METHODS

➤ Just using the pure unified approach to estimate the upper limits may 
give problematic results in the presence of background. 

- In some cases, people found a statistical (under-)fluctuation of the 
background may lead to the exclusion of zero signal, which is 
unphysical. 

➡ Information is not sufficient to discriminate the b-only and s+b 
hypotheses. 

- Also, in some of the cases, when adding the channels with low 
signal sensitivity, may produce upper limits that are worse than 
without adding them.  

➤ This is the reason why people introduce a modified frequentist method 
at LEP and LHC: the CLs method. Which will be discussed in the 
next lecture.
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Not yet at the end of story!  
We will continue to discuss hypothesis testing &  
upper limit calculation again in the next lecture!



COMMENT: ROOFIT ASYMMETRIC ERROR BARS?

➤ You may have notice one thing: RooFit actually put asymmetric 
errors on data points by default. 

➤ Now we can finally come back to discuss this. Why/how RooFit 
obtain those asymmetric errors and put on the figures? 

➤ An example code to demo:
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  TH1D *hist = new TH1D(“hist", 
       "test histogram",6,-0.5,5.5); 
  for(int i=0;i<6;i++) 
       hist->SetBinContent(i+1,i); 
   

  RooRealVar x("x","x",-0.5,5.5); 
  RooDataHist data("data","data",x,hist); 
    

  RooPlot *frame = x.frame(); 
  data.plotOn(frame,LineWidth(2),MarkerSize(2.)); 
  frame->Draw();

example_09.cc
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error bar for n=0 is very 
tricky! Will discuss it later.
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(A)SYMMETRIC ERROR BARS

➤ We have to come back to the Poisson distribution: 
 
 
This gives the probability of expected mean value μ and finding n.  

➤ The usual square-root-of-n error is obtained by just setting μ to 
be observed value n, and take the variance of the distribution. For 
example, you find n=4, and set μ=n=4:
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p(n|µ) = µne�µ

n!
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Given variance is 4, so the 
“error bar” is ±2. But Poisson 
distribution is asymmetric…

p(4|μ=2) = 0.090 
p(4|μ=6) = 0.134



ALTERNATIVE OPTION

➤ Based on what we discussed earlier in this lecture, inserting the 
observed n into the Poisson PDF: 
 

➤ Basically this is a likelihood function of μ. So let’s do a 
likelihood scan as we introduced earlier in this lecture?
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MORE ALTERNATIVE OPTIONS?

➤ Well, we have discussed the Bayesian method, let’s take the 
posterior probability with an uniform prior, one can at least 
come up with two more options:
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THE FREQUENTIST APPROACH

➤ One can also adopt the full Neyman construction here, but since we 
only need to calculate the interval for a fixed given observed n, this 
can be done easily –– find extreme values of μ that are still being 
compatible with observed yield: 

- As μ>7.16, the probability to observe 4 events (or less) is <16%; 

- As μ<2.09, the probability to observe 4 events (or more) is <16%.
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ROOFIT CHOICE

➤ Let’s summarize all these different intervals:
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RooFit chooses the frequentist 
approach as the default.



ROOFIT CHOICE (CONT.)

➤ But there is an inconsistency for the case of n=0. 
This is due to the flip-flopping between 1-side and  
2-side intervals.  

➤ RooFit draws a positive error bar of around +1.2, 
but it should be in fact around +1.8 if we adopt the 
same recipe as discussed above. 

➤ The “correct” interval has been implemented within 
ROOT already. 
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  TH1D *hist = new TH1D(“hist", 
       "test histogram",6,-0.5,5.5); 
  for(int i=0;i<6;i++) 
       hist->SetBinContent(i+1,i); 
   

  hist->SetBinErrorOption(TH1::kPoisson); 
  hist->SetLineWidth(2); 
  hist->SetMarkerStyle(20); 
  hist->Draw("e0");
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SUMMARY

➤ In this lecture several methods of interval 
estimation have been discussed, including 
both Bayesian methods and frequentist 
methods.  

➤ This should give you a more general 
picture behind just quoting an error bar 
from your fitter. 

➤ For the next lecture, we are going to 
discuss the hypothesis test, and will touch 
the upper limit calculation again. 
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