using namespace RooFit; TRandom3 rnd; void buildModel(RooWorkspace *wspace) { TFile *fin = new TFile("example_splusb.root"); TNtupleD* nt = (TNtupleD *)fin->Get("nt"); RooRealVar mass("mass","mass obs",0.,2.); RooRealVar mu("mu","signal mean",1.0); RooRealVar sigma("sigma","signal width",0.05); RooGaussian gaus("gaus","signal PDF",mass,mu,sigma); RooRealVar slope("slope","background slope",-0.3,-5.,5.); RooPolynomial linear("linear","background PDF",mass,RooArgSet(slope)); RooRealVar ns("ns","ns",10,0.,1000.); RooRealVar nb("nb","nb",90,0.,1000.); RooAddPdf model("model","mass PDF",RooArgList(gaus,linear),RooArgList(ns,nb)); RooRealVar slope_mu("slope_mu","slope mean",-0.3); RooRealVar slope_sigma("slope_sigma","slope sigma",0.03); RooGaussian cons("cons","constrained PDF",slope,slope_mu,slope_sigma); RooDataSet data("data","data",nt,RooArgSet(mass)); wspace->import(model); wspace->import(cons); wspace->import(data); delete fin; } void CL_scan(double *CLs, double *CLs_err, double target_ns = 10., int ntoys = 100, bool display = false) { RooWorkspace *wspace = new RooWorkspace("wspace"); buildModel(wspace); double Q_thres[4] = {0.,0.,0.,0.}; wspace->var("ns")->setMax(target_ns); wspace->var("ns")->setVal(target_ns); wspace->var("ns")->setConstant(false); RooFitResult *res0 = wspace->pdf("model")->fitTo(*wspace->data("data"),ExternalConstraints(*wspace->pdf("cons")),Save(true)); wspace->var("ns")->setVal(target_ns); wspace->var("ns")->setConstant(true); RooFitResult *res1 = wspace->pdf("model")->fitTo(*wspace->data("data"),ExternalConstraints(*wspace->pdf("cons")),Save(true)); Q_thres[0] = max(0.,res1->minNll()-res0->minNll())*2.; // observed test stat vector stat[2]; for (int hypo=0; hypo<=1; hypo++) { for (int idx=0; idxvar("ns")->setVal(0.); if (hypo==1) ws_toy->var("ns")->setVal(target_ns); // main data RooDataSet *toy = ws_toy->pdf("model")->generate(*ws_toy->var("mass")); // complementary data ws_toy->var("slope_mu")->setVal(rnd.Gaus(ws_toy->var("slope")->getVal(),ws_toy->var("slope_sigma")->getVal())); ws_toy->var("ns")->setVal(target_ns); ws_toy->var("ns")->setConstant(false); RooFitResult *res0 = ws_toy->pdf("model")->fitTo(*toy,ExternalConstraints(*ws_toy->pdf("cons")),Save(true)); ws_toy->var("ns")->setVal(target_ns); ws_toy->var("ns")->setConstant(true); RooFitResult *res1 = ws_toy->pdf("model")->fitTo(*toy,ExternalConstraints(*ws_toy->pdf("cons")),Save(true)); double Q = max(0.,res1->minNll()-res0->minNll())*2.; // sampled test stat stat[hypo].push_back(Q); delete res0; delete res1; delete toy; delete ws_toy; } } sort(stat[0].begin(),stat[0].end()); Q_thres[1] = stat[0][(int)(0.159*ntoys)]; // null expected 16% (-1s) Q_thres[2] = stat[0][(int)(0.500*ntoys)]; // null expected 50% (median) Q_thres[3] = stat[0][(int)(0.841*ntoys)]; // null expected 84% (+1s) for (int type=0; type<4; type++) { double CL[2] = {0.,0.}, CL_err[2] = {0.,0.}; for (int hypo=0; hypo<=1; hypo++) { for (int idx=0; idx=Q_thres[type]) CL[hypo] += 1.; CL[hypo] /= (double)ntoys; CL_err[hypo] = sqrt(CL[hypo]*(1.-CL[hypo])/ntoys); } CLs[type] = CL[1]/CL[0]; if (CLs[type]>0.) CLs_err[type] = sqrt(pow(CL_err[0]/CL[0],2)+pow(CL_err[1]/CL[1],2))*CLs[type]; } if (display) { TH1D* h_stat0 = new TH1D("h_stat0","",30,0.,30.); TH1D* h_stat1 = new TH1D("h_stat1","",30,0.,30.); for (int idx=0; idxFill(stat[0][idx]); h_stat1->Fill(stat[1][idx]); } TCanvas *c1 = new TCanvas("c1","",600,600); c1->SetMargin(0.14,0.06,0.13,0.07); c1->SetLogy(); h_stat1->SetStats(false); h_stat1->SetFillColor(kBlue-10); h_stat1->GetXaxis()->SetTitle("-2log(L(#theta,#hat{#lambda}_{#theta})/L(#hat{#theta},#hat{#lambda}))"); h_stat1->GetYaxis()->SetTitle("# of toys"); h_stat1->GetXaxis()->SetTitleSize(0.06); h_stat1->GetYaxis()->SetTitleSize(0.06); h_stat1->GetXaxis()->SetTitleOffset(0.8); h_stat1->GetYaxis()->SetTitleOffset(1.0); h_stat1->Draw(); h_stat0->SetFillColor(kRed); h_stat0->SetFillStyle(3365); h_stat0->Draw("same"); TLine l1; l1.SetLineWidth(3); l1.DrawLine(Q_thres[0],0.,Q_thres[0],h_stat1->GetMaximum()); } printf("Target ns = %.1f, observed CLs = %.3f +- %.3f\n",target_ns,CLs[0],CLs_err[0]); printf("16%% null expected: %.3f +- %.3f\n",CLs[1],CLs_err[1]); printf("50%% null expected: %.3f +- %.3f\n",CLs[2],CLs_err[2]); printf("84%% null expected: %.3f +- %.3f\n",CLs[3],CLs_err[3]); delete res0; delete res1; delete wspace; } void example_04() { double CLs[4], CLs_err[4]; CL_scan(CLs,CLs_err,18.,1000,true); }