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LECTURE 1: INTRODUCTION TO PROBABILITY
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PROBABILITY?

➤ Probability is the measure of the likelihood that an event will 
occur, quantified as a number between [0,1]: 
- 0 = impossibility;  1 = certainty. 
- The higher the probability of an event,  

the more likely it is that the event will occur. 

➤ Classical probability is defined by 
 
 

- Assuming all of the cases are equally possible. 
- This only works for discrete cases rigorously. 
- Problems in continuous cases (to be discussed).

2

Number of favorable cases 
Number of total casesP = 

P = 1/2 for  
a fair coin
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It it not difficult to discuss a 
simple system like dice.

It will not be easy to go to 
something more complicated..?



WARM-UP: PROBABILITY AND COMBINATORIAL

➤ Complex cases are managed via combinatorial analysis; 
➤ Reduce the event of interest into elementary equiprobable cases.  

For example, sum of two dice below. 
➤ Set algebra may be applied to the sample space.
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2 = (1,1) 
3 = (1,2) or (2,1) 
4 = (1,3) or (2,2) or (3,1) 
5 = (1,4) or (2,3) or (3,2) or (4,1) 
… … 



WARM-UP: RANDOM EXTRACTIONS

➤ Suppose you have a bag of marbles,  
there are 3 red ones and 7 white ones. 

➤ Let’s define a “success”, which is the  
extraction of a red marble out of  
this bag: 
- Red:   p = 3/10 
- White:  1 – p = 7/10 

➤ Classical probability applies only to  
integer cases,so strictly speaking,  
p should be a rational number. 

➤ Note the “success” can be also finding an event passing your 
selection criteria, or a successfully reconstructed physics object, for 
example, a track, a EM cluster, etc.
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MULTIPLE RANDOM EXTRACTIONS

➤ Multiple independent random extractions lead to 
Pascal’s triangle-like stuff:
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BINOMIAL DISTRIBUTION

➤ Consider a distribution of “# of successes” with N trials, 
while each trial has a probability of success p: 
 

- Average: E = ⟨n⟩ = Np 
- Variance: V = σ2 = ⟨n2⟩ – ⟨n⟩2 = Np(1–p) 

➤ Frequently used for efficiency estimation with a limited size of 
sample, in this case the efficiency ε = ⟨n⟩/N = p, the 
uncertainty is given by
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P (n;N, p) =
N !

n!(N � n)!
pn(1� p)N�n

�✏ =

r
✏(1� ✏)

N

Remark:  
σε → 0 when ε → 0 or 1



IN CONTINUOUS CASES?

➤ A typical example of problematic probability definition in 
non-discrete cases – Bertrand’s paradox: 
- Given a randomly chosen chord on a circle, what is the 

probability that the chord’s length is larger than the side of 
the inscribed triangle?
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Choose two random points on the 
circumference of the circle and 

draw the chord joining them. The 
probability that a random chord is 
longer than a side of the inscribed 

triangle is 1/3.

The "random endpoints" method

…is this always true?



IN CONTINUOUS CASES? (CONT.)

➤ If one considers slightly different methods, for example:
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Choose a radius of the circle, choose a point on the 
radius and construct the chord through this point and 
perpendicular to the radius. The side of the triangle 
bisects the radius, therefore the probability is 1/2.

Choose a point anywhere within the circle and 
construct a chord with the chosen point as its midpoint. 

The chord is longer if the chosen point falls within a 
circle of radius 1/2. Thus the probability is 1/4.

The "random radius" method

The "random midpoint" method

“Random choice” is not a well defined concept in this case; some classical probability 
concepts become arbitrary until we move to discuss the probability density functions.



FORMAL DEFINITION OF PROBABILITY

➤ Mathematical probability – define Ω to be the set of all 
possible elementary events Xi, which are exclusive (ie. occurrence 
of one of them implies none of others occurs). The probability 
of the occurrence of Xi, P(Xi), to obey the Kolmogorov axioms:
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(a)P (Xi) � 0 for all i

(b)P (Xi orXj) = P (Xi) + P (Xj)

(c)
X

⌦

P (Xi) = 1

more complex probability 
expressions can be deduced 
for non-elementary events.

We require operational definitions which allows us to measure 
probabilities: Frequentist probability and Bayesian probability. 

Both of them satisfy the Kolmogorov axioms.



FREQUENTIST PROBABILITY

➤ Frequentist probability is in fact, defined along experiments. 
Consider # of events of type X is n, and total # of events is N 
obtained from a series of experiments, then the frequentist 
probability that any single event will be of type X can be 
defined as 

➤ Obviously this definition requires an infinite number of 
experiments, and it cannot be the real case! But as long as it is 
in principle possible always to perform one more experiments, 
a targeting accuracy can be obtained. 

➤ However, this definition implies an important restriction: it can 
be only applied to repeatable experiments!
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P (X) = lim
N!1

n

N



A FAMILIAR “BROKEN” CASE?
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This is definitely 
NOT a Frequentist 
probability, since 

one cannot repeat 
the experiments!

Unless you want to talk about multiverse…



BAYESIAN PROBABILITY

➤ In order to define a probability that can be applied to non-
repeatable experiments, we have to replace it by something 
else: the degree of belief, which is the basis of Bayesian 
probability. 

➤ The idea is to determine how strongly a person believes that X 
will occur by determining how much he would be willing to bet 
on it, assuming that he wins of fixed amount of X does later 
occur and nothing if it fails to occur.  

➤ P(X) is defined as the largest amount he would willing to bet, 
divided by the amounts he stands to win.  

➤ Although all these statement may sound strange, this 
definition does obey the Kolmogorov axioms.
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BAYESIAN PROBABILITY (CONT.)

➤ Bayesian probability is an interpretation of the concept of 
probability, which is interpreted as reasonable expectation 
representing a state of knowledge or as quantification of a 
personal belief. 

➤ Properties of (subjective) Bayesian probability: 
- It is as much a property of observer as it is of the system 

being observed. 
- It depends on the state of the observer’s knowledge, and 

will in general change as the observer obtains more 
knowledge.  

➤ For example, P(tomorrow is a raining day) and P(SUSY is 
true) do exist, which cannot be defined in frequentist way.
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PROPERTIES OF PROBABILITY

➤ For any probability satisfies Kolmogorov axioms, the 
following discussions do apply. 

➤ Consider a set A of elementary event Xi, we denote P(A) as 
the probability that an Xi in set A occurs.  

➤ For two non-exclusive sets A and B, the probability of an 
event occurring in A or in B, or in both can be obtained by the 
addition law:
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A B
whole space

P (A or B) = P (A) + P (B)� P (A and B)

= + –



CONDITIONAL PROBABILITY

➤ Then the conditional probability, P(A|B), the probability that an 
elementary event, known to belong to the set B, and is also a 
member of set A:
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P (A and B) = P (A|B)P (B) = P (B|A)P (A)

= × = ×

Sets A and B are said to be independent  
(occurrence of B is irrelevant to the occurrence of A) if 

P (A|B) = P (A)
or

P (A and B) = P (A)P (B)

A B
whole space



BAYES THEOREM FOR DISCRETE EVENTS

➤ The theorem which links P(A|B) to P(B|A) is the  
Bayes theorem, which follows the definition of conditional 
probability: 
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P (A|B) = P (B|A) · P (A)/P (B)

= × /

A B
whole space

Remark: using the above Bayes theorem does 
not imply you are using a Bayesian probability. 

The Bayes theorem applies to different 
probabilities as well.

This is kind of obvious from 
the formulation, but it may 
be totally straightforward if 
one considers a real case.



BAYES THEOREM

➤ Bayes theorem describes the probability of an event, based on 
prior knowledge of conditions that might be related to the event. 

➤ A common usage is to invert conditional probabilities.
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P (A|B) = P (B|A) · P (A)/P (B)

P(A|B)

P(B|A)
the likelihood of observing event B given that A is true. 
e.g. A: typhoon is landing  
 B: it is raining

the posterior probability of A is true given observing B. 
e.g. B: it is raining  
 A: typhoon is landing



BAYES THEOREM EXAMPLE

➤ Let’s consider a classical problem – suppose a drug test is 99% 
sensitive and 99% specific: 

- 99% positive results for drug users (=1% failing detection)  

- 99% negative results for non-drug users (=1% false alarm) 

➤ Suppose that 0.5% of people are users  
of the drug. What is the probability  
that a randomly selected individual  
with a positive test is a user?

19

P (U |+) = P (+|U)P (U)/P (+)

= P (+|U)P (U)/[P (+|U)P (U) + P (+|U)P (U)]

= 0.99⇥ 0.005/[0.99⇥ 0.005 + 0.01⇥ 0.995]

⇡ 33%



USING THE BAYERS THEOREM

➤ Considering a b-tag algorithm that has been developed, one 
measures the following probabilities: 
- P(b-tag|b-jet): efficiency for b-tagging (probability of true b-jet 

passing the b-tag criteria) 
- P(b-tag|not b-jet): efficiency for background 
- P(not b-tag|b-jet) = 1 – P(b-tag|b-jet) 
- P(not b-tag|not b-jet) = 1 – P(b-tag|not b-jet) 

➤ Question: given a selection of jets  
tagged as b-jets, what fraction of  
them is b-jets? ie. what is  
P(b-jet|b-tag), which is usually called  
as the purity of b-tagged jets? 
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USING THE BAYERS THEOREM (II)

➤ Answer: nope, we cannot. Missing information of P(b-jet) as: 
 

➤ P(b-tag) is known to some extent since you know how many 
candidates passing the b-tag requirement. 

➤ P(b-jet) is the true fraction of all jets that are b-jets, which is 
unknown in the current scope.  

➤ It is not straightforward to invert P(b-tag|b-jet), the efficiency 
of b-tagging, to P(b-jet|b-tag), the purity of b-tagged jets.  

➤ And you may noticed some of the “P” we are discussing in 
this example is in fact follows frequentist definition.  
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P(b-jet|b-tag) = P(b-tag|b-jet) × P(b-jet) / P(b-tag)



USING THE BAYERS THEOREM (III)

➤ How about an obviously Bayesian probability case? 
➤ Consider a background free counting experiment, a theorist 

proposed a model which predicts a signal with Poisson mean 
of 3 events. The experiment has been performed and zero 
events are observed. From Poisson distribution we know: 
- P(0 event|model true) = 30e–3/0! = 0.05 
- P(0 event|model false) = 1 
- P(>0 event|model true) = 0.95 
- P(>0 event|model false) = 0 

➤ Question: Given the result of the experiment, what is the 
probability that the proposed model is true? ie. what is  
P(model true|0 event)?
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??



USING THE BAYERS THEOREM (IV)

➤ Answer: now you can see that it is not possible to invert the 
probability due to the missing P(model true), the degree of belief in the 
model prior to the experiment. Such as 
 

➤ Let’s apply the theorem to the opposite case: 
 

➤ Remember:
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P (model true|0 event) = P (0 event|model true)⇥ P (model true)

P (0 event)

P (model false|0 event) = P (0 event|model false)⇥ P (model false)

P (0 event)

P (model false|0 event) = 1� P (model true|0 event)

P (model false) = 1� P (model true)

P (0 event|model true) = 0.05

P (0 event|model false) = 1

It is straightforward to 
obtain this relation:

P (model true|0 event) =

0.05⇥ P (model true)

1� 0.95⇥ P (model true)



USING THE BAYERS THEOREM (V)

➤ So the probability that the proposed model is true does depend on the 
result of the experiment as well as the prior probability P(model true)! 

➤ Let the “model” to be something nearly possible, for example possibly 
the SM itself: P(model true) = 1 – ε. 

- This gives P(model true| 0 event) = 1 – 20ε, still very likely to be 
true even the P(0 event|model true) is only as low as 5%! 

➤ Let the “model” to be something nearly impossible, for example 
possibly some crazy new physics: P(model true) = ε. 

- This gives P(model true| 0 event) = 0.05ε, a low prior probability 
gives a very low posterior probability. 

➤ You may find this interpretation if kind of odd, given the prior is 
something you cannot avoid when introducing Bayesian probability!

25



A MORE GENERALIZED VIEW

➤ When involving hypotheses testing (e.g. model true) instead of just sets 
of events (e.g. b-tag), we are entering the Bayesian framework. 
Therefore the Bayes theorem can be written as 

➤ P(θi|X0): the posterior probability for hypothesis θi, given data X0 have 
been observed. 

➤ P(X0|θi): the probability of obtaining the observed data X0, given 
hypothesis θi, which must be known.  

➤ P(θi): the prior probability and represents the knowledge or degree of 
brief before the experiment was performed. 

➤ P(X0): normalization, since Σi P(θi|X0) = P(X0), but this may not be 
known. If this is the case, a weaker form is usually given by
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P(θi|X0) = P(X0|θi) × P(θi) / P(X0)

P(θi|X0) ∝ P(X0|θi) × P(θi)



COMMENT: THE PRIOR

➤ The degrees of brief in a hypothesis depends on the experimental 
results and the prior probability before the experiment. Or, one 
can say that Bayesian statistics is subjectivity by definition. 

➤ Surely for the physicists this is not very appealing; people tried 
very hard to look for a way to avoid introducing prior into the 
experiments, but without a real success.  

- Bayesian may comment that it is actually intersubjective, i.e.  
the real nature of learning and knowing physics. 

➤ Frequentist approach is generally preferred by a large 
fraction of physicists (probably the majority, but Bayesian statistics is 
getting more and more popular in many application, also thanks to its 
easier application in many of the cases).
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CONTINUOUS RANDOM VARIABLE

➤ A random event may be associated a random variable X, which 
takes different possible numerical values X1, X2, …, 
corresponding to the different possible outcome. 

➤ Those probabilities P(X1), P(X2), …, form a probability 
distribution.  

➤ When an experiment consists of N repeated observations of 
the same random variable X, it can be considered as the single 
observation of a random vector X = {X1, X2, …., XN}. 

➤ Instead of probability for discrete cases, now we can generalize 
probabilities of events to probability distributions of random 
variable, using the tools like probability density functions.
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PROBABILITY DENSITY FUNCTION (PDF)

➤ Consider a random 2D histogram of X and Y, collecting the data with a 
particle gun. 

➤ The probability distribution of finding particles at X and Y is denoted by 
P(X and Y), which is still discrete. 

➤ However it is more convenient to describe this using a continuous 
function f(X, Y) by introducing infinite small steps: 
 

➤ The probability density function f(X,Y)  
represents a probability density per  
unit array length of X and unit length  
of Y. The normalization condition must  
be held:

29
X Y

f(X,Y ) = lim
�X!0,�Y!0

P (X and Y )

�X�Y

ZZ

⌦
f(X,Y )dXdY = 1



CHANGE OF VARIABLE

➤ Consider such a transformation of X ⇒ Y, f(X) ⇒ g(Y), and maps the 
interval [X,X+dX] ⇒ [Y,Y+dY], what would be the expression for g(Y)? 

➤ If the transformation is one-to-one with Y = h(X), one has 
 

➤ The h’(X) is the derivative of the transformation. If X and Y are vectors, 
it would be just the Jacobian of the transformation, i.e. a matrix of the 
elements  

➤ If the transformation is NOT one-to-one, i.e., multiple segment of  
[X,X+dX] mapping into the same [Y,Y+dY]. Thus one has to sum over 
all such segments, ie. 
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g(Y )dY = f(X)dX ) g(Y ) =
f(X)

|h0(X)|

g(Y ) =
X f(X)

|h0(X)|

Jij =
@hi

@Xj



CUMULATIVE AND CONDITIONAL DISTRIBUTIONS

➤ Cumulative distribution F(X) is 
defined by 
 
 
by construction: 

➤ Conditional distribution: the 
normalized section through the density 
function f(X,Y) at X = X0 gives the 
conditional density function of Y:
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F (X) =

Z X

Xmin

f(X 0)dX 0

F (X
min

) = 0, F (X
max

) = 1

f(Y |X0) =
f(X0, Y )R
f(X0, Y )dY

Cumulative distribution 
function for the normal 

distribution



COMMENT: BAYES THEOREM FOR CONTINUOUS VARIABLE

➤ Consider N independent observation of a continuous variable Xi, 
and for a continuous hypothesis θ (for example, a physics 
parameter like particle mass). The PDF for ith variable is  
fi(Xi|θ). The joint density function is  
 

➤ Question: having made N observations from the distributions 
fi(Xi|θ), what can one say about the value of θ? 

➤ Answer: classically θ has a fixed true value. So in principle 
when fits (for example, maximum likelihood fits, will be 
discussed in the upcoming lecture) applied, the value of θ can be 
estimated. But this cannot be carried out with Bayes theorem.
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p(X|✓) =
NY

i=1

fi(Xi|✓)



COMMENT: BAYES THEOREM FOR CONTINUOUS VARIABLE (CONT.)

➤ However with Bayesian methods introduced, the distributions of θ 
(using PDF of θ) can be taken to represent the degree of belief in 
different possible value of θ. 

➤ We can obtain the form of Bayes theorem used in Bayesian parameter 
estimation for a particular set of data, X0: 
 
 
where  
- p(θ|X0) is posterior probability density for θ. 
- p(X0|θ) is the likelihood function (not a PDF!) 
- p(θ) is the prior probability density for θ. Again this is the major 

problem in the evaluation. Will be discussed in a later lecture. 
- The integration in the denominator is just a normalization factor.
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p(✓|X0) =
p(X0|✓)p(✓)R
p(X0|✓)p(✓)d✓



SUMMARY

➤ The definitions of different probabilities: 
Mathematical / Frequentist / Bayesian 
probabilities are introduced. 

➤ You may find it it very interesting one 
requires different definitions of 
probabilities to face different problems! 

➤ We have introduced Bayers theorem and 
how to use it in some special cases, as 
well as the limitation.  

➤ Next we are going to introduce/discuss 
several commonly used PDFs.
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