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STATISTICAL ANALYSIS

IN EXPERIMENTAL PARTICLE PHYSICS

Kai-Feng Chen

National Taiwan University



PROPERTIES OF DISTRIBUTIONS

» Several useful quantities which characterize probability
distributions. The PDF f(X) is used as a weighting function to
obtain the corresponding quantities.

» The expectation E of a function g(X) is given by

where € is the entire space.

» The mean is simply the expected value of X:

p=FEX /Xf

» The expectation of the function (X—y)z is the variance V:

V=0’=E({(X—-p? = /(X 1)? d:zz_/X2 X)dx — u?



COVARIANCE AND CORRELATION

» Covariance and correlation are two further useful numerical
characteristics. Consider a joint density f(X,Y) of two variables, the
covariance is the expectation of (X—ux) (Y-uy):

cov(X,Y) = E((X — px)(Y — py)) = E(XY) — E(X)E(Y)
» Another one is the correlation coefficient, which is defined by
X,Y
corr(X.Y) = p(X,v) = VXY
OX0y
» When there are more than 2 variables, the covariance (and
correlation) can be still defined for each 2D joint distribution for X;
and X;. The matrix with elements cov(X;X;) is called the

covariance matrix (or variance/error matrix). The diagonal
elements are just the variances:

cov(X;, X;) = BE(X7) — E(X;)* = 0¥,




UNCORRELATED? INDEPENDENT?

» A usual confusion is the two statements “uncorrelated” and
“independent”. In fact the requirement for “uncorrelated” is
much weaker than “independent”.

» Consider a distribution f(X) is symmetric along X (for
example, a simple flat distribution within [-1,+1]), and
consider a very dependent Y = X?, this will give the
following result:

E(X)=0 and E(Y)=E(X?) = / X?f(X)dX = o~
cov(X,Y)=FE(XY) - EX X% =0

Since the covariance (and the correlation coefficient) is zero.

So X and Y are uncorrelated, although they are very dependent!




PRACTICE: MEAN, VARIANCE, COVARIANCE

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Let’s practice these ideas with the following example code.
- Generate a random distribution and use it to calculate the

mean and variance.
example_01.cc
TRandom3 rnd;

TNtupleD *nt = new TNtupleD('"nt","random data","x");

for(int 1=0; i<100000:; i++) { - - - _
double x = rnd.Uniform(-1.,1.); Put ™ an untform distribution heve,

Nnt—>Fill(&x); you wmay try SOW\eth'mg elsel
¥
double mean = 0., variance = 0.: mean: -0.0010/424
for(int i=0; i<nt—>GetEntries(); i++) { varlance: 0.332499
nt—>GetEntry(1i);
double x = nt->GetArgs()[0]; Sor uniform distribution
mean += X; _
variance += x*Xx; the variance should be
} (Max-Min)?/IZ ~ 0,333

mean /= nt—>GetEntries():
variance = variance/nt—->GetEntries() - meanxmean;

printf("Mean: %g\n",mean);
printf("Variance: %g\n'",variance);



» How about the covariance?

{

example_02.cc

TRandom3 rnd;
TNtupleD *nt = new TNtupleD('"nt","random data","x:y");
for(int i=0; i<100000; i++) {

double var([2];

var[0] = rnd.Gaus(0.,1.); Put v Sowe covvelated
var[1l] = rnd.Gaus(@.,1.)+varl0]; Jistvibutions!
nt—>Fill(var); A '

}

double mean_x = 0., mean_y = 0.;§
double cov_xx = @.,cov_xy = 0.,cov_yy = 0.; You wdy tvry to vewove the
for(int i=0; i<nt->GetEntries();:i++) { covveldtion and See the change

nt—>GetEntry(i); ; - -
double x = nt->GetArgs()[0];: i the o§§-diagonal [tevm
double y = nt->GetArgs()[1];:

mean_x += X; Mmean_y +=Yy; Mean: (0.00267401, -0.000551784)
COV_XX += X*¥X; :

COV XY += Xy Covarilance:
- _ ! g 0.993943, 0.996197
} COV_yy += y*y' S > 0 . 996197 , 1. 996348

mean_Xx /= nt->GetEntries();
mean_y /= nt—>GetEntries();

COV_XX = cov_xx/nt—>GetEntries() - mean_xkmean_Xx;
cov_Xxy = cov_xy/nt->GetEntries() - mean_xxmean_y;
cov_yy = cov_yy/nt—>GetEntries() - mean_yxmean_y;

printf("Mean: (%g, %g)\n",mean_x, mean_y);
printf("Covariance:\n%f, %f\n%f, %f\n",
COV_XX, COV_XY, COV_XY, COV_YyYy);



Time for all the lovely distributions!



BINOMIAL DISTRIBUTION (REVISIT)

» We have already introduced the binomial distribution already. It
gives the probability of finding exactly n successes in N trials,
when the probability of success in each single trial is a constant p.

» The properties of the binomial distribution are
- variable: a positive integer n (0 < n < N)

- parameters: a positive integer N, a positive real number p (0 <
p=<1)

l
- probability function: P(n) = V!

n!(N —n)

(L —p)t "

- expected value: E(n) = Np
- variance: V(n) = Np(1-p)



MULTINOMIAL DISTRIBUTION

» Generalization of binomial distribution to the case of multiple
outcomes. It gives the probability of finding exactly n; outcomes of
type it (out of total k types, 1 <i<k) in N independent trials, when the
probability of outcome 1 in a single trial is p;.

» Properties:
- variable: positive integersn; (0 =n; < N,1=1, 2, ..., k)

- parameters: positive integers N, k, and positive real number p;
O=p;=<1,2p;=1)

® ® L N!
- probability function: P(nq,ns,...,ng) = ,pTPSQ g
"N -

nl!ngl--

- expected value: E(n) = Np;
- variance: V(n;) = Np;(1-p;)



MULTINOMIAL DISTRIBUTION (CONT.)

> A classic pinball game is a typical example of
multinomial distribution, if the total # of
balls is fixed.

> As the setup given in the photo, assume the
“slots” with 5 points have doubled
probability comparing to the slots with 10
points, what are the expected counts and
their variance for each slot, if N = 10?

Slot 1 5pt) 2(10pt) 3 (10pt) 4 (5pt)
Pi 0.333 0.167 0.333  0.167
E 3.33 1.67 1.67 3.33
v 2.22 1.39 1.39 2.22

» Surely if the # of balls is not fixed, it will
follow Poisson distribution instead.



POISSON DISTRIBUTION

» The Poisson distribution gives the probability of finding exactly n
events in a given length of time (and/or space), if the events occur
independently at a constant rate.

> It is a special case of binomial distribution with p—0, N—o, u = Np as
the finite constant; as uy—, the Poisson distribution converges to the
Normal distribution (Gaussian).

» Properties:
- variable: positive integer n
- parameter: positive real number u

. : pte
- probability function: P(n) =

n!
- expected value: E(n) = u

- variance: V(n) = u

Siméon Denis Poisson

11



POISSON DISTRIBUTION (CONT.)

*—0 o0 - @ . >
P T |—|. ................................................................................................................................. >
n events happen in time t the events occur at a constant rater = N/T
(Ne oo, T— oo)

> The probability to have n entries in time t, with expected value u=rt.

» It is a binomial distribution with a very large N and a very small

12



POISSON DISTRIBUTION (CONT.)

» Poisson distributions apply to various phenomena of discrete properties
(those that may happen O, 1, 2, 3, ... times during a given period of time or in a
given area) whenever the probability of the phenomenon happening is
constant in time or space.

» For example:

- number of soldiers killed by horse-kicks each
year in each corps in the Prussian cavalry
(quote: L. J. Bortkiewicz).

- number of yeast cells used when brewing
Guinness beer (quote: W. S. Gosset).

» And surely this works for HEP cases, like particle
decay and production. The time interval between
two successive events is actually exponentially
distributed, and this is true for any Poissonian process!

13



SUMMING POISSONIAN VARIABLES

> Probability distribution of the sum of two Poissonian variables with
expected values u; and uy:

- + p2)™
P/(n) = 3 Plmi ) Pln — mi i) = P12 =) — p(cpy o)
m=0 .

The resulting distribution is still a Poisson with expected value u;+u,.

» This is rather useful when combining Poissonian signal and Poissonian
background.

» The same conclusion holds for “convolution” of binomial and Poisson
distributions — take a fraction of Poisson yield with a binomial

“efficiency”.

- This is not a surprising result given the Poisson can be deduced
from binomial.

14



PRACTICE: POISSON+POISSON .

14000

00000000000000000000000000000000000000000000000000000000000000

12000

> Let’s add multiple Poisson distributions
together and see if the resulting 2000

6000

distribution is also a Poisson? ‘000

example_03.cc - 2000

TRandom3 rnd:
const int NFILL = 100000;

TH1D *xhl = new TH1D("h1l","Poisson data",20,-0.5,19.5);
hl->SetBarWidth(0.3);

TH1D *h2 (TH1D *)h1l->Clone('"h2");

TH1D *h3 (TH1D *)h1->Clone("h3");

for(int i=0;i<20;i++) {
double mu = 5.0;
hl->SetBinContent (i+1, pow(mu,i)*exp(-mu)/TMath::Factorial(i)*NFILL);

¥

for(int i=0; i<NFILL; i++) {
int nl = rnd.Poisson(5.0):;
h2->Fill(nl);

int n2 = rnd.Poisson(2.5)+rnd.Poisson(1.5)+rnd.Poisson(1.0);
h3—>Fill(n2);

15



POISSON ® BINOMIAL

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Consider a Poisson distribution of expected value u, take a total
yield s¢ out of this distribution, together with a binomial
efficiency €. The probability of finding exactly s outcome events:

i So!
P(sg; ) = ® B(s;sg,€) = G e e
(<07:u) SO! ( 9 20 ) S!(SO —S)! ( )
/ - e_M:LLSO 80' So—S
P(s;,u,e):ZPsO,u (83580, € )_Z > '(8’8—3)' (1 —¢)
S0=S So=S
_6“€M Zﬂsosl—ﬁ)sos_eu(ﬁﬂ Zﬂ(l—e)
So=Ss SO - S) s! 5o =0 (SO)'
i ,. NPT
=< SM) efte” M = - S('e,u) = P(s;ep)

Just a Poisson with expected value of €u.
16



COMPOUND POISSON DISTRIBUTION

» Compound Poisson distribution (distribution of a branching
process) is the sum of N Poisson variables n;, all of mean p,
where N is also a Poisson variable of mean A.

» Properties:

- variable: positive integer n

- parameter: positive real numbers A, u

N n_—Np YN _—\T
- probability function: P(n) = (Vp)"e A
fearll| n! Nl
- expected value: E(n) = Au
- variance: V(n) = Au(1+u) Sum of N Poisson distributions:

N fixed: Poisson
N is also Poisson: Compound Poisson

17



FROM POISSON TO GAUSSIAN

0.40 0.14 -
o— =] o—e Poisson u=10
0.35“ oo pu=2 0.12 - Gaussian p=o" =10 |,
o0 u=4
§0.30 o—e ;=8| QO.IO-
n n
C -
o 0. 0]
© T 0.08
> >
£0 fr
‘S ‘5 0.06f
§ 0.15 _§
S 0.10} 5 004
0.05! 0.02}
0.00 0.00

» As introduced earlier, when the expected value u of the Poisson distribution
increases, it converges to the Normal distribution (Gaussian).

» Even the value of u is only 10, the distribution is already rather close to a
. . . 2
Gaussian with the same variance (V=0"=pu).

18



NORMAL DISTRIBUTION / GAUSSIAN

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Gaussian is probably the most important /
well-known / useful probability distribution.

> Properties:
- variable: real number x
- parameter: real numbers u, o

- probability function: ,
1 L (z—p
P(x) = exp {—5( 5 ) }

o\ 2T o

- expected value: E(x) = u Carl Friedrich Gauss
- variance: V(x) = 0’

» A Gaussian distribution with u=0 and o=1 is the standard Normal
density function.

> A Gaussian with different o’s for the left and right half of the distribution is

usually called the bifurcated Gaussian.
19



NORMAL DISTRIBUTION / GAUSSIAN (1)

» The cumulative distribution of the standard normal
distribution can be related to the error function, erf(x)

erf(x) = 2 et dt

» The error function is what
you can easy call within
your program, if you want '}
to calculate the integration o
of a Gaussian!

20



NORMAL DISTRIBUTION / GAUSSIAN (li1)

» On the other hand, the error function can be easily used to
derive the coverage probability for a given standard
deviation, e.g. 68.3% of a normal distribution is just within

+ 10 region, etc.

99.7% of the data are within

n 3 standard deviations of the mean
p(n) — @(n) o Q(_n) — erf (ﬁ) D Zstazgzsffit{\i:ftions R

<«— 1 standard —|
deviation

1-p(n)
lo 0.682 689 0.317 310 /\
20 0.954 499 0.045 500
36 0.997300  0.002 699 // \'\
4o 0.999 936 0.000 063




CENTRAL LIMIT THEOREM

P4 pA
samples
of size n
X
X\
/
>
population sampling distribution
distribution of the mean

> If we have a sequence of independent variable X;, each from a
distribution with mean p; and variance o;.

» The sum S = XX; will have a mean Xu; and a variance Yo

» This holds for ANY distributions, and the individual means and
variances exist. The Central Limit theorem states, in the limit of

large N—oo,
—  Gaussian(x; u = 0,0 = 1)

22



CENTRAL LIMIT THEOREM (CONT.)

5% =
o% = M el e M. - BB . _adae |_ahAdA. | | b
8 9 1" 12

A simulation
with binomial
8 distributions

up to N=512




Mormal Distribvtion

‘.




COMBINATION OF 2 INDEPENDENT GAUSSIAN VARIABLES?

» If X and Y are two random variables, following two
independent Gaussian distributions, then

- Their sum X+Y and difference X-Y are also Gaussians; in
fact, any linear combination of X and Y, e.g. aX+bY are also
Gaussian distributed.

(Note: this is not a sum of two Gaussian PDF, but two random
variables!)

- Their product XXY follows the "product-normal"
distribution.

- Their ratio X/Y follows the Cauchy distribution (or your
familiar Breit-Wigner distribution).

25



MULTIVARIATE GAUSSIAN

» Multivariate Gaussian is a generalization of the 1D normal
distribution to higher dimensions. It naturally takes a density
function with a quadratic form in its exponent:

I kook
1 Xi— i\ (X5 — 1y
P(X) o exp _522%( - )( i )
i=1 j=1 z J

xexp | <5 (X W) V(X = )

> The quantity (X—u) 'V (X—) is the covariance form of X, and it
follows a x* distribution with k degrees of freedom. The matrix V is
the covariant matrix of vector X introduced earlier:

) _
01 P120102 -+  P1k010k , ,
, pi;i 1s the correlation

V = cov(X) = |F129192 O3 : coefficient between
X; and X;.

| P1k010k Ok



JUST 2D GAUSSIAN

» Consider a simplified case of only 2D, X and Y:

1
2noxoy\/1 — p?

X exp {_2(1 i - [(X —2ux)2 e —2uy)2 ~2p(X —px)(Y - uy)”

again p is the correlation coefficient between X and Y.

P(X,Y) =

P(X,Y)

0.0012

iso-probability |
contours

0.001 -

0.0008 -

0.0006

0.0004

0.0002 -

Standard
‘error ellipse

X 27




ISO-PROBABILITY 2D CONTOUR

> Your 1o is not my lo: it is mandatary to remember the conversion
between # of o’s and the converging probability depends on the
number of dimensions.

1.6

> You might notice that some of the 2D ¥ [ s7iasand cus '~
| LHC Run 1 S

contour plots put 68%,/95%, instead 1.4]

of 16/20, since 1o in 2D does not [ ariassoms
cover the conventional 68% coverage O |
probability. L ]
0.8 )
lo 0.6827 0.3934 |
20 0.9545 0.8647 o —_
30 0.9973 0.9889 pal Tl O 4 Pt % Sogerd |
1556 0.6827 K
2.4860 0.9545
3.4390 0.9973

28



PRACTICE: PROBABILITY VERSUS N-SIGMA
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» In fact it is easy to calculate this conversion table by yourself. The
TMath::Prob() function can do it quickly.

y

Probabilit

» This is a simple example practice to draw
the probability as a function of # of ¢ in S 72 N L
1D and 2D- 06_ ______________ _____________ _______________ _______________ _______________ _____________

——— B e e s e

{ i —— g1 p(n)in1D
vector<double> vec, probl, prob2; /4720 e i 1) L L
double sigma; /748 TV UUR FUUUE DU TR TN OOV O Y
while(sigma<4.5) { | | | n (o)

vec.push_back(sigma);
probl.push_back(1l.-TMath::Prob(sigmaxsigma,1));
prob2.push_back(1.-TMath: :Prob(sigmaxsigma,2));
sigma += 0.05;

}

TCanvas *cl = new TCanvas();

TGraph *gl = new TGraph(vec.size(),vec.data(),probl.data());
gl->Draw();

TGraph *g2 = new TGraph(vec.size(),vec.data(),prob2.data());
g2—>Draw('same");

29



OTHER COMMONLY USED FUNCTIONS

000000000000000000000000000000000000000000000000000000000000000

» Exponential

» Power law

» Chi-square distribution

» Cauchy/Briet-Wigner distribution
» Log-Normal distribution

» Landau distribution

» Crystal Ball function

» ARGUS function

» Threshold function

» Polynomials: Laurent/Legendre/
Chebyshev/Bernstein/'...

30



EXPONENTIAL DISTRIBUTION

» Consider events occurring randomly in time, with an average of A events
per unit time.

> The Poisson distribution describe the probability p (N|t) = 1

T (At)Te
of N events occurring in a time interval t. N

> Then the probability of no events in time t follows the exponential
distribution exp (-At).

» Properties: 1.6 r 1 l .
. 1.4k e A=0.5 |
- variable: real number x L —_— 1
- parameter: real numbers A 10 AL

- probability function: P(x) = Ae N 0.6

0.4\
- expected value: E(x) = 1/A 0.2} &

o 2 .
- variance: V(x) = 1/A o1 2 3 4 s




POWER LAW FUNCTION

» Power law function is also kind of fast
increasing/decreasing function
commonly used in many places:

P(x) oc 2"

where k is a constant parameter of the
distribution known as the exponent or
scaling parameter.

» A comparison between exponential and
power law (and you can see they are actually
very different!)

- Exponential: P(x) = const”

- Power law: P(x) = x°""

Power law In

T3 1F:l?:d‘lj:' log-log scale:

SR 't should be just
EAGHIEE a straight line!

Linear scale

32



CHI-SQUARE DISTRIBUTION

» Suppose that X;, X,, ... Xy are independent, standard Normal variables,
The sum of the their squares N

Q=) X} = X*(N)
1=1

follows a chi-square distribution )(2 (N), with N-degrees of freedom.

> Properties:

- variable: real number x . .
fk(‘l')A Xf-

- parameter: positive integer N 0.5-
(as “degrees of freedom”)

041

L L L L L

O D= W=

- probability function:
by LB e
R YOYE)

- expected value: E(x) = N

0.3 1

0.2¢

0.1

- variance: V(x) = 2N

33



PRACTICE: THE PRINCIPLE OF CHI-SQUARE DISTRIBUTION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Let’s just add multiple Gaussian random variables and see if the
resulting distribution follows the chi-square distributions.

example_05.cc
TRandom3 rnd;

TH1D *hl = new TH1D("h1",'"chisquare data",100.,0.,10.);
TH1D *h2 = (TH1D*)h1->Clone('"h2");
TH1D *h3 (TH1D>|<)h1—>Clone("h3");

for(int i=0:3;1i<1000000;i++) {
h3—>Fill(pow(rnd.Gaus()

)

)

)

pow(rnd.Gaus(),2)+
pow( rnd.Gaus (
h2->Fill(pow(rnd.Gaus(
hl1->Fill(pow(rnd.Gaus (
} 60000
hl->Draw();
h2—->SetLineColor(kRed) ; 50000
h2->Draw(' same") ;
h3->SetLineColor(kBlue); 40000
h3—>Draw('same");

+
)
;pOW(rnd.Gaus(),Z));

y2)
y2)
y2)
y2)

— h1%?(N=1)
—— h2 x?(N=2)
—— h3 %?(N=3)

30000

' 20000

See 1§ the output distributions
dgvee with the cuvves given n
the ?Vev‘(OMS S\Tde! % 1 I R S e S

10000
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CAUCHY/BRIET-WIGNER DISTRIBUTION

» The Cauchy distribution is often used in statistics as the canonical
example of a "pathological" distribution since both its expected value and
its variance are undefined.

» It is identical to the physically important Breit-Wigner distribution.

» Properties:

- variable: real number x 0.7
- parameter: BW-function has a location = 96} _:,z ;g ::1)'5
parameter and a scale parameter are 0.5 — 3 =0, y=2
included. (Note: the expected value < 04f — ===l
and variance are still undefined!) Y03}
- probability function: :i'
PO =+ (oo | ol
m |12 4 (z — x0)? 4 -2 0 2 4

- expected value, variance: undefined

35




UNDEFINED MEAN? WHY?

» You might get surprised why the Cauchy distribution does not have
a definite mean (and variance), even it has an obvious median point
at the middle. This has to come back to the definition of mean:

i = B(X /Xf \da

» Consider a Cauchy (or B-W function with xo=0, I'=1), by
definition:

L B L - .
= >dx  This is a typical improper integral

oo Tl 4z
Thus . .
1 1
= lim lim —_ Y _dz or = Ilim  lim Y i
L——oco H—+ ;] T 1 -+ 5132 H—+oco L——o ;] T 1 + 5132

The two evaluations do not give the same finite result

since the inner limit already diverges.

36



LOG-NORMAL DISTRIBUTION

> A log-normal distribution is a continuous probability distribution of a random
variable whose logarithm is normally distributed, ie. if X is log-normally
distributed, then Y=In(X) has a normal distribution.

> A log-normal process is the statistical realization of the multiplicative product of
many independent positive random variables.

> Properties:

- variable: real number x 16
14

- parameter: real numbers u, o
12

- probability function: 10-

1 (Inz — p)? 08 -
P ( aj) p— eXp - 2 06 - \\\\\\lgmlm,,,,
Lo 27T 20— ‘ \‘s\ g } ””I/IIIII
. 0.4 § ) Whttyy
- median: exp(u) 02]f = g
- mode(=maximum point): exp(u—o ) 00—l ——
00 02 04 06 08 10 12 14 16 18 20 22

- expected value: E(x) = exp (y+02/2)
- variance: V(x) = [exp (02)—1] exp(2u +02) .



LANDAU DISTRIBUTION

» Widely used to model the fluctuations in the energy loss of particles
passing though thin layers.

» Charged particles (protons, pions, etc.) which are in most cases close to
MIPs, all produce approximately Landau-distributed spectra when
traversing the matter.

> Because of the distribution's long tail, the moments of the distribution,
like mean or variance, are undefined.

0.26 T T T T T T
» Probability function: 0z2 |- .
1 [ 8?15 : :
P(x) = —/ exp(—tInt — xt)sin(wt)dt  oaa | -
T 0 0.12 + -
0.1 - -
0.08
Usual shift/scale applied: ol ]
. | | I I

|
0 2 4 6 8 10 12 14

P/($5M70)2P<x_u> .0-4
O
38



CRYSTAL BALL FUNCTION

» Crystal Ball function consists of a Gaussian core and a power-
law low-end tail, below a certain threshold u-ao.

» Named after the Crystal Ball collaboration at SLAC.

» Mostly used to describe the processes with strong energy lost and
with a long tail to the left. For example, invariant mass of
particles with photon in the final state.

» Probability function:

i
\ 2005
. v (A-(B-=B)" iffox< p—ao| oo
($)— " exp [_(332—0#202} C ifr> p—ao ' 0.03f
' ’ 002
A= (n/a)"exp(—a?/2), B=n/a—a "
9




ARGUS FUNCTION

» The ARGUS distribution is the probability distribution to model
the invariant mass distribution of a “continuum” background, in
particular, near the kinematic threshold given by the beam energy.

» Named after the ARGUS experiment.

» Widely used by the B-factories T
(or any similar collider experiment S o ARGUS
with fixed beam energy). S %o function

» Probability function:

ro=wei-GYe{-S[-GY)) T A

D22 5.24 5.26 5.28
S = 25
N: normalization factor; T oRRRb by
0: kinematic upper bound or beam energy (fixed); sz o e

§: shape parameter



THRESHOLD FUNCTION (MN_FIT VER?)

» A “threshold function” usually refers to a step function with a “turn-
on” threshold. Here we are going to discuss something very
different.

> Interestingly this is not fully documented,

0.14F —
but a very old fitting tool named mn_{it  oxf
had introduced a convenient “threshold  °%
. » . . . 0.08—
function” to model the distribution near o 6=1¢6=12,
a kinematic boundary. 0.04] =-2.5 ¢y=0.5
0.02F
» Probability function: AT T TR TN T T NI

1 11 12 13 14 15 16 17 18 19 2

P(z) =N - (z —6)%exp c1x (x —0) + cox (x — 6)7]

N: normalization factor;
0: kinematic upper bound or beam energy (again, as a fixed parameter!);

§, c1, c2: shape parameters ;



POLYNOMIALS ET AL

» Polynomials are probably the simplest way to model any
unknown distributions. Although different definitions of
polynomials are mathematically equivalent, but different
polynomials indeed have different behavior.

» In particular, some of the polynomials (e.g. Legendre or
Chebyshev) are orthogonal, they usually have a better
behavior when expanding the order of polynomials.

» Simple polynomials:
N
[ 2 3 P
> Power series: ao+a17 + a2’ +azz® +-- =) az
k=0
» Laurent polynomial: same as above but k can be negative.

k
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POLYNOMIALS ET AL (II)

legendre polynomials
» Legendre polynomials: as general : , ! —
solutions to Legendre's Equation, //
-
and are azimuthally symmetric. | P _
: 7
Py(x) =1, Pi(z)==x <
- e S
(n+ 1) Pps1(z) = (20 + DaPo(z) —nPra(z) ) ~ -
1 1 1 1 ::::; —

» Chebyshev polynomials: as a
sequence of orthogonal polynomials i) — B — 103 = 1) =

and can be defined recursively.

0.5}

T()(ZIZ) — ]_, Tl(ZE) — X
Thi1(x) =22T,(x) — Thh_1(x)

0.0p

0.5
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POLYNOMIALS ET AL (1ll)

> Probabilities should be always “positive defined”, but this is not the case
for usual power-series based polynomials. The function can easily go to
negative and break the evaluation of probability.

> Bernstein polynomials are constructed with sets of non-negative bases
and are generally convenient for PDF modeling.

» Bernstein polynomials of degree n are defined by

n!

B; (1) = 11—t (0<t<1
» Examples:
Boa(t) -—" 1 B0 Poalt) T . Bos(t) = (1 —t)?
Bia(t) = 2t(1 —¢t)
B t)=1—1 1,2(t) — |
o) 2T Baa(t) = 17
Bii(t) =t | t




one 1ul 0] dNNOT A€ 10 VOUI

data, you can combine more!
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JOINT MULTIPLE FUNCTIONS TOGETHER

» It is not surprising that a single function cannot fully describe your
data in a more general case. One of the straightforward ways to

improve the modeling is to joint multiple functions into a single
PDF.

» No matter how complicated construction of the model, as a PDE
the overall normalization should be always held:

P(X) = > fiPi(X)
P;(x): individual model

fi: coefficient of each model

» If the normalization is not properly calculated, it might be resulting
a biased parameter estimation (to be discussed in the next lecture).
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CONVOLUTION

» Convolution is a typical way to add “smearing” to your given distribution. For
example, adding detector resolution to a known PDF.

» Consider an intrinsic/truth PDE f(x), together with a resolution model
r(x,x’) which gives the probability of measuring x” out of a true value of x.

> If the resolution function r is a Gaussian, the o is the experimental resolution.

» Then the joint PDF which includes both intrinsic information and
experimental resolution is to convolute f with r:

Plx)=f®r= /Qf(:zj’) r(x,x")dx’

& 3 3
gl door- by E |
For example, g,: ' f(x) %:: \ 7(x,x) 3!
: : 2 I 5 g
invariant mass ~ *f ®‘:r — .|
s 8 ==
0.03:- 0.02

>
001
b

distribution of a .}
narrow particle j
‘5.1'5 s e 2 %0 45 M0 5 0 5 10 15 2 % 15 0 5 0 5 10 15 &o 47
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CONVOLUTION (CONT,)

» Consider a convolution with
Gaussian model. the A e N
convoluted distribution can w
be interpreted by replacing f # m
each slice of the original | R
distribution by a Gaussian.

» On the other hand, each slice .
of the final distribution has
the contribution from nearby
slices from the original
distribution, according to the
probability given by a
Gaussian.
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PRACTICE: EXPONENTIAL CONVOLUTED WITH GAUSSIAN

» The convolution requires some integration works. In most of the cases it is

difficult to do it analytically.

» There is no direct implementation within ROOT itself but RooFit does have

» Here are an example how to

{

the functionality to perform the convolution.

Projection of model

obtained a convoluted exponential
function within RooFit:

example_06.cc

using namespace RooFit;

RooRealVar t("t","t",0.,10.);
RooRealVar lambda('"lambda",'"Decay parameter",1.6);

RooGaussModel res('"res","Resolution model",t,RooConst(0.),RooConst(0.2));
RooDecay model("model","model",t, lambda, res,RooDecay::SingleSided);

RooPlot xframe = t.frame();
model.plotOn(frame);

t —t)?
frame—>Draw() f(t; A) o< exp(—At) and r(t,t') X €exp [_( 202) ]
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NON-PARAMETRIC MODELS

» Sometimes the data might be difficult to
be modelled with a specific function form.
In this a situation, some non-parametric
models could be a good option.

L I
o

» Surely one can still build a model with .

high-order polynomials, but it might = ..
generate some not-so-natural models &

- N\
g N

with many small detailed structures.

> In some of the cases a non-parametric = — T T
model, for example, a histogram-based
PDF (with some smoothing interpolation if
needed) can be a cost-effective solution.
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Adaptive kemel estimason pd' with and wio mimoring

KERNEL ESTIMATION

» The kernel estimation is simple way to convert
a set of data to a (smoothed) function form.

» The general kernel estimate of the parent
distribution is given by A FATRTNTIRIRIIRIN, M |

S

’L

where t; are the sampled events, h; is the smoothing (bandwidth)
parameter. An obvious choice of kernel K is a Gaussian with u=0

and o=1: 1 2 L

K(z) = exp (_ IL‘_) So this is just a sum of
V2T 2

> An adaptive choice of the bandwidth h; is usually introduced in the

implementation. A factor p is applied to scale the width for each
event. See hep-ex/0011057 for details.

many Gaussians!

o1



KERNEL ESTIMATION

> The kernel estimation is simple way to convert a set of data to a (smoothed)
function form. The general kernel estimate of the parent distribution is
given by

1 o 1 T —t; 1 r?

P(r) = — —K : K(x) = ——

0=y 2k () e e = e (-5)
where t; are the sampled events, h; is the smoothing (bandwidth)
parameter. An obvious choice of kernel K is a Gaussian with y=0 and o=1.

» An adaptive choice of the bandwidth h; is usually introduced in the
implementation. A factor p is applied to scale the width for each event. See
hep-ex/0011057 for details.

L aanas:

Just a sum of many Gaussians!
Y YT Y ! ’E T Ty Y T T
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PRACTICE: KERNEL ESTIMATION

» In ROOT there is already an implementation: TKDE. Or in RooFit the
RooKeysPdf is the most straightforward tool.

Random data

h1

Entries 1000
Mean 1.246
Std Dev  0.7352

example_07.cc - _

'{ 202
TRandom3 rnd;

TH1D *hl1l = new TH1D("h1","Random data",60,0.,3.);

vector<double> vec;

for(int i=0:;i<1000;i++) {
double x = rnd.Gaus(1.,1.);
vec.push_back(x);
h1->Fill(x):

data events

KDE

} i kevwnel

TKDE xkde = new TKDE(vec.size(),vec.data(),0.,3.); . estimation
TCanvas *cl = new TCanvas('cl1","",600,800); oosf

cl->Divide(1,2); oaf

cl->cd(1); ossf

hl->SetFillColor(50); orf

hl->Draw(); e e

cl->cd(2);
kde—>Draw():
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SUMMARY

000000000000000000000000000000000000000000000000000000000000000

» In this lecture we went though many
commonly used probability distributions,
including Poisson, Gaussian, etc.

» These distributions and models could be
very useful to describe the distributions
for your (upcoming) studies!

» For the next lecture, we are going to
discuss how to extract unknown
parameters out of your data and model.
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