
STATISTICAL ANALYSIS  
IN EXPERIMENTAL PARTICLE PHYSICS
Kai-Feng Chen 
National Taiwan University

LECTURE 2: PROBABILITY DISTRIBUTIONS

1

PROPERTIES OF DISTRIBUTIONS

➤ Several useful quantities which characterize probability
distributions. The PDF f(X) is used as a weighting function to
obtain the corresponding quantities.

➤ The expectation E of a function g(X) is given by 
 
 
where Ω is the entire space.

➤ The mean is simply the expected value of X: 

➤ The expectation of the function (X–μ)2 is the variance V:

2

V = �

2 = E((X � µ)2) =

Z

⌦
(X � µ)2f(X)dx =

Z

⌦
X

2
f(X)dx� µ

2

E(g) = hg(X)i =
Z

⌦
g(X)f(X)dx

µ = E(X) = hXi =
Z

⌦
Xf(X)dx

COVARIANCE AND CORRELATION

➤ Covariance and correlation are two further useful numerical
characteristics. Consider a joint density f(X,Y) of two variables, the
covariance is the expectation of (X–μX)(Y–μY): 

➤ Another one is the correlation coefficient, which is defined by 

➤ When there are more than 2 variables, the covariance (and
correlation) can be still defined for each 2D joint distribution for Xi
and Xj. The matrix with elements cov(Xi,Xj) is called the
covariance matrix (or variance/error matrix). The diagonal
elements are just the variances:

3

cov(X,Y) = E((X � µX)(Y � µY)) = E(XY)� E(X)E(Y)

corr(X,Y) = ⇢(X,Y) =

cov(X,Y)

�X�Y

cov(Xi, Xi) = E(X2
i)� E(Xi)

2
= �2

Xi

UNCORRELATED? INDEPENDENT?

➤ A usual confusion is the two statements “uncorrelated” and
“independent”. In fact the requirement for “uncorrelated” is
much weaker than “independent”.

➤ Consider a distribution f(X) is symmetric along X (for
example, a simple flat distribution within [–1,+1]), and
consider a very dependent Y = X2, this will give the
following result:

4

E(X) = 0 and E(Y) = E(X2) =

Z
X2f(X)dX = �2

cov(X,Y) = E(XY)� E(X)E(Y) = E(X3
) = 0

Since the covariance (and the correlation coefficient) is zero.
So X and Y are uncorrelated, although they are very dependent!

PRACTICE: MEAN, VARIANCE, COVARIANCE
➤ Let’s practice these ideas with the following example code.

- Generate a random distribution and use it to calculate the
mean and variance.

5

{
 TRandom3 rnd;
 TNtupleD *nt = new TNtupleD("nt","random data","x");
 for(int i=0; i<100000; i++) {
 double x = rnd.Uniform(-1.,1.);
 nt->Fill(&x);
 }

 double mean = 0., variance = 0.;
 for(int i=0; i<nt->GetEntries(); i++) {
 nt->GetEntry(i);
 double x = nt->GetArgs()[0];
 mean += x;
 variance += x*x;
 }
 mean /= nt->GetEntries();
 variance = variance/nt->GetEntries() - mean*mean;

 printf("Mean: %g\n",mean);
 printf("Variance: %g\n",variance);
}

example_01.cc

mean: -0.00107424
variance: 0.332499

for���������	
��
������������������ uniform���������	
��
������������������ distribution,���������	
��
������������������
the���������	
��
������������������ variance���������	
��
������������������ should���������	
��
������������������ be���������	
��
������������������  
(Max-Min)2/12���������	
��
������������������ ~���������	
��
������������������ 0.333

put���������	
��
������������������ in���������	
��
������������������ an���������	
��
������������������ uniform���������	
��
������������������ distribution���������	
��
������������������ here,���������	
��
������������������
you���������	
��
������������������ may���������	
��
������������������ try���������	
��
������������������ something���������	
��
������������������ else!

6

{
 TRandom3 rnd;
 TNtupleD *nt = new TNtupleD("nt","random data","x:y");
 for(int i=0; i<100000; i++) {
 double var[2];
 var[0] = rnd.Gaus(0.,1.);
 var[1] = rnd.Gaus(0.,1.)+var[0];
 nt->Fill(var);
 }

 double mean_x = 0., mean_y = 0.;
 double cov_xx = 0.,cov_xy = 0.,cov_yy = 0.;
 for(int i=0; i<nt->GetEntries(); i++) {
 nt->GetEntry(i);
 double x = nt->GetArgs()[0];
 double y = nt->GetArgs()[1];
 mean_x += x; mean_y += y;
 cov_xx += x*x;
 cov_xy += x*y;
 cov_yy += y*y;
 }
 mean_x /= nt->GetEntries();
 mean_y /= nt->GetEntries();
 cov_xx = cov_xx/nt->GetEntries() - mean_x*mean_x;
 cov_xy = cov_xy/nt->GetEntries() - mean_x*mean_y;
 cov_yy = cov_yy/nt->GetEntries() - mean_y*mean_y;

 printf("Mean: (%g, %g)\n",mean_x, mean_y);
 printf("Covariance:\n%f, %f\n%f, %f\n",  
 cov_xx, cov_xy, cov_xy, cov_yy);
}

example_02.cc
➤ How about the covariance?

put���������	
��
������������������ in���������	
��
������������������ some���������	
��
������������������ correlated���������	
��
������������������
distributions!

Mean: (0.00267401, -0.000551784)
Covariance:
0.993943, 0.996197
0.996197, 1.996348

You���������	
��
������������������ may���������	
��
������������������ try���������	
��
������������������ to���������	
��
������������������ remove���������	
��
������������������ the���������	
��
������������������
correlation���������	
��
������������������ and���������	
��
������������������ see���������	
��
������������������ the���������	
��
������������������ change���������	
��
������������������
in���������	
��
������������������ the���������	
��
������������������ off-diagonal���������	
��
������������������ term

7

Time for all the lovely distributions!

BINOMIAL DISTRIBUTION (REVISIT)

➤ We have already introduced the binomial distribution already. It
gives the probability of finding exactly n successes in N trials,
when the probability of success in each single trial is a constant p.

➤ The properties of the binomial distribution are

- variable: a positive integer n (0 ≤ n ≤ N)

- parameters: a positive integer N, a positive real number p (0 ≤
p ≤ 1)

- probability function:

- expected value: E(n) = Np

- variance: V(n) = Np(1–p)

8

P (n) =
N !

n!(N � n)!
pn(1� p)N�n

MULTINOMIAL DISTRIBUTION

➤ Generalization of binomial distribution to the case of multiple
outcomes. It gives the probability of finding exactly ni outcomes of
type i (out of total k types, 1≤i≤k) in N independent trials, when the
probability of outcome i in a single trial is pi.

➤ Properties:

- variable: positive integers ni (0 ≤ ni ≤ N, i = 1, 2, …, k)

- parameters: positive integers N, k, and positive real number pi  
(0 ≤ pi ≤ 1, Σpi = 1)

- probability function:

- expected value: E(ni) = Npi

- variance: V(ni) = Npi(1–pi)

9

P (n1, n2, . . . , nk) =
N !

n1!n2! · · ·nk!
pn1
1 pn2

2 · · · pnk
k

MULTINOMIAL DISTRIBUTION (CONT.)

➤ A classic pinball game is a typical example of
multinomial distribution, if the total # of
balls is fixed.

➤ As the setup given in the photo, assume the
“slots” with 5 points have doubled
probability comparing to the slots with 10
points, what are the expected counts and
their variance for each slot, if N = 10?  
 
 
 
 

➤ Surely if the # of balls is not fixed, it will
follow Poisson distribution instead.

10

Slot 1 (5pt) 2 (10pt) 3 (10pt) 4 (5pt)
pi 0.333 0.167 0.333 0.167
E 3.33 1.67 1.67 3.33
V 2.22 1.39 1.39 2.22

POISSON DISTRIBUTION

➤ The Poisson distribution gives the probability of finding exactly n
events in a given length of time (and/or space), if the events occur
independently at a constant rate.

➤ It is a special case of binomial distribution with p→0, N→∞, μ = Np as
the finite constant; as μ→∞, the Poisson distribution converges to the
Normal distribution (Gaussian).

➤ Properties:
- variable: positive integer n
- parameter: positive real number μ

- probability function:

- expected value: E(n) = μ
- variance: V(n) = μ

11

P (n) =
µne�µ

n!

Siméon Denis Poisson

POISSON DISTRIBUTION (CONT.)

➤ The probability to have n entries in time t, with expected value μ=rt.
➤ It is a binomial distribution with a very large N and a very small  

p = μ/N:

12

n events happen in time t the events occur at a constant rate r = N/T
(N→∞, T→∞)

P (n) =
N !

n!(N � n)!

⇣ µ

N

⌘n ⇣
1� µ

N

⌘N�n

=
µn

n!

N(N � 1) · · · (N � n+ 1)

Nn

⇣
1� µ

N

⌘N ⇣
1� µ

N

⌘�n

Limit N→∞ (→1) (→e–μ) (→1)

P (n) =
µne�µ

n!

POISSON DISTRIBUTION (CONT.)

➤ Poisson distributions apply to various phenomena of discrete properties
(those that may happen 0, 1, 2, 3, ... times during a given period of time or in a
given area) whenever the probability of the phenomenon happening is
constant in time or space.

➤ For example:
- number of soldiers killed by horse-kicks each  

year in each corps in the Prussian cavalry  
(quote: L. J. Bortkiewicz).

- number of yeast cells used when brewing  
Guinness beer (quote: W. S. Gosset).

➤ And surely this works for HEP cases, like particle  
decay and production. The time interval between  
two successive events is actually exponentially  
distributed, and this is true for any Poissonian process!

13

SUMMING POISSONIAN VARIABLES

➤ Probability distribution of the sum of two Poissonian variables with
expected values μ1 and μ2:  
 
 
 
The resulting distribution is still a Poisson with expected value μ1+μ2.

➤ This is rather useful when combining Poissonian signal and Poissonian
background.

➤ The same conclusion holds for “convolution” of binomial and Poisson
distributions – take a fraction of Poisson yield with a binomial
“efficiency”.

- This is not a surprising result given the Poisson can be deduced
from binomial.

14

P 0(n) =
nX

m=0

P (m;µ1)P (n�m;µ2) =
(µ1 + µ2)n

n!
e�(µ1+µ2) = P (n;µ1 + µ2)

PRACTICE: POISSON+POISSON

➤ Let’s add multiple Poisson distributions
together and see if the resulting  
distribution is also a Poisson?

15

{
 TRandom3 rnd;
 const int NFILL = 100000;

 TH1D *h1 = new TH1D("h1","Poisson data",20,-0.5,19.5);
 h1->SetBarWidth(0.3);
 TH1D *h2 = (TH1D *)h1->Clone("h2");
 TH1D *h3 = (TH1D *)h1->Clone("h3");

 for(int i=0;i<20;i++) {
 double mu = 5.0;
 h1->SetBinContent(i+1,pow(mu,i)*exp(-mu)/TMath::Factorial(i)*NFILL);
 }
 for(int i=0; i<NFILL; i++) {
 int n1 = rnd.Poisson(5.0);
 h2->Fill(n1);

 int n2 = rnd.Poisson(2.5)+rnd.Poisson(1.5)+rnd.Poisson(1.0);
 h3->Fill(n2);
 }
}

example_03.cc
0 2 4 6 8 10 12 14 16 180

2000

4000

6000

8000

10000

12000

14000

16000

18000
h1 Poisson Prob.

h2 Poisson Generation

h3 Sum of Poisson

Poisson data

POISSON ⊗ BINOMIAL

➤ Consider a Poisson distribution of expected value μ, take a total
yield s0 out of this distribution, together with a binomial
efficiency ε. The probability of finding exactly s outcome events:

16

P (s0;µ) =
e�µµS0

s0!
⌦ B(s; s0, ✏) =

s0!

s!(s0 � s)!
✏s(1� ✏)s0�s

P 0(s;µ, ✏) =
1X

s0=s

P (s0;µ)B(s; s0, ✏) =
1X

s0=s

e�µµS0

s0!
· s0!

s!(s0 � s)!
✏s(1� ✏)s0�s

=
e�µ(✏µ)s

s!

1X

s0=s

µs0�s(1� ✏)s0�s

(s0 � s)!
=

e�µ(✏µ)s

s!

1X

s0=0

µs0(1� ✏)s0

(s0)!

=
e�µ(✏µ)s

s!
· eµe�✏µ =

e�✏µ(✏µ)s

s!
= P (s; ✏µ)

Just a Poisson with expected value of εμ.

COMPOUND POISSON DISTRIBUTION

➤ Compound Poisson distribution (distribution of a branching
process) is the sum of N Poisson variables ni, all of mean μ,
where N is also a Poisson variable of mean λ.

➤ Properties:
- variable: positive integer n
- parameter: positive real numbers λ, μ

- probability function:

- expected value: E(n) = λμ
- variance: V(n) = λμ(1+μ)

17

P (n) =
NX

N=0


(Nµ)ne�Nµ

n!
· �

Ne��

N !

�

Sum of N Poisson distributions:
N fixed: Poisson

N is also Poisson: Compound Poisson

FROM POISSON TO GAUSSIAN

➤ As introduced earlier, when the expected value μ of the Poisson distribution
increases, it converges to the Normal distribution (Gaussian).

➤ Even the value of μ is only 10, the distribution is already rather close to a
Gaussian with the same variance (V=σ2=μ).

18

NORMAL DISTRIBUTION / GAUSSIAN

➤ Gaussian is probably the most important /  
well-known / useful probability distribution.

➤ Properties:
- variable: real number x
- parameter: real numbers μ, σ
- probability function: 
 

- expected value: E(x) = μ
- variance: V(x) = σ2

➤ A Gaussian distribution with μ=0 and σ=1 is the standard Normal
density function.

➤ A Gaussian with different σ’s for the left and right half of the distribution is
usually called the bifurcated Gaussian.

19

P (x) =

1

�

p
2⇡

exp


�1

2

(x� µ)

2

�

2

�

Carl Friedrich Gauss

NORMAL DISTRIBUTION / GAUSSIAN (II)

➤ The cumulative distribution of the standard normal
distribution can be related to the error function, erf(x)  
 
 
 
 

➤ The error function is what  
you can easy call within  
your program, if you want  
to calculate the integration 
of a Gaussian!

20

erf(x) =
2p
⇡

Z
x

0
e

�t

2

dt

�(x) =

Z
x

�1
G(x0;µ = 0,� = 1)dx0 =

1

2


1 + erf

✓
xp
2

◆�

NORMAL DISTRIBUTION / GAUSSIAN (III)

➤ On the other hand, the error function can be easily used to
derive the coverage probability for a given standard
deviation, e.g. 68.3% of a normal distribution is just within
±1σ region, etc.

21

p(n) = �(n)� �(�n) = erf

✓
np
2

◆

n p(n) 1-p(n)
1σ 0.682 689 0.317 310
2σ 0.954 499 0.045 500
3σ 0.997 300 0.002 699
4σ 0.999 936 0.000 063

CENTRAL LIMIT THEOREM

➤ If we have a sequence of independent variable Xi, each from a
distribution with mean μi and variance σi

2.
➤ The sum S = ΣXi will have a mean Σμi and a variance Σσi

2.
➤ This holds for ANY distributions, and the individual means and

variances exist. The Central Limit theorem states, in the limit of
large N→∞,

22

S �
PN

i µiqPN
i �2

i

! Gaussian(x;µ = 0,� = 1)

CENTRAL LIMIT THEOREM (CONT.)

23

A simulation
with binomial
distributions
up to N=512

24

COMBINATION OF 2 INDEPENDENT GAUSSIAN VARIABLES?

➤ If X and Y are two random variables, following two
independent Gaussian distributions, then

- Their sum X+Y and difference X–Y are also Gaussians; in
fact, any linear combination of X and Y, e.g. aX+bY are also
Gaussian distributed. 
(Note: this is not a sum of two Gaussian PDF, but two random
variables!)

- Their product X×Y follows the "product-normal"
distribution.

- Their ratio X/Y follows the Cauchy distribution (or your
familiar Breit-Wigner distribution).

25

MULTIVARIATE GAUSSIAN

➤ Multivariate Gaussian is a generalization of the 1D normal
distribution to higher dimensions. It naturally takes a density
function with a quadratic form in its exponent: 
 
 
 

➤ The quantity (X–μ)TV–1(X–μ) is the covariance form of X, and it
follows a χ2 distribution with k degrees of freedom. The matrix V is
the covariant matrix of vector X introduced earlier:

26

P (X) / exp

2

4�1

2

kX

i=1

kX

j=1

aij

✓
Xi � µi

�i

◆✓
Xj � µj

�j

◆3

5

/ exp


�1

2

(X � µ)T · V �1 · (X � µ)

�

V = cov(X) =

2

66664

�2
1 ⇢12�1�2 · · · ⇢1k�1�k

⇢12�1�2 �2
2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

⇢1k�1�k · · · �2
k

3

77775

ρij is the correlation
coefficient between
Xi and Xj.

JUST 2D GAUSSIAN

➤ Consider a simplified case of only 2D, X and Y:

27

P (X,Y) =

1

2⇡�X�Y

p
1� ⇢2

⇥ exp

⇢
� 1

2(1� ⇢2)


(X � µX)

2

�2
X

+

(Y � µY)
2

�2
Y

� 2⇢(X � µX)(Y � µY)

�X�Y

��

again ρ is the correlation coefficient between X and Y.

iso-probability
contours

X

Y

Standard
error ellipse

P(X,Y)

ISO-PROBABILITY 2D CONTOUR

➤ Your 1σ is not my 1σ: it is mandatary to remember the conversion
between # of σ’s and the converging probability depends on the
number of dimensions.

➤ You might notice that some of the 2D  
contour plots put 68%/95%, instead  
of 1σ/2σ, since 1σ in 2D does not  
cover the conventional 68% coverage  
probability.

28

Vκ
0.8 1 1.2 1.4

F
κ

0.4

0.6

0.8

1

1.2

1.4

1.6

ATLAS+CMS

ATLAS

CMS

68% CL 95% CL Best fit SM expected

Run 1 LHC
CMS and ATLAS

n p(n) in 1D p(n) in 2D
1σ 0.6827 0.3934
2σ 0.9545 0.8647
3σ 0.9973 0.9889

1.515σ 0.6827
2.486σ 0.9545
3.439σ 0.9973

PRACTICE: PROBABILITY VERSUS N-SIGMA

➤ In fact it is easy to calculate this conversion table by yourself. The
TMath::Prob() function can do it quickly.

➤ This is a simple example practice to draw  
the probability as a function of # of σ in  
1D and 2D:

29

{
 vector<double> vec, prob1, prob2;
 double sigma;
 while(sigma<4.5) {
 vec.push_back(sigma);
 prob1.push_back(1.-TMath::Prob(sigma*sigma,1));
 prob2.push_back(1.-TMath::Prob(sigma*sigma,2));
 sigma += 0.05;
 }

 TCanvas *c1 = new TCanvas();
 TGraph *g1 = new TGraph(vec.size(),vec.data(),prob1.data());
 g1->Draw();
 TGraph *g2 = new TGraph(vec.size(),vec.data(),prob2.data());
 g2->Draw("same");
}

example_04.cc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

)σn (
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

g1 p(n) in 1D
g2 p(n) in 2D

Graph

OTHER COMMONLY USED FUNCTIONS

➤ Exponential
➤ Power law
➤ Chi-square distribution
➤ Cauchy/Briet-Wigner distribution
➤ Log-Normal distribution
➤ Landau distribution
➤ Crystal Ball function
➤ ARGUS function
➤ Threshold function
➤ Polynomials: Laurent/Legendre/

Chebyshev/Bernstein/…

30

EXPONENTIAL DISTRIBUTION

➤ Consider events occurring randomly in time, with an average of λ events
per unit time.

➤ The Poisson distribution describe the probability  
of N events occurring in a time interval t.

➤ Then the probability of no events in time t follows the exponential
distribution exp(–λt).

➤ Properties:
- variable: real number x
- parameter: real numbers λ

- probability function:

- expected value: E(x) = 1/λ
- variance: V(x) = 1/λ2

31

P (N |t) = 1

N !
(�t)Ne��t

P (x) = �e

��x

POWER LAW FUNCTION

➤ Power law function is also kind of fast
increasing/decreasing function
commonly used in many places: 
 
 
where k is a constant parameter of the
distribution known as the exponent or
scaling parameter.

➤ A comparison between exponential and
power law (and you can see they are actually
very different!)

- Exponential:

- Power law:

32

Power law in
log-log scale:  

it should be just
a straight line!

Linear scale
P (x) = x

const

P (x) = const

x

P (x) / x

�k

CHI-SQUARE DISTRIBUTION

➤ Suppose that X1, X2, … XN are independent, standard Normal variables,
The sum of the their squares 
 
 
follows a chi-square distribution χ2(N), with N-degrees of freedom.

➤ Properties:
- variable: real number x
- parameter: positive integer N  

(as “degrees of freedom”)
- probability function: 

- expected value: E(x) = N
- variance: V(x) = 2N

33

P (x) =
1
2

�
x

2

�(N/2)–1
e

�x/2

�(N/2)

Q =
NX

i=1

X2
i) �2(N)

PRACTICE: THE PRINCIPLE OF CHI-SQUARE DISTRIBUTION

➤ Let’s just add multiple Gaussian random variables and see if the
resulting distribution follows the chi-square distributions.

34

{
 TRandom3 rnd;
 TH1D *h1 = new TH1D("h1","chisquare data",100.,0.,10.);
 TH1D *h2 = (TH1D*)h1->Clone("h2");
 TH1D *h3 = (TH1D*)h1->Clone("h3");

 for(int i=0;i<1000000;i++) {
 h3->Fill(pow(rnd.Gaus(),2)+pow(rnd.Gaus(),2)+
 pow(rnd.Gaus(),2));
 h2->Fill(pow(rnd.Gaus(),2)+pow(rnd.Gaus(),2));
 h1->Fill(pow(rnd.Gaus(),2));
 }
 h1->Draw();
 h2->SetLineColor(kRed);
 h2->Draw("same");
 h3->SetLineColor(kBlue);
 h3->Draw("same");
}

example_05.cc

0 1 2 3 4 5 6 7 8 9 100

10000

20000

30000

40000

50000

60000

(N=1)2χh1
(N=2)2χh2
(N=3)2χh3

chisquare data

See���������	
��
������������������ if���������	
��
������������������ the���������	
��
������������������ output���������	
��
������������������ distributions���������	
��
������������������
agree���������	
��
������������������ with���������	
��
������������������ the���������	
��
������������������ curves���������	
��
������������������ given���������	
��
������������������ in���������	
��
������������������
the���������	
��
������������������ previous���������	
��
������������������ slide!

CAUCHY/BRIET-WIGNER DISTRIBUTION

➤ The Cauchy distribution is often used in statistics as the canonical
example of a "pathological" distribution since both its expected value and
its variance are undefined.

➤ It is identical to the physically important Breit-Wigner distribution.
➤ Properties:

- variable: real number x
- parameter: BW-function has a location  

parameter and a scale parameter are  
included. (Note: the expected value  
and variance are still undefined!)

- probability function: 

- expected value, variance: undefined

35

P (x) =
1

⇡


�

�2 + (x� x0)2

�

UNDEFINED MEAN? WHY?

➤ You might get surprised why the Cauchy distribution does not have
a definite mean (and variance), even it has an obvious median point
at the middle. This has to come back to the definition of mean: 

➤ Consider a Cauchy (or B-W function with x0=0, Γ=1), by
definition:

36

µ = E(X) = hXi =
Z

⌦
Xf(X)dx

µ =

Z +1

�1

1

⇡

x

1 + x

2
dx This is a typical improper integral

Thus
µ = lim

L!�1
lim

H!+1

Z H

L

1

⇡

x

1 + x

2
dx µ = lim

H!+1
lim

L!�1

Z H

L

1

⇡

x

1 + x

2
dx

or

The two evaluations do not give the same finite result
since the inner limit already diverges.

LOG-NORMAL DISTRIBUTION

➤ A log-normal distribution is a continuous probability distribution of a random
variable whose logarithm is normally distributed, ie. if X is log-normally
distributed, then Y=ln(X) has a normal distribution.

➤ A log-normal process is the statistical realization of the multiplicative product of
many independent positive random variables.

➤ Properties:
- variable: real number x
- parameter: real numbers μ, σ
- probability function: 
 

- median: exp(μ)
- mode(=maximum point): exp(μ–σ2)
- expected value: E(x) = exp(μ+σ2/2)
- variance: V(x) = [exp(σ2)–1]exp(2μ+σ2)

37

P (x) =

1

x�

p
2⇡

exp


� (lnx� µ)

2

2�

2

�

LANDAU DISTRIBUTION

➤ Widely used to model the fluctuations in the energy loss of particles
passing though thin layers.

➤ Charged particles (protons, pions, etc.) which are in most cases close to
MIPs, all produce approximately Landau-distributed spectra when
traversing the matter.

➤ Because of the distribution's long tail, the moments of the distribution,
like mean or variance, are undefined.

➤ Probability function:

38

P (x) =

1

⇡

Z 1

0
exp(�t ln t� xt) sin(⇡t)dt

P

0(x;µ,�) = P

✓
x� µ

�

◆Usual shift/scale applied:

CRYSTAL BALL FUNCTION

➤ Crystal Ball function consists of a Gaussian core and a power-
law low-end tail, below a certain threshold μ–ασ.

➤ Named after the Crystal Ball collaboration at SLAC.

➤ Mostly used to describe the processes with strong energy lost and
with a long tail to the left. For example, invariant mass of
particles with photon in the final state.

➤ Probability function:

39

P (x) = N ·
(
A · (B � x�µ

�

)

�n

, if x < µ� ↵�

exp

h
� (x�µ)2

2�2

i
, if x � µ� ↵�

)

A = (n/↵)n exp(�↵2/2), B = n/↵� ↵

ARGUS FUNCTION

➤ The ARGUS distribution is the probability distribution to model
the invariant mass distribution of a “continuum” background, in
particular, near the kinematic threshold given by the beam energy.

➤ Named after the ARGUS experiment.

➤ Widely used by the B-factories  
(or any similar collider experiment  
with fixed beam energy).

➤ Probability function:

40

4

meson candidates, where the charge of the kaon or pion
defines the charge or flavor of the B meson. The par-
ticle selection criteria lead to combinatorial background
that is suppressed by applying requirements on the beam-
energy constrained mass, Mbc =

p
E

2
beam/c

4 � |~pB |2/c2,
and the energy di↵erence, �E = EB �Ebeam, where EB

and ~pB are the energy and momentum, respectively, of
the reconstructed candidate in the ⌥(4S) rest frame and
Ebeam is the beam energy in the center-of-mass frame.
Correctly reconstructed candidates are centered at the
nominal B mass in Mbc and at zero in �E. Candi-
dates that satisfy 5.22 GeV/c

2
< Mbc < 5.30 GeV/c

2

and �0.10 (�0.05) GeV < �E < 0.05 GeV for the
electron (muon) modes are retained. Large irreducible
background contributions arise from charmonium decays
B ! J/ K

⇤ and B ! (2S)K⇤, in which the cc̄

state decays into two leptons. These decays are ve-
toed with the requirements �0.25 (�0.15) GeV/c

2
<

M``�mJ/ < 0.08 GeV/c

2 and �0.20 (�0.10) GeV/c

2
<

M`` � m (2S) < 0.08 GeV/c

2 for the electron (muon)
modes. In the electron case, the veto is applied twice:
with and without the bremsstrahlung-recovery treat-
ment. Di-electron background from photon conversions
(� ! e

+
e

�) and ⇡

0 Dalitz decays (⇡0 ! e

+
e

�
�) is re-

jected by requiring Mee > 0.14 GeV/c

2.
To maximize signal e�ciency and purity, neural net-

works are utilized sequentially from the bottom to the
top of the decay chain, transferring the output probabil-
ity from each step to the subsequent step so that the most
e↵ective selection requirements are applied in the last
stage based on all information combined. For all particle
hypotheses, a neural network is trained to separate signal
from background and an output value, oNB, is calculated
for each candidate. The classifiers for e

±
, µ

±
,K

±, K0
S ,

⇡

0, and ⇡± are taken from the neural-network-based full
event reconstruction described in Ref. [16]. For K

⇤ se-
lection, a classifier is trained on MC samples using kine-
matic variables and vertex fit information. The final clas-
sification is performed with a requirement on oNB for each
B decay channel using event-shape variables (i.e., mod-
ified Fox-Wolfram moments [17]), vertex fit information,
and kinematic variables as input for the classifier. The
most important variables for the neural networks are�E,
the reconstructed mass of the K⇤, the product of the net-
work outputs of all secondary particles, and the distance
between the two leptons along the beam direction �z``.
If multiple candidates are found in an event (less than
2% of the time), the most probable candidate is chosen
based on oNB. The selection requirements for the neural
networks are optimized by maximizing the figure of merit
ns/

p
ns + nb separately for the electron and muon chan-

nels, where ns and nb are the expected numbers of signal
and background candidates, respectively, calculated from
MC.

Signal and background yields are extracted by an un-
binned extended maximum likelihood fit to the Mbc dis-

)2 (GeV/cbcM
5.22 5.24 5.26 5.28

)2
Ev

en
ts

 /
(0

.0
03

 G
eV

/c

0

10

20

30

40

50

60

70

)2 (GeV/cbcM
5.22 5.24 5.26 5.28

Pu
ll

-2
0
2)2 (GeV/cbcM

5.22 5.24 5.26 5.28

)2
Ev

en
ts

 /
(0

.0
03

 G
eV

/c

0

20

40

60

80

100

)2 (GeV/cbcM
5.22 5.24 5.26 5.28

Pu
ll

-2
0
2

FIG. 1. Distribution of the beam-energy constrained mass
for selected B ! K⇤e+e� (left) and B ! K⇤µ+µ� (right).
Combinatorial background (shaded blue), signal (red filled)
and total (solid) fit functions are superimposed on the data
points

tribution of B ! K

⇤
`

+
`

� candidates, presented in Fig. 1,
where the signal is parametrized by a Crystal Ball func-
tion [18] and the background is described by an ARGUS
function [19]. The signal shape parameters are deter-
mined from a fit to B ! J/ K

⇤ data in the correspond-
ing q

2 veto region while the background shape parame-
ters are allowed to float in the fit. In total 127± 15 and
185 ± 17 signal candidates are obtained for the electron
and muon channels, respectively.
The analysis is performed in four independent bins of

q

2, as detailed in Table I, with an additional bin in the
range 1.0 GeV2

/c

2
< q

2
< 6.0 GeV2

/c

2, which is favored
for theoretical predictions [6]. To make maximum use
of the limited statistics, a data-transformation technique
[20, 21] is applied, simplifying the di↵erential decay rate
without losing experimental sensitivity. The transforma-
tion is applied to specific regions in the three-dimensional
angular space, exploiting the symmetries of the cosine
and sine functions to cancel terms in Eq. 1. With the
following transformations to the dataset, the data are
sensitive to the observable of interest:

P

0
4, S4 :

8
><

>:

�! �� for � < 0

�! ⇡ � � for ✓` > ⇡/2

✓` ! ⇡ � ✓` for ✓` > ⇡/2,

(3)

P

0
5, S5 :

(
�! �� for � < 0

✓` ! ⇡ � ✓` for ✓` > ⇡/2.
(4)

With this procedure, the remaining observables are the
K

⇤ longitudinal polarization, FL, the transverse polar-

ization asymmetry, A(2)
T = 2S3/(1 � FL), and P

0
4 or P

0
5.

Two independent maximum likelihood fits for each bin
of q2 are performed to the angular distributions to ex-
tract the P

0
4,5 observables. The fits are performed using

the data in the signal region of Mbc of all decay channels
and separately for the electron and muon mode. The sig-
nal (background) region is defined as Mbc � 5.27 GeV/c

2

ARGUS  
function

⇓

P (x) = Nx

r
1�

⇣
x

✓

⌘2
exp

⇢
�⇠

2

2


1�

⇣
x

✓

⌘2
��

N: normalization factor;
θ: kinematic upper bound or beam energy (fixed);
ξ: shape parameter

THRESHOLD FUNCTION (MN_FIT VER?)

➤ A “threshold function” usually refers to a step function with a “turn-
on” threshold. Here we are going to discuss something very
different.

➤ Interestingly this is not fully documented,  
but a very old fitting tool named mn_fit  
had introduced a convenient “threshold  
function” to model the distribution near  
a kinematic boundary.

➤ Probability function:

41

P (x) = N · (x� ✓)

⇠
exp

⇥
c1 ⇤ (x� ✓) + c2 ⇤ (x� ✓)

2
⇤

N: normalization factor;
θ: kinematic upper bound or beam energy (again, as a fixed parameter!);
ξ, c1, c2: shape parameters

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ = 1, ξ = 1.2,  
c1=–2.5, c2=0.5

POLYNOMIALS ET AL

➤ Polynomials are probably the simplest way to model any
unknown distributions. Although different definitions of
polynomials are mathematically equivalent, but different
polynomials indeed have different behavior.

➤ In particular, some of the polynomials (e.g. Legendre or
Chebyshev) are orthogonal, they usually have a better
behavior when expanding the order of polynomials.

➤ Simple polynomials:

➤ Power series:

➤ Laurent polynomial: same as above but k can be negative.

42

a0 + a1x+ a2x
2 + a3x

3 + · · · =
NX

k=0

akx
k

POLYNOMIALS ET AL (II)

➤ Legendre polynomials: as general
solutions to Legendre's Equation,
and are azimuthally symmetric.  
 
 

➤ Chebyshev polynomials: as a
sequence of orthogonal polynomials
and can be defined recursively.

43

P0(x) = 1, P1(x) = x

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)� nPn�1(x)

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)� Tn�1(x)

POLYNOMIALS ET AL (III)

➤ Probabilities should be always “positive defined”, but this is not the case
for usual power-series based polynomials. The function can easily go to
negative and break the evaluation of probability.

➤ Bernstein polynomials are constructed with sets of non-negative bases
and are generally convenient for PDF modeling.

➤ Bernstein polynomials of degree n are defined by 
 

➤ Examples:

44

Bi,n(t) =
n!

i!(n� i)!
ti(1� t)(n�i) (0  t  1)

Bernstein Polynomials
The Bernstein polynomials of degree n are defined by

Bi,n(t) =
✓

n

i

◆
ti(1� t)n�i

for i = 0, 1, ..., n, where ✓
n

i

◆
=

n!
i!(n� i)!

There are n+1 nth-degree Bernstein polynomials. For mathematical convenience, we usually set Bi,n = 0,
if i < 0 or i > n.

These polynomials are quite easy to write down: the coefficients
�n

i

�
can be obtained from Pascal’s

triangle; the exponents on the t term increase by one as i increases; and the exponents on the (1 � t) term
decrease by one as i increases. In the simple cases, we obtain

• The Bernstein polynomials of degree 1 are

B0,1(t) = 1� t

B1,1(t) = t

and can be plotted for 0  t  1 as

2

• The Bernstein polynomials of degree 2 are

B0,2(t) = (1� t)2

B1,2(t) = 2t(1� t)

B2,2(t) = t2

and can be plotted for 0  t  1 as

• The Bernstein polynomials of degree 3 are

B0,3(t) = (1� t)3

B1,3(t) = 3t(1� t)2

B2,3(t) = 3t2(1� t)

B3,3(t) = t3

and can be plotted for 0  t  1 as

3

Bernstein Polynomials
The Bernstein polynomials of degree n are defined by

Bi,n(t) =
✓

n

i

◆
ti(1� t)n�i

for i = 0, 1, ..., n, where ✓
n

i

◆
=

n!
i!(n� i)!

There are n+1 nth-degree Bernstein polynomials. For mathematical convenience, we usually set Bi,n = 0,
if i < 0 or i > n.

These polynomials are quite easy to write down: the coefficients
�n

i

�
can be obtained from Pascal’s

triangle; the exponents on the t term increase by one as i increases; and the exponents on the (1 � t) term
decrease by one as i increases. In the simple cases, we obtain

• The Bernstein polynomials of degree 1 are

B0,1(t) = 1� t

B1,1(t) = t

and can be plotted for 0  t  1 as

2

• The Bernstein polynomials of degree 2 are

B0,2(t) = (1� t)2

B1,2(t) = 2t(1� t)

B2,2(t) = t2

and can be plotted for 0  t  1 as

• The Bernstein polynomials of degree 3 are

B0,3(t) = (1� t)3

B1,3(t) = 3t(1� t)2

B2,3(t) = 3t2(1� t)

B3,3(t) = t3

and can be plotted for 0  t  1 as

3

45

If one function cannot describe your
data, you can combine more!

JOINT MULTIPLE FUNCTIONS TOGETHER

➤ It is not surprising that a single function cannot fully describe your
data in a more general case. One of the straightforward ways to
improve the modeling is to joint multiple functions into a single
PDF.

➤ No matter how complicated construction of the model, as a PDF,
the overall normalization should be always held: 
 
 
 

➤ If the normalization is not properly calculated, it might be resulting
a biased parameter estimation (to be discussed in the next lecture).

46

P (X) =
X

i

fiPi(X)

Pi(x): individual model
fi: coefficient of each model

Z

⌦
P (X)dX = 1

CONVOLUTION

➤ Convolution is a typical way to add “smearing” to your given distribution. For
example, adding detector resolution to a known PDF.

➤ Consider an intrinsic/truth PDF, f(x), together with a resolution model
r(x,x’) which gives the probability of measuring x’ out of a true value of x.

➤ If the resolution function r is a Gaussian, the σ is the experimental resolution.

➤ Then the joint PDF which includes both intrinsic information and
experimental resolution is to convolute f with r:

47

P (x) = f ⌦ r =

Z

⌦
f(x0) · r(x, x0)dx0

For example,
invariant mass
distribution of a
narrow particle

f(x) r(x,x’) P(x)

CONVOLUTION (CONT.)

➤ Consider a convolution with
Gaussian model, the
convoluted distribution can
be interpreted by replacing
each slice of the original
distribution by a Gaussian.

➤ On the other hand, each slice
of the final distribution has
the contribution from nearby
slices from the original
distribution, according to the
probability given by a
Gaussian.

48

PRACTICE: EXPONENTIAL CONVOLUTED WITH GAUSSIAN

➤ The convolution requires some integration works. In most of the cases it is
difficult to do it analytically.

➤ There is no direct implementation within ROOT itself but RooFit does have
the functionality to perform the convolution.

➤ Here are an example how to  
obtained a convoluted exponential  
function within RooFit:

49

{
 using namespace RooFit;

 RooRealVar t("t","t",0.,10.);
 RooRealVar lambda("lambda","Decay parameter",1.6);
 RooGaussModel res("res","Resolution model",t,RooConst(0.),RooConst(0.2));
 RooDecay model("model","model",t,lambda,res,RooDecay::SingleSided);

 RooPlot *frame = t.frame();
 model.plotOn(frame);

 frame->Draw();
}

example_06.cc

0 1 2 3 4 5 6 7 8 9 10
t

0

0.01

0.02

0.03

0.04

0.05

Pr
oj

ec
tio

n
of

 m
od

el

A RooPlot of "t"

f(t;�) / exp(��t) and r(t, t0) / exp


� (t0 � t)2

2�2

�

NON-PARAMETRIC MODELS

➤ Sometimes the data might be difficult to
be modelled with a specific function form.
In this a situation, some non-parametric
models could be a good option.

➤ Surely one can still build a model with
high-order polynomials, but it might
generate some not-so-natural models
with many small detailed structures.

➤ In some of the cases a non-parametric
model, for example, a histogram-based
PDF (with some smoothing interpolation if
needed) can be a cost-effective solution.

50

KERNEL ESTIMATION

➤ The kernel estimation is simple way to convert  
a set of data to a (smoothed) function form.

➤ The general kernel estimate of the parent  
distribution is given by 
 
 
where ti are the sampled events, hi is the smoothing (bandwidth)
parameter. An obvious choice of kernel K is a Gaussian with μ=0
and σ=1: 

➤ An adaptive choice of the bandwidth hi is usually introduced in the
implementation. A factor ρ is applied to scale the width for each
event. See hep-ex/0011057 for details.

51

P (x) =
1

N

NX

i=1

1

hi
K

✓
x� ti

hi

◆

K(x) =

1p
2⇡

exp

✓
�x

2

2

◆
So this is just a sum of
many Gaussians!

KERNEL ESTIMATION

➤ The kernel estimation is simple way to convert a set of data to a (smoothed)
function form. The general kernel estimate of the parent distribution is
given by 
 
 
 
where ti are the sampled events, hi is the smoothing (bandwidth)
parameter. An obvious choice of kernel K is a Gaussian with μ=0 and σ=1.

➤ An adaptive choice of the bandwidth hi is usually introduced in the
implementation. A factor ρ is applied to scale the width for each event. See
hep-ex/0011057 for details.

52

P (x) =
1

N

NX

i=1

1

hi
K

✓
x� ti

hi

◆
K(x) =

1p
2⇡

exp

✓
�x

2

2

◆

Just a sum of many Gaussians!

PRACTICE: KERNEL ESTIMATION

➤ In ROOT there is already an implementation: TKDE. Or in RooFit the
RooKeysPdf is the most straightforward tool.

53

{
 TRandom3 rnd;
 TH1D *h1 = new TH1D("h1","Random data",60,0.,3.);

 vector<double> vec;
 for(int i=0;i<1000;i++) {
 double x = rnd.Gaus(1.,1.);
 vec.push_back(x);
 h1->Fill(x);
 }

 TKDE *kde = new TKDE(vec.size(),vec.data(),0.,3.);
 TCanvas *c1 = new TCanvas("c1","",600,800);
 c1->Divide(1,2);
 c1->cd(1);
 h1->SetFillColor(50);
 h1->Draw();
 c1->cd(2);
 kde->Draw();
}

example_07.cc

h1
Entries 1000
Mean 1.246
Std Dev 0.7352

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

h1
Entries 1000
Mean 1.246
Std Dev 0.7352

Random data

0 0.5 1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

KDE

data���������	
��
������������������ events

kernel���������	
��
������������������  
estimation

SUMMARY

➤ In this lecture we went though many
commonly used probability distributions,
including Poisson, Gaussian, etc.

➤ These distributions and models could be
very useful to describe the distributions
for your (upcoming) studies!

➤ For the next lecture, we are going to
discuss how to extract unknown
parameters out of your data and model.

54

