STATISTICAL **ANALYSIS IN** EXPERIMENTAL PARTICLE PHYSICS

Kai-Feng Chen National Taiwan University

EXAMPLE DATA SAMPLES

- ➤ Today we are going to have a "chained" exercises and the example data samples are given below:
 - "Experimental data": http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_exdata.root
 - "J/ψK⁺ Monte Carlo":

 http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_signal.root
 - "J/ψπ⁺ Monte Carlo":

 http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_psipi.root
 - "J/ψ+hadrons Monte Carlo":
 http://hep1.phys.ntu.edu.tw/~kfjack/lecture/hepstat/03/example_psihadrons.root
- ➤ Let's practice model building and structure your own maximum likelihood fitter with these samples!

THE DATA FILES CONTAIN...

The data files contain some "B⁺ \rightarrow J/ ψ K⁺" reconstructed events, and in this exercise you are requested to perform a proper maximum likelihood fit to the events, and extract the parameter(s) of interests.

```
TFile *fin = new TFile("example_exdata.root");
TNtupleD *nt = (TNtupleD*)fin->Get("nt");
nt->SetFillColor(50);
nt->Draw("mass");
}
```

Note there are also other variables in the ntuple:

charge = candidate charge

pt = transverse momentum (in GeV)

eta = pseudorapidity

tau = decay time (in ps)

#1: PREPARE MASS MODELS FOR EACH COMPONENT

- Please model the mass distribution of the three components which have "Monte Carlo" samples: signal, $J/\psi \pi^+$, $J/\psi + hadrons$.
- > You choose (guess) what is the best function to model them.
- Present your fit results and fit projection plots!

#2: JOINT THEM TOGETHER

- Now you have the PDF for all the components, **signal**, $J/\psi \pi^+$, $J/\psi + hadrons$, plus a **combinatorial** background which does not have Monte Carlo samples, into a single **extended likelihood function** and perform a fit to the "experimental data".
- ➤ Present your result of the fits (*plot*) and the yields for each component!
- ➤ You can fix most of the PDFs to the Monte Carlo shapes first.
- ➤ This is more-or-less close to you can have:

#3: A CORRECTION TO THE SIGNAL WIDTH

- ➤ You may find that the signal width is somewhat not exactly the same between data and MC.
- ➤ Please try to apply an additional correction (scaling factor) to the width of your signal peak model and fit it with data.
- > Present your results again.

#4: CONSTRAINING IT

- You may find the $J/\psi\pi^+$ component is hiding under the $J/\psi K^+$ signal peak, and the fit is not so nice.
- ➤ But however we can adding more information by constraining it according to the ratio of branching fractions from PDG:

$$\frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B^+ \to J/\psi \pi^+)} = (4.00 \pm 0.39)\%$$

► Hint: you can replace the yield of $J/\psi π^+$ by this ratio times the yield of $J/\psi K^+$, and then add a Gaussian constrain term on the given ratio to your fit.

#5: IN BINS OF PT AND ETA

- Now let's study the dependence of **pt** and **eta** (*these variables* are also stored in the same ntuple!)
- ➤ Make a plot which shows the "fitted yields per GeV in pt" in the following bins of pt:

```
pt = [15-16,16-17,17-19,19-21,21-25,25-30,30-40,40-60,60-100]
```

➤ Make another plot which shows the "fitted yields per 0.2 in eta", according to the following binning: eta = [0.0-0.2,0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0,

➤ Note the signal shapes could be different for different bins!

1.0-1.2, 1.2-1.4, 1.4-1.6, 1.6-1.8, 1.8-2.0

#6: CHARGE ASYMMETRIC?

➤ Please calculate the following quantity by separating the fits to the events with positive charge and negative charge:

$$A_{CP} = \frac{N_{-} - N_{+}}{N_{-} + N_{+}}$$

Try to include this A_{CP} in your fit to the data and extract the value directly within a single fit, without separating the samples! (*Hint: this requires a simultaneous fit!*)