
STATISTICAL ANALYSIS  
IN EXPERIMENTAL PARTICLE PHYSICS
Kai-Feng Chen 
National Taiwan University

INTER-LECTURE: BRIEFING ON RANDOM NUMBERS

1

RANDOM NUMBERS

➤ The computing generated
random numbers provide a
way to study the statistical
properties for any model
you would propose?

➤ In high-energy physics: 
heavily used in Monte Carlo
simulations, or statistical
tests!

➤ Understand the limit of
your random number
generator is very important.

2

“TRUE” VERSUS “PSEUDO” RANDOM NUMBER GENERATORS

➤ Quote from Wikipedia:  
“There are two principal methods used to generate random
numbers. One measures some physical phenomenon that is
expected to be random and then compensates for possible biases
in the measurement process. The other uses computational
algorithms that can produce long sequences of apparently
random results, which are in fact completely determined by a
shorter initial value, known as a seed or key. The latter type are
often called pseudo-random number generators.”

3

Carefully chosen pseudo-random number generators can be used
in many applications instead of true random numbers!

HARDWARE RANDOM NUMBERS GENERATORS

➤ A hardware random number generator can generates random
numbers from a physical process, rather than a computer
program, e.g. such devices can generate statistically random
“noise” signals, such as thermal noise, the photoelectric
effect, etc.

4

Such a device is usually very
useful for cryptographic work; for
most of our scientific works (no
security issue!) the pseudo
random number generators are
already good enough.

BASIC PROPERTIES OF (PSEUDO) RANDOM NUMBERS

➤ Running a random number generator should result a sequence of
“good” random numbers: X1, X2, …, XN, ...

➤ The elements should be independent and identically distributed, i.e.:

- P(Xi) = P(Xj)

- P(Xn|Xn–1) = P(Xn)

➤ Pseudo random number generators are nothing more than a
recursive algorithm (which is relatively simple and quick), that can
“process” your input seed to a series of numbers.

➤ A pseudo random number generator always has a limited “period”.
The “randomness” of the random number generator cannot be
guaranteed after that!

5

RANDOM NUMBER GENERATORS IN ROOT

➤ The basis generator interface: TRandom. It should not be used directly
but used via its derived classes (TRandom1/TRandom2/TRandom3):

- TRandom: very fast but a BAD generator, period: 109

- TRandom1: “RANLUX” slow but long period: 10171

- TRandom2: “Tausworthe” very fast, okay period: 1026

- TRandom3: “Mersenne Twister” fast, very long period: 106000

➤ All these classes have the same functionalities for generating uniform
distributions (in integer, float point numbers) or many commonly
used distributions (exponential, Gaussian, etc.)

➤ Generally TRandom3 is the recommended one (obvious reason!).

➤ Also GSL based generators available with ROOT::Math.

6

MERSENNE TWISTER

➤ It was developed in 1997 by Makoto Matsumoto (松本真) and  
Takuji Nishimura (西村拓⼠士).

➤ Webpage (you can also download the source code):  
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

➤ It is claimed to be fast, with a period of 219937–1 (~106001).

➤ This may not be the generator with the longest period in the
world, but it's a very famous one.

➤ There are several variants released by the authors recently:
SFMT (SIMD-oriented Fast MT), MTGP (MT on graphic processor),
TinyMT (light weighted version), etc.

➤ Default algorithm in GSL library as well.
7

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

USING TRANDOM CLASSES

➤ The most straightforward call to TRandomN classes can be
demonstrated as following: 
 
 
 
 
 
 

➤ Rndm() is the simplest call to  
produce uniformly-distributed  
floating points between 0 and 1.

➤ Uniform() is also available.

8

{
 TRandom3 rnd(1234);

 TH1D *h1 = new TH1D("h1","A Random Histogram",120,-0.1,1.1);

 for(int evt=0; evt<10000; evt++) h1->Fill(rnd.Rndm());

 h1->SetFillColor(50);
 h1->Draw();
}

example_01.cc

h1
Entries 10000
Mean 0.5014
Std Dev 0.2893

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

h1
Entries 10000
Mean 0.5014
Std Dev 0.2893

A Random Histogram

⤺���������	
��
������������������ Seed

OTHER DISTRIBUTIONS

➤ All the TRandomN classes have the following implementations:

- Exp(tau)

- Integer(imax)

- Gaus(mean,sigma)

- Rndm()

- Uniform(x1)

- Landau(mpv,sigma)

- Poisson(mean)

- Binomial(ntot,prob)

➤ But how about the distributions not (yet) implemented?
9

It is very straightforward to change the
distribution in the previous example
code! You are encouraged to try them!

A QUICK SOLUTION WITHIN ROOT

➤ If you want to generate the random numbers according to a user-
defined function, and with fixed lower/upper bounds, it is very
convenient to use TF1.

10

{
 TH1F *h1 = new TH1F("h1","A Random Histogram",120,-0.1,1.1);

 TF1 *f1 = new TF1("f1","[0]+[1]*x+[2]*gaus(2)");
 f1->SetParameters(2.,-1.0,2.5,0.5,0.05);

 for(int evt=0; evt<10000; evt++) h1->Fill(f1->GetRandom());

 h1->SetFillColor(50);
 h1->Draw();
}

example_02.cc

h1
Entries 10000
Mean 0.4658
Std Dev 0.2336

0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

300

350

h1
Entries 10000
Mean 0.4658
Std Dev 0.2336

A Random Histogram

You already see this example  
in the previous lecture in fact!

WITH THE ROOFIT

➤ RooFit also provides the tool to
generate any distribution that can be
implemented within RooFit framework.

➤ We will discuss RooFit more in the
upcoming lectures!

11

{
 using namespace RooFit;

 RooRealVar x("x","x",0.,1.);

 RooGaussian Gauss("Gauss",  
 "Gaussian PDF",x,RooConst(0.5),RooConst(0.05));
 RooExponential Exp("Exp","exponential PDF",x,RooConst(-0.1));
 RooAddPdf model("model","joint model",Gauss,Exp,RooConst(0.5));

 RooDataSet *data = model.generate(x,10000);
 RooPlot *frame = x.frame();

 data->plotOn(frame);
 frame->Draw();
}

example_03.cc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

100

200

300

400

500

Ev
en

ts
 /

(0
.0

1
)

A RooPlot of "x"

OR, DO THINGS BY OURSELVES

➤ You may think since the tools are already very convenient,
why we still need to learn how to generate (user) random
distributions by ourselves?

➤ In fact this helps (a lot) to understand how these convenient
tool works and the limitation of them!

➤ It is a pretty common case, if one  
finds the existing tool does not  
produce the correct results, you  
will understand “why”  
immediately.

12

Yes, it is very important to understand
what you are actually doing!

ACCUMULATE RANDOM DISTRIBUTIONS

➤ Assuming we can generate uniformly random distribution already, for
example, using TRandom3::Rndm(): 
 
 
 
 
 

➤ How to generate any non-uniform distribution, such as a Gaussian?

13

GENERATION OF NON-UNIFORM DISTRIBUTIONS

➤ Probably this is the case that we are usually facing: covert
uniform random distributions with your own code.

14

f(x) = exp


� (x� µ)

2

2�

2

�

f(x) = exp

⇣
�x

⌧

⌘

Gaussian  

Exponential  

Uniform

GENERATION OF NON-UNIFORM DISTRIBUTIONS (II)

➤ Suppose you already have a
defined function f(x), all
positive in the range of [0,1].
For example a simple
function like:

➤ Now we want to generate a
random distribution based on
this function f(x). Probably
90% of the people will start
with such a naive code?

15

f(x) = x

double f(double x)
{
 return x;
}

void bad_example()
{
 TRandom3 rnd;

 for(int i=0;i<10000;i++) {
 double x = rnd.Rndm();
 double y = f(x);

 printf("%f\n",y); // output y
 }
} ✘This is

definitely
incorrect...

GENERATION OF NON-UNIFORM DISTRIBUTIONS (III)

➤ Actually the given function, y=f(x), only gives the weights as
a function of x; it does not produce a random distribution by
simply inserting a random distribution along x.

16

y = f(x) = x

x

input  
distribution

output 
distribution✘

Since y = f(x) = x, the output
distribution is just a replica of

the input distribution x.

START FROM THE SIMPLEST WAY

➤ The most simple  
“Hit-or-Miss” method
(Von Neumann rejection)
is actually quite similar to
spay cinnamon powder on
your cappuccino...

17

THE HIT-OR-MISS METHOD

➤ This is one of the most simplest algorithms, it's quite
inefficient, but still very useful! The trick is simply: instead
of 1D –– generate the random numbers uniformly in 2D:

18

Generate
x = rand()
y = rand()
if y < f(x): accept x

REJECT

ACCEPT

THE HIT-OR-MISS METHOD (II)

➤ Such an idea can be implemented quickly (nothing really
difficult in fact!)

19

double f(double x)
{ return x - x*x + x*x*x - x*x*x*x + sin(x*13.)/13.; }

void example_04()
{
 TRandom3 rnd;
 TH1F *h1 = new TH1F("h1","A Random Histogram",120,-0.1,1.1);

 for(int i=0;i<100000;i++) {
 double x,y;
 do {
 x = rnd.Rndm();
 y = rnd.Rndm()*0.45;
 }while (y>f(x));

 h1->Fill(x);
 }

 h1->SetFillColor(50);
 h1->Draw();
}

example_04.cc

h1
Entries 100000
Mean 0.5132
Std Dev 0.2308

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

1400

1600

1800

h1
Entries 100000
Mean 0.5132
Std Dev 0.2308

A Random Histogram
generation���������	
��
������������������ in���������	
��
������������������ 2D���������	
��
������������������

THE STRANGE SCALE?

➤ You may notice there is a strange(?) 0.45 scaling factor in the
code. This is due to the fact that the given function f(x) is
always smaller than 0.45 in the given range of generation: 
 
 
 

➤ What happen if we do not know about it? In principle one can
do a scan first, but it's not very efficient for higher dimensional
functions.

➤ The key idea: importance sampling – we could just use few
random numbers to find the maximum value of the function.

20

 do {
 x = rnd.Rndm();
 y = rnd.Rndm()*0.45;
 }while (y>f(x));

WHAT IF YOU DON'T KNOW ABOUT THE UPPER BOUND?
➤ One can just “waste” some random generation calls and estimate

the upper bound first. And use this upper bound to do the real
generation.

21

 double f_max = 0.;
 for(int i=0;i<1000;i++) {
 double y = f(rnd.Rndm());
 if (y>f_max) f_max = y;
 }
 f_max *= 1.2;

 for(int i=0;i<100000;i++) {
 double x,y;
 do {
 x = rnd.Rndm();
 y = rnd.Rndm()*f_max;
 }while (y>f(x));

 h1->Fill(x);
 }

example_04a.cc

f_max���������	
��
������������������ ~���������	
��
������������������ 0.40336

add���������	
��
������������������ 20%���������	
��
������������������ spare���������	
��
������������������ space!

One���������	
��
������������������ can���������	
��
������������������ actually���������	
��
������������������ add���������	
��
������������������ a���������	
��
������������������ ���������	
��
������������������
protection���������	
��
������������������ here,���������	
��
������������������ e.g.: 

if (f(x) > f_max) {

//print out something...
exit(1);

}

IT’S NOT QUITE EFFICIENT, RIGHT?

➤ We already know that the (pseudo) random numbers are basically
limited: limited period & limited computing time.

➤ In principle one could use a much more efficient way to generate
the random distributions: Inverse Transform Method.

➤ Consider a 3-bin function (as an example):

22

Generate r∈[0,1] uniformly:

if r <

f(x1)

f(x1) + f(x2) + f(x3)
then x = x1 else

if r <

f(x1) + f(x2)

f(x1) + f(x2) + f(x3)
then x = x2 else

if r <

f(x1) + f(x2) + f(x3)

f(x1) + f(x2) + f(x3)
then x = x3

IT’S NOT QUITE EFFICIENT, RIGHT? (II)

➤ For a multi-bin case:

23

if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

Generate r∈[0,1] uniformly, and 
inverse transform back to x by

then take x = xm

f(x3)P
f(xi)

r

IT’S NOT QUITE EFFICIENT, RIGHT? (III)

➤ For more and more bins:

24

if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

then x = xm

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
 r <

R
xm+�

a

f(x0)dx
R
b

a

f(x0)dx0
then x = x

m

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
= r then x = x

m

Given r∈[0,1] and 
solve the equation to obtain x.

if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

then x = xm

IN EXPLICIT MATHEMATICS

25

W (x) =

R
x

a

f(x

0
)dx

0

R
b

a

f(x

0
)dx

0
= r (a random number in [0, 1])

W (x) ! x = W

�1(r)Find the invert function of

For example:
Z

x

0
exp(�x

0
)dx

0
= 1� exp(�x)

f(x) = exp(�x); [a, b] = [0, 1]

W (x) =

R
x

0 exp(�x

0
)dx

0
R 1
0 exp(�x

0
)dx

0
=

1� exp(�x)

1� exp(�1)

x = W

�1
(r) = � log

⇣
1� r +

r

e

⌘ Generate r∈[0,1] then  
convert to x.

LET’S GIVE IT A TRY!

➤ Given the explicit formula given for the distribution below: 
 
 
the generation is very  
straightforward:

26

x = W

�1
(r) = � log

⇣
1� r +

r

e

⌘
Generate r∈[0,1] then  

convert to x.

{
 TRandom3 rnd;

 TH1F *h1 = new TH1F("h1",  
"A Random Histogram",120,-0.1,1.1);

 for(int i=0;i<100000;i++) {
 double r = rnd.Rndm();
 double x = -log(1.-r+r/M_E);

 h1->Fill(x);
 }

 h1->SetFillColor(50);
 h1->Draw();
}

example_05.cc

h1
Entries 100000
Mean 0.4174
Std Dev 0.2814

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

1400

1600
h1

Entries 100000
Mean 0.4174
Std Dev 0.2814

A Random Histogram

EXTENDING TO INFINITY

➤ In the case of unbounded distribution – if the upper bound is
infinity – this cannot be carried out by a hit-or-miss method!
e.g.

27

f(x) = exp(�x); [a, b] = [0,1]

x = W

�1
(r) = � log(1� r)

W (x) =

R
x

0 exp(�x

0
)dx

0
R1
0 exp(�x

0
)dx

0 = 1� exp(�x)

 for(int i=0;i<100000;i++) {
 double r = rnd.Rndm();
 double x = -log(1.-r);

 h1->Fill(x);
 }

example_05a.cc
h1

Entries 100000
Mean 0.9992
Std Dev 1.003

0 2 4 6 8 100

1000

2000

3000

4000

5000

6000

7000

8000

9000

h1
Entries 100000
Mean 0.9992
Std Dev 1.003

A Random Histogram

GENERATE A GAUSSIAN

➤ Instead of hit-or-mass method, let’s practice the inverse
transformation with the function form:

28

G(x;µ,�) =

1p
2⇡�

exp


�(x� µ)

2

2�

2

�

For µ = 0,� = 1 ! G(x) =

1p
2⇡

exp


�(x)

2

2

�

I

2
=

ZZ
G(x)G(y)dxdy =

ZZ
1

2⇡

exp

✓
�x

2
+ y

2

2

◆
dxdy =

ZZ
1

2⇡

exp

✓
�r

2

2

◆
rd�dr

I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

for R = 1,� = 2⇡ ! I2 = 1

assign random  
number r1

assign random  
number r2

GENERATE A GAUSSIAN (II)

➤ Change the variables back to x,y:

29

I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

1� exp

✓
�R2

2

◆
= r1 ! R =

p
�2 log(1� r1)

�

2⇡
= r2 ! � = 2⇡r2

x = R cos� =

p
�2 log(1� r1) cos(2⇡r2)

y = R sin� =

p
�2 log(1� r1) sin(2⇡r2)

x =

p
�2 log(r1) cos(2⇡r2)

y =

p
�2 log(r1) sin(2⇡r2)

or

Since it does not matter if we
generate r1 or 1-r1Both x and y should be good Gaussian

random variables (and they are independent)!

GENERATE A GAUSSIAN (III)
➤ The generation is very straightforward again: 
 
 
 
 
 

➤ It might be cute(?) to try this:

30

for(int i=0;i<100000;i++) {
 double r1 = rnd.Rndm();
 double r2 = rnd.Rndm();
 double x =  
 sqrt(-2.*log(r1))*cos(2.*M_PI*r2);

 h1->Fill(x);
}

example_06.cc h1
Entries 100000
Mean 0.006966−
Std Dev 0.9969

6− 4− 2− 0 2 4 60

500

1000

1500

2000

2500

3000

3500

4000
h1

Entries 100000
Mean 0.006966−
Std Dev 0.9969

A Random Histogram

for(int i=0;i<100000;i++) {
 double x = rnd.Rndm()+rnd.Rndm()+rnd.Rndm()+
 rnd.Rndm()+rnd.Rndm()+rnd.Rndm();

 h1->Fill(x);
}

example_06a.cc
h1

Entries 100000
Mean 2.998
Std Dev 0.7073

1− 0 1 2 3 4 5 6 70

500

1000

1500

2000

2500

3000

3500

h1
Entries 100000
Mean 2.998
Std Dev 0.7073

A Random Histogram

This is the central limit theorem.
Will be discussed in the next lecture!

SUMMARY

➤ In this lecture we discussed several
important aspects regarding random
numbers –– the properties of the random
number generators in the ROOT
framework, and how to generate non-
uniform distributed distributions from a
uniform distribution!

➤ This should cover the minimal needs of
random number related topics for the
following lectures and exercises!

31

