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RANDOM NUMBERS

➤ The computing generated 
random numbers provide a 
way to study the statistical 
properties for any model 
you would propose? 

➤ In high-energy physics: 
heavily used in Monte Carlo 
simulations, or statistical 
tests! 

➤ Understand the limit of 
your random number 
generator is very important.
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“TRUE” VERSUS “PSEUDO” RANDOM NUMBER GENERATORS

➤ Quote from Wikipedia:  
“There are two principal methods used to generate random 
numbers. One measures some physical phenomenon that is 
expected to be random and then compensates for possible biases 
in the measurement process. The other uses computational 
algorithms that can produce long sequences of apparently 
random results, which are in fact completely determined by a 
shorter initial value, known as a seed or key. The latter type are 
often called pseudo-random number generators.”
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Carefully chosen pseudo-random number generators can be used 
in many applications instead of true random numbers!



HARDWARE RANDOM NUMBERS GENERATORS

➤ A hardware random number generator can generates random 
numbers from a physical process, rather than a computer 
program, e.g. such devices can generate statistically random 
“noise” signals, such as thermal noise, the photoelectric 
effect, etc.
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Such a device is usually very 
useful for cryptographic work; for 
most of our scientific works (no 
security issue!) the pseudo 
random number generators are 
already good enough.



BASIC PROPERTIES OF (PSEUDO) RANDOM NUMBERS

➤ Running a random number generator should result a sequence of 
“good” random numbers: X1, X2, …, XN, ... 

➤ The elements should be independent and identically distributed, i.e.: 

- P(Xi) = P(Xj) 

- P(Xn|Xn–1) = P(Xn) 

➤ Pseudo random number generators are nothing more than a 
recursive algorithm (which is relatively simple and quick), that can 
“process” your input seed to a series of numbers. 

➤ A pseudo random number generator always has a limited “period”. 
The “randomness” of the random number generator cannot be 
guaranteed after that! 
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RANDOM NUMBER GENERATORS IN ROOT

➤ The basis generator interface: TRandom. It should not be used directly 
but used via its derived classes (TRandom1/TRandom2/TRandom3): 

- TRandom: very fast but a BAD generator, period: 109 

- TRandom1: “RANLUX” slow but long period: 10171 

- TRandom2: “Tausworthe” very fast, okay period: 1026 

- TRandom3: “Mersenne Twister” fast, very long period: 106000 

➤ All these classes have the same functionalities for generating uniform 
distributions (in integer, float point numbers) or many   commonly 
used distributions (exponential, Gaussian, etc.) 

➤ Generally TRandom3 is the recommended one (obvious reason!). 

➤ Also GSL based generators available with ROOT::Math.
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MERSENNE TWISTER

➤ It was developed in 1997 by Makoto Matsumoto (松本真) and  
Takuji Nishimura (西村拓⼠士). 

➤ Webpage (you can also download the source code):  
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html 

➤ It is claimed to be fast, with a period of 219937–1 (~106001). 

➤ This may not be the generator with the longest period in the 
world, but it's a very famous one. 

➤ There are several variants released by the authors recently: 
SFMT (SIMD-oriented Fast MT), MTGP (MT on graphic processor), 
TinyMT (light weighted version), etc.  

➤ Default algorithm in GSL library as well.
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http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html


USING TRANDOM CLASSES

➤ The most straightforward call to TRandomN classes can be 
demonstrated as following: 
 
 
 
 
 
 

➤ Rndm() is the simplest call to  
produce uniformly-distributed  
floating points between 0 and 1. 

➤ Uniform() is also available.
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{ 
    TRandom3 rnd(1234); 
     
    TH1D *h1 = new TH1D("h1","A Random Histogram",120,-0.1,1.1); 

    for(int evt=0; evt<10000; evt++) h1->Fill(rnd.Rndm()); 
         
    h1->SetFillColor(50); 
    h1->Draw(); 
}

example_01.cc
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OTHER DISTRIBUTIONS

➤ All the TRandomN classes have the following implementations: 

- Exp(tau) 

- Integer(imax) 

- Gaus(mean,sigma) 

- Rndm() 

- Uniform(x1) 

- Landau(mpv,sigma) 

- Poisson(mean) 

- Binomial(ntot,prob) 

➤ But how about the distributions not (yet) implemented?
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It is very straightforward to change the 
distribution in the previous example 
code! You are encouraged to try them!



A QUICK SOLUTION WITHIN ROOT

➤ If you want to generate the random numbers according to a user-
defined function, and with fixed lower/upper bounds, it is very 
convenient to use TF1.
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{ 
    TH1F *h1 = new TH1F("h1","A Random Histogram",120,-0.1,1.1); 
     
    TF1 *f1 = new TF1("f1","[0]+[1]*x+[2]*gaus(2)"); 
    f1->SetParameters(2.,-1.0,2.5,0.5,0.05); 
     
    for(int evt=0; evt<10000; evt++) h1->Fill(f1->GetRandom()); 

    h1->SetFillColor(50); 
    h1->Draw(); 
}

example_02.cc
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You already see this example  
in the previous lecture in fact!



WITH THE ROOFIT

➤ RooFit also provides the tool to 
generate any distribution that can be 
implemented within RooFit framework.  

➤ We will discuss RooFit more in the 
upcoming lectures!
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{ 
    using namespace RooFit; 
     

    RooRealVar x("x","x",0.,1.); 
     

    RooGaussian Gauss("Gauss",  
     "Gaussian PDF",x,RooConst(0.5),RooConst(0.05)); 
    RooExponential Exp("Exp","exponential PDF",x,RooConst(-0.1)); 
    RooAddPdf model("model","joint model",Gauss,Exp,RooConst(0.5)); 
     

    RooDataSet *data = model.generate(x,10000); 
    RooPlot *frame = x.frame(); 
     

    data->plotOn(frame); 
    frame->Draw(); 
}

example_03.cc
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OR, DO THINGS BY OURSELVES

➤ You may think since the tools are already very convenient, 
why we still need to learn how to generate (user) random 
distributions by ourselves? 

➤ In fact this helps (a lot) to understand how these convenient 
tool works and the limitation of them! 

➤ It is a pretty common case, if one  
finds the existing tool does not  
produce the correct results, you  
will understand “why”  
immediately. 
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Yes, it is very important to understand 
what you are actually doing!



ACCUMULATE RANDOM DISTRIBUTIONS

➤ Assuming we can generate uniformly random distribution already, for 
example, using TRandom3::Rndm(): 
 
 
 
 
 

➤ How to generate any non-uniform distribution, such as a Gaussian?
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GENERATION OF NON-UNIFORM DISTRIBUTIONS 

➤ Probably this is the case that we are usually facing: covert 
uniform random distributions with your own code.

14
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GENERATION OF NON-UNIFORM DISTRIBUTIONS (II)

➤ Suppose you already have a 
defined function f(x), all 
positive in the range of [0,1].  
For example a simple 
function like: 

➤ Now we want to generate a 
random distribution based on 
this function f(x). Probably 
90% of the people will start 
with such a naive code?
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f(x) = x

double f(double x) 
{ 
    return x; 
} 

void bad_example() 
{ 
    TRandom3 rnd; 
     
    for(int i=0;i<10000;i++) { 
        double x = rnd.Rndm(); 
        double y = f(x); 
         
        printf("%f\n",y); // output y 
    } 
} ✘This is 

definitely 
incorrect...



GENERATION OF NON-UNIFORM DISTRIBUTIONS (III)

➤ Actually the given function, y=f(x), only gives the weights as 
a function of x; it does not produce a random distribution by 
simply inserting a random distribution along x. 
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y = f(x) = x

x

input  
distribution

output 
distribution✘

Since y = f(x) = x, the output 
distribution is just a replica of 

the input distribution x. 



START FROM THE SIMPLEST WAY

➤ The most simple  
“Hit-or-Miss” method 
(Von Neumann rejection) 
is actually quite similar to 
spay cinnamon powder on 
your cappuccino...
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THE HIT-OR-MISS METHOD

➤ This is one of the most simplest algorithms, it's quite 
inefficient, but still very useful! The trick is simply: instead 
of 1D –– generate the random numbers uniformly in 2D:
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Generate
x = rand()
y = rand()
if y < f(x): accept x

REJECT

ACCEPT



THE HIT-OR-MISS METHOD (II)

➤ Such an idea can be implemented quickly (nothing really 
difficult in fact!)
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double f(double x) 
{  return x - x*x + x*x*x - x*x*x*x + sin(x*13.)/13.; } 

void example_04() 
{ 
    TRandom3 rnd; 
    TH1F *h1 = new TH1F("h1","A Random Histogram",120,-0.1,1.1); 
     

    for(int i=0;i<100000;i++) { 
        double x,y; 
        do { 
            x = rnd.Rndm(); 
            y = rnd.Rndm()*0.45; 
        }while (y>f(x)); 
         

        h1->Fill(x); 
    } 
     

    h1->SetFillColor(50); 
    h1->Draw(); 
}

example_04.cc
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THE STRANGE SCALE?

➤ You may notice there is a strange(?) 0.45 scaling factor in the 
code. This is due to the fact that the given function f(x) is 
always smaller than 0.45 in the given range of generation: 
 
 
 

➤ What happen if we do not know about it? In principle one can 
do a scan first, but it's not very efficient for higher dimensional 
functions. 

➤ The key idea: importance sampling – we could just use few 
random numbers to find the maximum value of the function.
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 do { 
      x = rnd.Rndm(); 
      y = rnd.Rndm()*0.45; 
  }while (y>f(x));



WHAT IF YOU DON'T KNOW ABOUT THE UPPER BOUND?
➤ One can just “waste” some random generation calls and estimate 

the upper bound first. And use this upper bound to do the real 
generation.
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   double f_max = 0.; 
    for(int i=0;i<1000;i++) { 
        double y = f(rnd.Rndm()); 
        if (y>f_max) f_max = y; 
    } 
    f_max *= 1.2; 
     
    for(int i=0;i<100000;i++) { 
        double x,y; 
        do { 
            x = rnd.Rndm(); 
            y = rnd.Rndm()*f_max; 
        }while (y>f(x)); 
         
        h1->Fill(x); 
    } 
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if (f(x) > f_max) {

//print out something...
exit(1);

}



IT’S NOT QUITE EFFICIENT, RIGHT?

➤ We already know that the (pseudo) random numbers are basically 
limited: limited period & limited computing time. 

➤ In principle one could use a much more efficient way to generate 
the random distributions: Inverse Transform Method. 

➤ Consider a 3-bin function (as an example): 
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Generate r∈[0,1] uniformly:

if r <

f(x1)

f(x1) + f(x2) + f(x3)
then x = x1 else

if r <

f(x1) + f(x2)

f(x1) + f(x2) + f(x3)
then x = x2 else

if r <

f(x1) + f(x2) + f(x3)

f(x1) + f(x2) + f(x3)
then x = x3



IT’S NOT QUITE EFFICIENT, RIGHT? (II)

➤ For a multi-bin case:
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if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

Generate r∈[0,1] uniformly,  and 
inverse transform back to x by

then take x =  xm

f(x3)P
f(xi)

r



IT’S NOT QUITE EFFICIENT, RIGHT? (III)

➤ For more and more bins:
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if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

then x = xm

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
 r <

R
xm+�

a

f(x0)dx
R
b

a

f(x0)dx0
then x = x

m

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
= r then x = x

m

Given r∈[0,1] and 
solve the equation to obtain x.

if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

then x = xm



IN EXPLICIT MATHEMATICS
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W (x) =

R
x

a

f(x

0
)dx

0

R
b

a

f(x

0
)dx

0
= r (a random number in [0, 1])

W (x) ! x = W

�1(r)Find the invert function of

For example:
Z

x

0
exp(�x

0
)dx

0
= 1� exp(�x)

f(x) = exp(�x); [a, b] = [0, 1]

W (x) =

R
x

0 exp(�x

0
)dx

0
R 1
0 exp(�x

0
)dx

0
=

1� exp(�x)

1� exp(�1)

x = W

�1
(r) = � log

⇣
1� r +

r

e

⌘ Generate r∈[0,1] then  
convert to x.



LET’S GIVE IT A TRY!

➤ Given the explicit formula given for the distribution below: 
 
 
the generation is very  
straightforward:
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x = W

�1
(r) = � log

⇣
1� r +

r

e

⌘
Generate r∈[0,1] then  

convert to x.

{ 
    TRandom3 rnd; 
     
    TH1F *h1 = new TH1F("h1",  
"A Random Histogram",120,-0.1,1.1); 
     
    for(int i=0;i<100000;i++) { 
        double r = rnd.Rndm(); 
        double x = -log(1.-r+r/M_E); 
         
        h1->Fill(x); 
    } 
     
    h1->SetFillColor(50); 
    h1->Draw(); 
}

example_05.cc
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EXTENDING TO INFINITY

➤ In the case of unbounded distribution – if the upper bound is 
infinity – this cannot be carried out by a hit-or-miss method! 
e.g. 
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f(x) = exp(�x); [a, b] = [0,1]

x = W

�1
(r) = � log(1� r)

W (x) =

R
x

0 exp(�x

0
)dx

0
R1
0 exp(�x

0
)dx

0 = 1� exp(�x)

   for(int i=0;i<100000;i++) { 
        double r = rnd.Rndm(); 
        double x = -log(1.-r); 
         
        h1->Fill(x); 
    }

example_05a.cc
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GENERATE A GAUSSIAN

➤ Instead of hit-or-mass method, let’s practice the inverse 
transformation with the function form:
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G(x;µ,�) =

1p
2⇡�

exp


�(x� µ)

2

2�

2

�

For µ = 0,� = 1 ! G(x) =

1p
2⇡

exp


�(x)

2

2

�

I

2
=

ZZ
G(x)G(y)dxdy =

ZZ
1

2⇡

exp

✓
�x

2
+ y

2

2

◆
dxdy =

ZZ
1

2⇡

exp

✓
�r

2

2

◆
rd�dr

I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

for R = 1,� = 2⇡ ! I2 = 1

assign random  
number r1

assign random  
number r2



GENERATE A GAUSSIAN (II)

➤ Change the variables back to x,y:
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I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

1� exp

✓
�R2

2

◆
= r1 ! R =

p
�2 log(1� r1)

�

2⇡
= r2 ! � = 2⇡r2

x = R cos� =

p
�2 log(1� r1) cos(2⇡r2)

y = R sin� =

p
�2 log(1� r1) sin(2⇡r2)

x =

p
�2 log(r1) cos(2⇡r2)

y =

p
�2 log(r1) sin(2⇡r2)

or

Since it does not matter if we 
generate r1 or 1-r1Both x and y should be good Gaussian 

random variables (and they are independent)!



GENERATE A GAUSSIAN (III)
➤ The generation is very straightforward again: 
 
 
 
 
 

➤ It might be cute(?) to try this:
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for(int i=0;i<100000;i++) { 
  double r1 = rnd.Rndm(); 
  double r2 = rnd.Rndm(); 
  double x =  
      sqrt(-2.*log(r1))*cos(2.*M_PI*r2); 
         
  h1->Fill(x); 
}

example_06.cc h1
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for(int i=0;i<100000;i++) { 
  double x = rnd.Rndm()+rnd.Rndm()+rnd.Rndm()+ 
             rnd.Rndm()+rnd.Rndm()+rnd.Rndm(); 
         
  h1->Fill(x); 
}

example_06a.cc
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This is the central limit theorem. 
Will be discussed in the next lecture!



SUMMARY

➤ In this lecture we discussed several 
important aspects regarding random 
numbers –– the properties of the random 
number generators in the ROOT 
framework, and how to generate non-
uniform distributed distributions from a 
uniform distribution! 

➤ This should cover the minimal needs of 
random number related topics for the 
following lectures and exercises!
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