FADID
INTRODUCTION TO

Lecture 2-6:
Solving ordinary differential equations

Kal-Feng Chen

National Taiwan University

WORK OF "PHYSICIS TS

Solving the differential equations is probably one of your most
“ordinary” work when you study the classical mechanics?

Many differential equations in nature cannot be solved analytically
easily; however, in many of the cases, a numeric approximation to
the solution is often good enough to solve the problem. You will
see several examples today.

In this lecture we will discuss the numerical methods for finding
numerical approximations to the solutions of ordinary differential
equations, as well as how to demonstrate the “motions” with an
animation in matplotlib.

WORK OF "PHYSICISTS™

m Let’s get back to our “lovely” F=ma equations!

» N 2 2
}%_\ s, & LSy
A

4770d

-
. &

A

THE BASIS:
A BRAINLESS EXAMPLE

Let's try to solve such a (mostly) trivial differential equation:

@ — f(y.t) = with the initial condition:

You should know the obvious solution is — i = exp(f)

@ — f(y,1) Actually, this I1s the general form of any
9 first-order ordinary differential equation.

dt
In general, It can be very complicated, but it's still
a |t order ODE, eg.

_:f(y,t):yS-tQ sin(t +y) + vVt +y

THE NUMERICAL
SOLUTION

m Here are the minimal algorithm — integrate the differential
equation by one step in t:

dy
% _f(yvt)

Y(tnr1) — y(tn)
h

:f(yatn) — Yn+1 %yn—|—hf(ynvtn)

next step I Icurrent step

For our trivial example: d—:z =y W= Yn+1 = Yn + I Yn

This is the classical Euler algorithm (method)

[\ >
—— P

FULER ALGORITHM

® A more graphical explanation is as like this:

> <

: Yn+1 =~ Yn + h - f(ynvtn)
X

The precision of this Euler
algorithm is only up to O(h)
since:

For every step the precision is of
O(h?); after N~O(1/h) steps the
precision is O(h).

\

FULER ALGORITHM (1I)

m Let’s prepare a simple code to see how it works:

import math
def f(t,y): returny

t, vy = 0., 1. < Initial conditions (t =0,y = |)
h = 0.001 < steppingint

while t<1.:
k1 = f(t, y) < the given f(y,t) function
y += hxkl
t +=h

y_exact = math.exp(t)
print('Euler method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact)))

1206-example-01.py

Euler method: 2.7169239322358960,
exact: 2.7182818284590469,
diff: 0.0013578962231509 < Indeed the precision is of O(h)

Z\ !

SECOND ORDER
RUNGE-KUTTA METHOD

Surely one can introduce a similar trick of error reduction we have
played though out the latter half of the semester.

Here comes the Runge-Kutta algorithm for integrating differential
equations, which is based on a formal integration:

y(t) = / F(ty)dt

tn—|—1
Yn+1 = Yn +/ f(t,y)dt
t

mn

dy -

Expand f(t,y) in a Taylor series around (t,y) = (tn—|—% ; yn+%)

d
Fty) = F(tuss s y) + (= tgy) - Dt y) + O?)

A :
\ _,/)

Something smells familiar?

SECOND ORDER
RUNGE-KUTTA METHOD ()~

df
Bﬁ(tn+%)_+(j(h2)

Fy) = fltsr Ynsr) +(E—t, 1)

Insert the expansion
into the integration:

tna1 tna1 tna1 df
/ f(t,y)dt:/ f(tn+%,yn+%)dt—l—/ (t—tn+%)- 7 n—l—%) dt + ...
tn tn tn /

&
Linear (first order) term must be cancelled

It’s just a number (slope)!

Insert the integral back:

tn41
[e f)
{

mn

- Yn+1 %yn+h'f(tn—|—%7yn—|—%) —l_O(hg)

f one knows the solution half-step in the future — the
O(h?) term can be cancelled. BUT HOW?
[\\ »

9

SECOND ORDER
RUNGE-KUTTA METHOD (lll)&

m The trick: use the Euler’s method to solve half-step first, starting
from the given initial conditions:

h
Yn+i = Yo+ 5[(tn Yn)

Yy Slope:
A f(yn—kévtn—l—%) h
é i ______ tn—l—% — t _I_ 5
T e S ey
SR v Explicit formulae
kl — f(tnayn)
> t h h
kQ == f(tn _l_ _,yn —I_ P kl)

tn+1 2 2
— YUYn+1 ~ Yn + h - k2 + O(hg)

IMPLEMENTATION OF “RK2 /.

® The coding is actually extremely simple:

t, vy =0., 1.
h = 0.001 < Initial conditions and stepping (t = 0,y = |, h = 0.001)
while t<1l.:

k1 = f(t, ¥) < use Euler method to solve half-step

k2 = f(t+0.5%h, y+0.5%hxkl)

y += hxk2 < full step jump RK2 solver

t +=h

y_exact = math.exp(t)
print('RK2 method: %.16f, exact: %.16f, diff: %.16T' % \
(y,y_exact,abs(y-y_exact)))

\O

1206-example-02.py

RK2 method: 2.7182813757517628, For every step the precision is of
exact: 2.7182818284590469, O(h%); after N steps the
diff: 0.0000004527072841 precision is O(hz)

|l
Z\)

FOURTH ORDER
RUNGE-KUT TA

m The 4" order Runge-Kutta method provides an excellent balance
of power, precision, and programming simplicity. Using a similar
idea of the 2nd order version, one could have these formulae:

Basically the 4" order

k1 = f(t”“ yn) Runge-Kutta has a precision
h h of O(h°) at each step, an
ko = f(tn - 9 Yn + 9 kl) over all O(h*) precision.

h h
ks = f(tn + o Yn + 9 k2) Actually, the RK4 is a variation of

ka = f(tn + h,yn + h - ks) Simpson's method..

h
Ynt1 R Yn + ¢ - (k1 + 22 + 2k + k) + O(h°)

Z\ 12
—— P

s’

IMPLEMENTATION OF “RK4* /)

\§& —2
m The RK4 routine is not too different from the previous RK2
t’y:@_’ 1_¢ .. :
=" 0. 001 The same initial conditions & stepping
while t<1.:
k1 = f(t, y) RK4 solver
k2 f(t+0.5%h, y+0.5%hxkl)

< Simply calculate kl~k4 in a sequepce

k3 f(t+0.5%h, y+0.5%hxk2)
k4 f(t+h, y+hxk3)

y 4= h/6.%(k1+2.%k2+2.%k3+k4) < Jump to the next step
t +=h

y_exact = math.exp(t)
print('RK4 method: %.16f, exact: %.16f, diff: %.16T"' % \
(y,y_exact,abs(y-y_exact)))

\O

1206-example-03.py

RK4 method: 2.7182818284590247,
exact: 2.7182818284590469,
diff: 0.0000000000000222 <=|Precision is of O(h*)!

[\ 3
—— P

PRECISION
EVOLUTION

m Let’s write a small
code to demonstrate
the “precision” of the
solution as it evolves.

® You should be able to
see the
“accumulation” of
numerical errors.

/&

vt =

vy =

t = 0.

yl =y2 = y4 =
h = 0.001

for idx in range(200):

np.zeros(200)

np.zeros((4,200))

1.

< NumPy arrays for
storing the output

Only keep the result
¢ every 1000 steps.

for step in range(1000):

k1
yl +=

vy [0, idx]
vy [1, idx]
vy [2, idx]
vy [3, idx’

f(t, y1)

h*kl

f(t, y2) RK?2
f(t+0.5%xh, y2+0.5%hxk1)
hxk?2

f(t, y4) RK4

f(t+0.5%xh, y4+0.5%hxk1)
f(t+0.5%h, y4+0.5%hxk2)

f(t+h, y4+hxk3)

h/6.%(k1+2.%k2+2.%xk3+k4)
T

= np.exp(t)

= vyl

= y2 < Store the results

/ 1206-example-04.py (partial)

g

PRECISION

FVOLUTION (I

1072

104

m Just make a simple plot.

10°®

m The initial uncertainties are
of O(h), O(h?), and O(h%).

m After 200,000 steps or more,

the accumulated errors can

108 b

10—10 |

Euler

|

\

RK2

RK4

be large. 10
plt.plot(vt,abs(vy[1l]l-vyl[@])/vyl[0],1lw=2,c="Blue")
plt.plot(vt,abs(vy[2]-vy[@])/vyl[0],lw=2,c="'Green"')
plt.plot(v%,abs(yy[B]—vy[@])/vy[@],1w=2,c='Red')
plt.yscale('log’ e di
DLt ylim(1E-16.0.2) " Draw the relative differences
plt.x1im(0.,200.)
plt.show()

/ 1206-example-04.py (partial)

200

INTERMISSION

m It could be interesting to solve some other trivial differential
equations with the methods introduced above, for example:

ay _ _
a7
d
d—izcos(t)

m Try to modify the previous example code (1206-example-04.py) and
see how the error accumulated along with steps for a different
differential equation.

[\ 6
— P

A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM

F = ma mm RdZH sin 6
— miv— = —71N 111
e J
d26 ,
ﬁ — —E SmH

Solving 2" order ODE =
Decompose into two

st order ODE:
do - g .
— - ——— xXxxl I
= =£(0,0,t) = —Zsinf (1)
db : :
e — _— ecoe 2
- =9(0,0,t) =0 (2)

|7

A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM (II)

, m = 1kg With a trial Initial condition
att=0:

f=1m 0 = 0.99997 ~ 3.141278...
} =0
0 =0.9999 n
Almost at the largest possible angle
(No small angle approximation!
5 Not a “simple” pendulum)
g=98m/s* : Standstill at the beginning.

In principle 1t should stand for a moment, and
start to falling down...

SOLVE FOR 2 ODE'S
TOGETHER

m, gb R=1., 9.8, 1.
t, h=0., 0.001 < Initial condition t = 0 sec, stepping = 0.001 sec.
y = np.array([np.pi*0.9999,0.]) < Initial © and &’
def f(t,y):
theta = yl[0] . - ;
thetap = y[1] mpTJt array contains © and O
thetapp = —g/R*np.sin(theta) < output array contains ’ and 6”
return np.array([thetap, thetappl)
while t<8.:
for step in range(100): < solve for 100 steps (=0.1 sec)
kl — f(t; y)
y += hxkl < Euler method
t +=h
theta = y[0]
thetap = yl[1]

print('At %.2f sec : (%+14.10f, %+14.10f)' % (t, theta, thetap))

1206-example-05.py
19

SOLVE FOR 2 ODE'S

TOGETHER (I

0]

The terminal At 0.10

tout: At 0.20

output. At 0.30

Works, but notso |At 8-48

. At 0.5

straight forward... |..7 ...

At 1.00

At 1.50

At 2.00

At 2.50

Let’s IptI”OC!UCG some 00
animationsto = |... ...

demonstrate the motion! [At 4.00

At 5.00

SecC
seC
SeC
SecC
SseC

SeC

SeC

SeC

secC

sSeC

SeC

SeC

~~ ~~ ~~ ~~ ~~ ~~ ~~ N NN NN

+3.1412631358,
+3.1412152508,
+3.1411301423,
+3.1409994419,
+3.1408102869,

+3.1380085436,
+3.1245199136,
+3.0601357015,
+2.7540224966,
+1.4037054845,
-2.7787118486,
-3.3781806892,

-0.0003127772)
~0.0006561363)
~0.0010639557)
~0.0015764466)
~0.0022441174)

~0.0111772696)
~0.0534365650)
~0.2549284063)
~1.2057243644)
~4.7826081916)
~1.1997994809)
~0.8411792354)

R wait, 0<—11!?

I

20

SIMPLE ANIMATION

m [t is easy to create animations with matplotlib. It is useful to
demonstrate some of the results that suppose to “move” as a
function of time!

m Here are a very simple example code to show how it works!

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation < import animation package

fig = plt.fiqure(figsize=(6,6), dpi=80)

ax = plt.axes(xlim=(-1.,+1.), ylim=(-1.,+1.) IphLidaliigure/axis

curve, = ax.plot([], [], w=2, color=‘red"')
/H\ initial empty object(s) / I206-example-06.py (partial)

You can also use vpython to create the animations!

[\ (I know some of you already learned it before!)
21
— P

SIMPLE ANIMATION (I

This is the
m The “core ” part of the code: output:

def init():
curve.set_data([], []) < initial frame,all set to empty
return curve, < have to return a tuple

def anlmate() :

t = np.linspace(0.,np.pix2.,400)
X = np.cos(tx6.)*np. cos (t+2. *Np.pixi/360.)
y = np.cos(t*6.)*np.sin(t+2.*np.pi*i/36®.)

R update the data for frame index =i

curve.set_data(x, y) (i is not an essential piece, it’s just a counter)

return curve,

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=360, interval=40)
plt.show() Initial an animation of total 360 frame R\
with 40 mini-sec wait interval (=25 FPS) " 1206-example-06.py (parial)

[\ 22
—— P

SOLVING ODE X
ANIMATION

m “Merge” two previous codes as following:

fig = plt.figure(figsize=(6,6), dpi=80)
ax = plt.axes(xlim=(-1.2,+1.2), ylim=(-1.2,+1.2))
stick, = ax.plot([], [], lw=2, color='black")
ball, = ax.plot([], [], 'ro', ms=10)
text = ax.text(0.,1.1,'', fontsize = 16, color='black',
ha='center', va='center') N initial empty objects:
m, g, R=1., 9.8, 1.
t, h=0., 0.001
y = np.array([np.pi*x0.9999,0.1) < Initial 6 and 6’
def f(t,y):
theta = y[@] <« function for calculating ©’ and 0”
thetap = yI[1]
thetapp = —-g/R*np.sin(theta)
return np.array([thetap,thetappl]) " 06-example-07.py (partil)

B

23

SOLVING ODE X
ANIMATION () O i

: : : 7 <“stick” | |
B Core animation + solving ODE:

"‘;—;"

def animate(i):
global t,y < forcetandy to be global variables o8|

for step in range(40): < solve 40 steps N |
51 +: ﬁi-lt(:’l. y) (004 S€C per frame) ~1.0 e 0.0 0.5 0
t += h

theta = yl[0]

thetap = yl[1]

bx = np.sin(theta)

by = —-np.cos(theta)

bali.set_data(bx, by)
stick.set_data([0.,bx], [0.,by]) < plotthe“ball” and “stick”

E = mkgxby + 0.5«m*(Rkthetap)**2 < show the total energy
text.set(text="E = %.16f"' % E)

return stick, ball, text

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=1 interval=4
ames=10, crva 0) / 1206-example-07.py (partial)

~05

-10

~05

-10

DEMO TIME!

almost immediately; the energy is not even conserved!

E = 9.7999995187532960

t = 0.5 sec

0.5

E = 9.8067892836931794

E = 9.7999995211058035

t= 1.0 sec

-5

E = 9.8756967955118586

E = 9.7999995235277666

t= 1.5 sec

-5

E = 9.8815648573312043

25

E = 9.7999995679044698

t = 2.0 sec

-5

E = 9.8811879318408877

~05

-10

~05

-10

E = 9.8000208633846331

/

t = 2.5 sec

-5

E = 9.8807961052046256

THAT'S WHY WE NEED A
BET TER ODE SOLVER..

One can simply replace the core part of the code to ”upgradle” the
ODE solutions.

for step in range(40):
ki = f(t, y)
k2 = f(t+0.5%h, y+0.5%xhxkl) ‘BgK”Z
y += hxk2
C s e 1206-example-07a.py (partial)
for step in range(40):
(1 — f(t; y)
k2 = f(t+0.5%h, y+0.5%hxkl)
RBKZ = (3 = f(t+0.5%h, y+0.5xhxk2)
k4 = f(t+h, y+hxk3)
This RK4 routine will not y += h/6.%(k1+2.%xk2+2.xk3+k4)
easlly break the total energy £ =0 " 1206-example-07b.py (partial

cap easlly at least.

26

USING THE ODE SOLVER
FROM SCIPY

m The ODE solver under SciPy is also available in scipy.integrate
module, together with the numerical integration tools: "

@ SciPy.org @& «imouenr

Integration and ODEs (scipy.integrate)

1

Solving initial value problems for ODE systems

The solvers are implemented as individual classes which can be used directly (low-level usage) or through a convenience function.

solve_ivp(fun, t_span, yO[, method, t_eval, ...]) Solve an initial value problem for a system of ODEs.
RK23(fun, t0, y0, t_bound[, max_step, rtol, ...]) Explicit Runge-Kutta method of order 3(2).
RK45(fun, t0, yO, t_bound[, max_step, rtol, ...]) Explicit Runge-Kutta method of order 5(4).

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

27

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

USING THE ODE SOLVER
FROM SCIPY (Il

import numpy as np
from scipy.integrate import solve_1ivp < import the routine

m, g, R=1., 9.8, 1.
t = 0.
y = np.array([np.pix0.9999,0.]) < nowtandy are
def f(t,y): just initial conditions
theta = yl0] ~ h f
thetap = y[1] exactly the same f(t,y)
thetapp = —-g/R*np.sin(theta)
return np.array([thetap,thetappl)
while t<8.:
sol = solve_ivp(f, [t, t+0.1], y) & solve to current time + 0.1 s
y = sol.yl[:,-1]
t = sol.t[-1]
theta = y[0]
thetap = yI[1]

print ('At %.2f sec :
kS

: (%+14.10f, %+14.10f)' % (t, theta, thetap))

eC

/ 1206-example-08.py

USING THE ODE SOLVER
FROM SCIPY (Il

0]

0|

&
0O O0O00O0

.10
.20
.30
.40
.50

.00
.50
.00
.50
.00
.00
.00

secC
secC :
sec
secC
secC

sec

secC

secC

secC

secC

sec :

secC

Van ~~ ~~ Van ~~ Van ~~ N NN AN AN

.1412629744,
.1412148812,
.1411294629,
.1409982801,
.1408083714,

.1379909749,
.1243942321,
.0593354818,
.7492944690,
.3819060253,
.7713127817,
.1253649922,

-0.0003129294)
~0.0006567772)
~0.0010655165)
~0.0015795319)
~0.0022496097)

~0.0112320574)
-0.0538299284)
~0.2574312087)
-1.2202273084)
~4.8249634626)
-1.1525482114)
~0.0507902190)

29

It’s working
smoothly!

The default
algorithm is RK45 —
the error is controlled
assuming 4th order
accuracy, but steps
are taken using a 5th
oder accurate
formula.

Few other different
methods are also
available.

USING THE ODE SOLVER
FROM SCIPY (IV)

, g, R=1., 9.8, 1.

m ’
m It's also pretty easy to [t = 0.
merge the ODE solver |Y = np.array([np.pix0.9999,0.1)
with animation. def f(t,y):
theta = y[0]
thetap = yI[1]
thetapp = —g/R*np.sin(theta)

return np.array([thetap, thetappl])
Replace the for-loop

with a single commend def animate(1i):

global t, vy
///asol = solveTivp(f, [t, t+0.040], y)
call the integrator — y = sol.yl[:,-1]
t = sol.t[-1]
theta = yl[0]
thetap = yl[1] " 1206-example-08a.py (partia)

[\ 30
— P

ANIMATION WITH
VPY THON

VPython is an easy tool to create 3D displays and animations.

[believe some of you are quite familiar with it already! So here we
will just introduce it briefly and connect it with scipy ODE solver
as a demonstration.

Installation of VPython:

In your terminal run this command, which will install
VPython 7 for your python environment:

> pip install vpython

Or if you are using Anaconda:

> conda install -c vpython vpython

31

ANIMATION WITH
VPYTHON (Il

A minimal VPython example:

>>> from vpython import *
>>> scene = canvas(width=480, height=480)
>>> cube = box(pos=vector(0.,0.,0.))

and this should give you a cube shown in your browser. (Remark:
in old version of VPython it should show in a window!)

/Zoom & rotate
the scene a little bit!

32

ANIMATION WITH
VPYTHON (Il

Now we shall make it animated!

>>> while True:
cube.rotate(angle=0.01)

rate(25.) <« frequency = 25 : halt the computation for 1/25 sec

L

and this will give you a rotating cube, shown in your browser!

Now we can integrate VPython with our ODE
/ 33 solutions and make a proper animation!

VPYTHON + SCIPY

import numpy as np
from vpython import x
from scipy.integrate import solve_1ivp

scene
floor
width=1.2, opacity=0.2)

canvas(width=480, height=480)

radius=0.01, color=color.white)
txt =
R =

r 9 1., 9.8, 1.

< + 3
i1

0.
np.array([np.pix0.9999,0.])
def f(t,y):

return np.array([thetap,thetappl)

a “floor” box for showing
the ground in the scene

|

box(pos=vector(0.,-1.1,0.), length=2.2, height=0.01,

ball = sphere(radius=0.05, color=color.red)
rod = cylinder(pos=vector(0.,0.,0.),axis=vector(1,0,0),

label(pos=vec(0,1.4,0), text='', line=False)

I all the VPython objects

" 1206-example-08b.py (partial)

B ”

VPYTHON + SCIPY (Il

The main ODE solving + animation loop — simply calculate/the
resulting theta and convert it to the coordination. |

E = 9.7990087996860547

while True:

sol = solve_ivp(f, [t, t+0.040], y)
y = sol.y y -1] I call the ODE solver
t = sol.t[-1]

theta = yl[0]

thetap = yl[1]

ball.pos.x = np.sin(theta)
ball.pos.y = —-np.cos(theta)

rod.axis = ball.pos

E = mkxgxball.pos.y + 0.5*xmx(Rxthetap)*x*2
txt.text = 'E = %.16f" % E

rate(1./0.040)

_~ 1206-example-08b.py (partial)

35

INTERMISSION

m What will happen if you given a critical initial condition to the
preview simple pendulum example, e.g. 0 =7
0 =0
m It could be fun if you can try to record the angle versus time (this
can be done by a small modification to 1206-example-08.py), and
make a plot. If you set the initial condition to a small angle (when

the small angle approximation still works), will you see if your
solution close to a sine/cosine function?

A SIMPLEVARIATIONWITH _£77.
SPRING 4z

m Replace the “stick” with a spring;:

f=—k(R—-Rp) fmzf%%
: L R
i R = /22 4y fy=1f 2]
R0=1§.0m K

k= 100 N/m

(z,y) m=1kg

Coordinate (x,y) is used

—mgj instead of (R,0) here.

Need to solve 4 equations
v (X,Y;Vx,Vy) simultaneously

‘ g = 9.8m/s?
> 37

A SIMPLE VARIATION WITH -
SPRING (II)

Expand the equations in order to prepare the required ODE
equations.

Input array: [x, y, vy, Vy]

Output array:

def f(t,y):
B bx, by = ylo], yl1]
T = Uy vx, vy = yl[2], yI[3]
J = v, R = (bx*kx2+by**x2)**x0.5
— L(R—R fs = —kx(R-R0)
(O)Rm ax = fsxbx/R/m
ay = fsxby/R/m - g
= —k(R — Ry) R g Jl' output vector
m
return np.array([vx,vy,ax,ayl)
" 1206-example-09.py (partial)

/‘\ | 38
T y

A SIMPLE VARIATION WITH _

SPRING (1l

The animation part is
more-or-less the same as
the previous example:

|E = 3.9193888630008851 |

ball = sphere(...)
spring = helix(...)
txt = label(...)

while True:
so L

sol.yl[:,-1]

sol.t[-1]

<
i1l

21, yl3]

ball.pos. - by
spring.axis = ball.pos

E = mxgxby
+ 0.5%k*(R-R0) **2
txt.text = 'E = %.16fT"

rate(1./0.040)

solve_ivp(f, [t,t+0.040],y)

+ 0.5xmx(vXkk2+Vvy*x%2)

% E

e I206-example-09.py (partial)

"EW MORE EXAMPLES FOR 477
YOUR AMUSEMENT &=

m Ajoint two-spring-ball system:

Ro=05m
k =200 N/m

Need to solve 8 equations
M simultaneously

—mgj
m = 0.5 kg -

| v 1206-example-09a.py
I ;
— P

A CHAIN OF SPRING-BALL =

A ROPE!

'Y
!

i ﬁ' &

o
// ,
- ' 4 J
% ’
o\ z ‘g i
/

»

/
'",:

m If we replace the “stick” with a rope, is it possible? Surely we need

to use a simplified model to mimic a rope.

M = 1kg
m = O.Ikg / Nseg
—Mgj

41

v

of equations:
Nseg * 4 = 200

k = IOOO*Nseg N/m
R() == lm / Nseg

Ami A Ayz A
1
R, ' R,

f, = —kAR, - (
M = 1kg

See
1206-example-09b.py

)

WAVE ON A STRING

® Actually one can use a similar way to model a string — construct a
N segment (massive) string and solve it with small angle

approximation.
bP /T JTL \
L=1m vENL SN T
M=1Kkg
\‘\’\Nf._\’\‘\‘\' dyl dy2

S
-~ ~~
. .~
. ..
S .~
S
- ~~
S .~
.
Ly ~;~
S
— $‘ ~~~ 1
— S .
. o]
s ~
. . 1 ° ° ° ° °
S N
. . 1
s N
. N
. .]
N “~ 1
S “~
.
.
S
1 - Seo
.
S
1 N
S
[]

7 simple sine waves and solve
92 for the wave!

dr See

A 4
~\)

WAVE ON A STRING (1)

m It is also fun to record the vibration of the string, convert it to a
wave file and play it out!

N

M(\:’;

00000

Lo 0.045 sec recorded

N

R — L ——— S — 5

-1.0f 1
Tension = 400 N, x = 0.01 kg/m, Hamonic #2, Frequency = 200 Hz

000000
0.0

For the case of T = 400 N, = 0.0l kg/m, A= Im,
we are expecting to hear a 200 Hz sound! See

1206-example-10a.py
Z\ 3
D

COMMENTS

We have demonstrated several interesting examples, surely you
are encouraged to modify the code and test some different physics
parameters, or different initial conditions.

Basically all of those tasks can be easily done with the given ODE
solver. In any case these are examples are VERY PHYSICS!

Then — you may want to ask — how about PDEs? The general idea
of PDE solving is similar but require some different
implementations. There is no PDE solver available in SciPy yet. If

you want, you can try the following packages:
FiPy http//www.ctcms.nist.gov/fipy/
SfePy http://stepy.org/doc-devel/index.htm]

Left for your own study!

44

http://www.ctcms.nist.gov/fipy/
http://sfepy.org/doc-devel/index.html

HANDS-ON SESSION

Practice 1:

Add some simple gravity to the system:
there is a red star shooting toward the
earth. Assuming the only acceleration

1.0

0.5}

between the earth and the red star is (0,0)
contributed by the gravitational force: o ; M
GMm q =
F = 5
r o5

with GxM = 1. Thus: vo = (1.0,0.5)

d 1 P L | |

a = _U — F/m — ~1.0 —0.5 0.0 0.5 1.0

dt 72 o=)

implement the code and produce the ’ T

animation.

/\ ‘ 45

HANDS-ON SESSION

m Practice 2:
damped or driven oscillators — please solve the following system
with the extra (damping/driving) force and the given physics

parameters.
Initial condition: t = 0sec, x=+0.1m B dx
. Jo==b-— ph-02Ns/m
or
€«<—> fa=d-cos(wl) 4=008N
or w=rmrad/s

fa = d - sin(wt)

HANDS-ON SESSION

m Please start with the given template on CEIBA. It can produce N
following plots if you solve them correctly.

You may also play around with some what different
| physics parameters as well as the initial conditions.
Z\ P

47

