DD ‘
INTRODUCTION TO /)

o, (R —

NUMERICAL ANALYSIS |

Lecture 3-3:
Improving Neural Network

Kal-Feng Chen

National Taiwan University

RECALL FROMTHE LAST
| ECTURE...(AGAIND

Last lecture we started to play with two nonlinear models, SVM
with non-linear kernel, and the very classical Neural Network.

Taking the MNIST data set as an benchmark, the SVM with
Gaussian kernel can have a very good performance of ~98.4%
accuracy!

Our super simple neural network can already provide a good
handwriting digits recognition with an accuracy of ~95%. With a
slightly better initial weights the performance can be pushed to
~96% . Remember this was performed by a simple model of
784-30-10 network so far. Can we do better, by considering some
of the state of arts techniques? Or can we further improve it by
introducing a deeper network structure, or the convolutional
neural network?

We shall go deeper
this time!

BASELINE NETWORKWITH _

KERAS :
At the end of last lecture we have constructed a
simple model with Keras. This will be served as
our starting point here: NP 0
The network structure also consists with 3 e
layers, with one hidden layer of 30 neurons. :§
The chosen activation function is also 784 4
the sigmoid function. pixels < —5
The selected loss function is exactly the mean —6
squared error, MSE. :;
The network will be trained using stochastic -9
gradient descent SGD method.
This gives us a >96% test accuracy — but what 30 hidden
are the wrongly tagged digits! eUrons
4 \

WRONGLY RECOGNIZED
DIGITS?

At the end of the training we can feed the test data into the |
network and see the resulting “test” performance. An accuracy of
96.6% means we have around ~300 images were wrongly tagged
by our network.

The following piece of code is prepared to show first 100 of the
wrongly tagged images:

p_test = model.predict(x_test)
failedsample = [[img,y,p] for img,y,p in
zip(mnist['x_test'],y_test,p_test) if y.argmax()!=p.argmax()]

fig = plt.figure(figsize=(10,10), dpi=80) ' pick up those wrongly
for i in range(len(failedsample[:100])): tagged samples
plt.subplot(10,10,i+1)
plt.axis('off")
plt.imshow(failedsample[i] [0], cmap='Greys"')
plt.text(0.,0., " '$%d\\to%d$' % (failedsample[i] [1].argmax(),
failedsample[i] [2].argmax()),color="Red', fontsize=15)

plt.show() " 1303-example-01.py (partial)
.

|

/’}af
'/ :
éfi""/

You can see that there

are still some

8—-0
4-9

4-6 6-0 8-4 9-8 5-3 3-7 9-8
8-3 1-8 2—-8 8-4 0-6 5-8

3-7

5-6
72

WRONGLY RECOGNIZED
SAhbs5 1785398

DIGITS? (1I)

0 = 5
N _
wm o ”w W” 7p) Mw wm
N> n = . A o O
R o £ n O P Q 2
en o0 S = & 9 5
o O © Q -+) 1m o = n
oD 3 »vQ_ 2 2 S g
c R c”Q OB 25 .
e o © o0 & o v
2 B o Y @ o0 2 m.o.l = >
52 o= Hme 92 Hy g
o N T M N ST
Z O ._am M .= m N .._.& C N o
< m (@) O mM (@)
TIWIPIOI TR =T ¥
PARRAS Y © At ot i\ K¥a st
LN O LN (@) LN <t N o
105079020 8 iNGS -
mM — (@) mM O N~ m
2 S D Kl VI WS
ers eaT BTN TADT ONT b N7 &
AV Ui W ROl o
53007817 N7 A5 W (N
SRR S R
DoT NI =7 X777 T W
AT W TENT AT N T TN o7 Ny

B

SLOW LEARNING WITH
BAD WEIGHTS

® Based on the NN model up to now, one of the typical issue we méy
face is this: when the initial weights are very far from the optimal,
the learning is actually slower.

m This is very different from our intuition in fact — usually human
beings learn faster if they are very wrong. But this is not the case for

your NN.

® A demonstration simple network with only one input layer and one
output layer, with 2 weights and 2 bias. Let’s set the weights/bias by
hand to some particular values:

Input x: w =2, w = 4. _
a random Gaussian X b‘3 b‘s_ output targett =0

Z\ : !
—y y

SLOW LEARNING WITH
BAD WEIGHTS (II)

Such a model can be built with Keras easily as well:

X_trailn
y_train

from keras.models import Sequential
from keras. layers import Dense
from keras.optimizers import SGD

model =
mode L.
mode L.
mode L.

mode .
mode L.

rec

vep
fig =

plt.plot(vep, rec.history[" loss' 1, lw=3)
plt.show()

np.random. randn(1000)
np.zeros(1000)

A simple sequential model
Jwith only | input / | output net
Sequential()
add(Dense(units=1, activation='sigmoid', input_dim=1))
add(Dense(units=1, activation='sigmoid"'))
compile(loss='mean_squared_error',

optimizer=SGD(1r=1.0))

layers[0].set_weights([np.array([[2.]1]1),np.array([3.1)])
layers[1].set_weights([np.array([[4.]1]),np.array([5.1)])

model.fit(x_train, y_train, epochs=100, batch _size=100)

np.linspace(1.,100.,100)
plt. flgure(f1g51ze (6,6), dpi=80)

" keep the history of trainin

1g

iron

/ 1303-example-02.py (partial)

I

SLOW LEARNING WITH
BAD WEIGHTS (Ill)

® This is what you may find: the loss function is large for initial epdghs

— and it takes for a while until the training really starts.

m Remember this network is already very simple with only 4

parameters to be tuned. But such a situation Ty

does hapven.

1.0 A

0.8 A
0.6 -
0.4 -

- Loss
func.

0.0 A

~

0 20 40 60

P

80

100

Surely the srtuation Is
better if one uses a
different initial values, e.g.

_

AP SLLP N
i b93. b=72.

Both this also hints a problem of our network!

9

THE CHOICE OF LOSS

= In fact such a situation can be related to the definition of the loss |/
function, and its gradient w.r.t. the weights and bias.

m Consider the current choice of loss, the mean squared error:

1
Consider only one output: L(w,b) = §|0(z) —t|?

o))
. — = |0(2) —) —
Gradient is required Jw 7 7 Bw) .
: - . The training speed Is
in the training process: 0L s .
o = o(z) —tlo (z)% proportional to the
first derivative of the
107 activation function! If
slow training slow training the z value is too large or
o(z) 051 due to small due to small ¢ I the train)
o'(2) o'(2) oo small, the training wi
0.0 be very slow.

—-20 —-10 0 10 20
10
NS)

THE CHOICE OF LOSS (1)

m This can be improved by introducing a different loss function, for,
example, the (binary) cross-entropy function:

Loss(w;, bj) = — Z tiny 4+ (1 —1)In(1 — y)]

n
T

Consider only one output & 1, — _[tlno(z) + (1 —¢) In(1 — o(2))]
replace y by 0(z):

| | . 0L d'(2) 0z o'(z) 0z
Gradient w.r.t. weights/bias: w —t o(z) Bw | (1—1) 1 — o(z) Ouw

R | o () 0z
o(z) =(1+e %)~ = lo(z) — 1] {J(z)[l —o(2)] } ow
r O'/(Z) — O‘(Z)[l — O'(Z)] B [() B]% Cawncelled
............. A \;£‘E\eb3£0$ca\cu\ous — |O\Z 8w

Not depending on the first

[\ derivative 0”(z) anymorel!
¥
— P

THE CHOICE OF LOSS
(11

m This effect can be tried easily! n MSE
m Indeed the cross-entropy function can speed .
up the learning even with bad initial weights! cross-entropy

N

.5 1

1.5 1

0.0 A

0 20 40 60 80

)

model.compile(loss="mean_squared_ error 0 tlmlzer SGD(1r=1.
model. layers[0].set_weights([np.array ([[2. .array([3.])
model. layers[1].set_weights([np. array([[4]]) np array([5.])

® |_||_|®

recl = model.fit(x_train, y_train, epochs=100, batch _size=10

model. layers[0].set_weights([np.array (T12. 11),np.array([3.]1)

)

)

)

)

model.compile(loss="'binary_crossentropy’, optlmlzer SGD(1lr= 1]?))

model. layers[1].set _weights([np. array([[4 11), np array([5 1)]1)
0)

rec2 = model.fit(x_train, y_train, epochs=100, batch _size=10

vep = np. linspace(1.,100.,100)

fig = plt. flgure(f1951ze (6 6), dpi=80)
plt. plot(vep,recl history[' loss'], lw=3)
plt.plot(vep, rec2.history['loss'], lw=3)
plt.show()

/ 1303-example-02a.py (partial)

12

100

THE CHOICE OF
OUTPUT LAYER

Another approach to the same problem is by introducing th
softmax layer, instead of the classical sigmoid function.

The softmax layer is a different type of output layer, it can be

expressed as
P exp(z;)

Y; = k: classes
J Zk eXP(Zk)

The output of the network vy is replaced by the formula above. Given
it is normalized (summing all of the outputs will be one by
definition), another benefit of softmax layer is that the output values
can be treated as a probability, which is not the case for the classical
sigmoid function.

By combining this with the cross-entropy function, it can be another
remedy to the slow learning problem.

13

SOFTMAX +

CROSS-ENTROPY LOSS

The (Categorical) cross-entropy loss function for a given training

sample is

L = — Z tiIn(y;) Jj:classes

J
You may find this is just an extended version of the previous cross-
entropy function which was derived for 2 classes (binary case).

Let’s first calculate the partial derivate for y; w.r.t. z; (remember z; is
linear sum of weights times the outputs from previous layer + bias):

If j=i:

0y —e*ie”

9z (Cew) Y

Y;
8,2@'

_er(puet) - o
_ (Zezk) =gy

SOFTMAX +
CROSS-ENTROPY LOSS ()

Then the derivative for the loss function itself:

1 5’y

=—) t;ln(y;) = - — J
SULIE z

- 1

0z zyz' 0z vy ’ Y; 0%z
= —ti(L—yi) +)ty = —ti Htyi +)ty
ji ji

't ends up with the same

= —t; +v; (tz- + Z tj) =Y — results as before and no

jAi dependency on 07(z)!

| tj = target value for class j I+ should solve the slow learning
A by definition 2t; = | I5 problem as well

TRY [T OUT g/

model = Sequential()

model.add(Reshape((784,), input_shape=(28,28)))
model.add(Dense(30, activation='sigmoid'))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
optimizer=SGD(1r=1.0),
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=20, batch_size=3®{// 1303-example-03.py (partia)

Using TensorFlow backend.

Epoch 1/20

60000/60000 [=============] - 3s 45us/step - loss: 0.2924 - acc: 0.9114
Epoch 20/20

60000/60000 [=============] - 2s 4lus/step - loss: 0.0465 — acc: 0.9850
Performance (training)

60000/60000 [=============] - 1s 22us/step

FOSii @-0422%% A%¢= ?-98613 Although the performance for
erformance (testin N .
10000/10000 [======2======] ~ @s 23us/step 'annngsanuﬂe|swnpwoveq,but
Loss: 0.13640, Acc: 0.96350 the performance for testing

sample is still similar!

|6

COMMENT 5/

/
We have two possible treatments that can be used in the
classification problem:

sigmoid activation + binary cross-entropy loss
softmax layer + categorical cross-entropy loss

You may find they have a very similar formulation and similar
behavior. This is due to the fact that sigmoid is special case of
softmax function (if you compare them carefully), and the binary
cross-entropy loss can be considered as a “yes/no” problem for each
output neuron.

In our handwriting digits example one can solve “10 binary
problems” with the binary cross-entropy loss, or “one out of 10
choices” with categorical cross-entropy loss.

Remark: Keras may give a different accuracy value if
you do sigmold activation + binary cross-entropy loss

|7

THE OVERTRAINING ISSUE~

® We have touched slightly on this issue at the end of last lect
Now we shall come back to it again.

® The training performance is indeed keeping improving with more
epochs, but the testing performance saturated quickly.

® Demonstration with Keras tool again:
rec = model.fit(x_train, y_train, . :
epochs=100, batch_size=120, 015 testing
validation_data=(x_test, y_test)) . training
vep = np.linspace(1.,100.,100) R R O T
fig = plt. flgure(f1951ze (6,6), dpi=80) 1.000-
plt.subplot(2,1,1) 0975
plt.plot(vep,rec history['loss'], lw=3) -
plt.plot(vep, rec.history['val loss'], w=3) ,o.
plt.subplot(2,1,2) 0675
plt.plot(vep,rec.history['acc'], 1w=3) 0850
plt.plot(vep,rec.history['val_acc'], 1w=3) |
plt.show() " 1303-example-04.py (partil) [
18
P

TRAINING DATA DOES
MAT TER

® In the previous example we have only input 10K sets of training /)
sample. By increasing the training data size the overtraining is

indeed mitigated:
0.35 0.35
0.30 0.30 -
L 0.25 - 0.25 - :
OSS 0.20 1 S . 0.20 1 testin
funC 0.15 - teStIng 0.15 - - _ o g
: 0.10 - — 0.10 - T —
0.05 1 tl"alnlng 0.05 1 tralnlng
0.00 1 . . ! ! . 0.00 1+ . . ! ! :
0 20 40 60 80 100 0 20 40 60 80 100
1.000 - 1.000 -

0.975 A 0.975 ~

0.950 A 0.950 A

al

o 10,000] 60,000

0.900 A 0.900 ~

08751 Training Samples| oes, Training Samples
0TS 20 40 60 80 100 80 20 40 60 80 100

| But In many of the cases training samples are difficult to collect and
f expensive. Can we do something without just adding more the data’
— 2

19

=

REGULARIZATION

A method is called “Regularization” or “weight decay”
may help to reduce the overtraining situation.

The idea is to introduce an additional term to the loss function:

A

A 2
L:LO—I—EZ\M or L:L0+%Zw

The form given above is usually called the L1/L2 regularization,
where the A is the regularization parameter (A>0) and n is the size of
training sample.

One can see the gradient of the loss function will be modified and
change the learning step (taking L2 regularization as an example):

OL 0Ly A o — 0Ly Aw
_ — I w -
ow ow n { ow nn
) U »)\ 8L
The weights will "decay by _ __ e 0
a factovr durie\g the 4>‘(33vﬁvx£) process (1 g > W= Ow

20

REGULARIZATION () 5/

By introducing such a “weight decay” to the training, the weights’
will be pushed toward smaller values. But why a network with
smaller weights can have a smaller overtraining problem?

Consider a fit to the data points along the x-axis, the “weights” are
just the coefficients of the polynomial terms:

f(il?) :w0+w1x—|—w2x2—|—w3x2—|—w4x4-|—w5x5_|_...
. f(z):w0—|—w1$—|—ng2—|—0x2—|—0x4—|—0x5_|_...

t t By reducing the weights for all terms,

2 it actually removes the higher order
r o
° ™ , term and make the fit to be less
sensitive to the noise (local

> > fluctuation), and resulting a more
robust model.

REGULARIZATION (lll)

m Let’s try this method quickly with Keras.

If we simply add this weight decay

feature to the weights of the output layer, —

one can see the overtraining effect is o5 ;

reduced: . testing
2071 wlo L2 reg.

0.850 -— T T
0 20 40 60 80 100

1.000 ~

from keras.regularizers import 12 09731

0.950 A

m2 = Sequential() - -
m2.add(Reshape((784,), input_shape=(28,28))) ..l //NM' wi L2 re
m2.add(Dense(30, activation='sigmoid"')) 0:850 - g.%
m2.add(Dense(10, activation='softmax',
kernel_reqgularizer=12(0.01)))
m2.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=1.0), metrics=['accuracy'])

JEEIL IR " 1303-example-04a.py (partial
IZ\ 22
—

1
0 20 40 100

DROPOUT

Another useful method to reduce the overtraining is the dropout '
technique. Dropout does not change the loss function, but change the
network structure itself.

That is, one can randomly disconnect some of the inputs of a specific
layer /neurons at each training cycle:

The dropout method would
reduce the dependence of the
network to some specific
neurons or weights, and hence it
will be less sensitive to the noise
and become more robust
against the overtraining.

DROPOUT (II)

® And you can find that the dropout

method is actually very helpful in terms
: .. ccu.
of against overtraining;: —
0.975 - tralnlng
Drop 20% of the inputs randomly o500, testing
0875 wio dropout
from keras.layers import Dropout 000

0.975 -

m2 = Sequential() 0950
m2.add(Reshape((784,), input_shape=(28,28))) "]

m2.add(Dropout(0.2)) iy d)
m2.add (Dense(30, activation='sigmoid"')) paso LAl W CrOPOUt

m2.add(Dropout(0.2)) : S

m2.add(Dense(10, activation='softmax'))

m2.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=1.0), metrics=['accuracy'])

| O " 1303-example-04b.py (partial
24

EARLY STOPPING

® In fact one can even think of something

super simple: why cannot we just stop
training immediately when we find the
model just becomes overtrained?

Such a scenario is usually called “Early
Stopping”. This can be achieved by
monitoring the performance of the model
during the training process, and terminate
the job when the model stop improving.

[t is usually recommended to adopt this
criteria on an independent validation
sample (not the training, nor the testing
samples!)

25

0.35

0.30 A
0.25 A
0.20 -
0.15 A
0.10 A
0.05 A
0.00 -

1.000 ~

0.975 ~

0.950 ~

0.925 ~

0.900 ~

0.875 ~

0.850

Loss func.

60 80

100

AlamA
L ama

Accuracy

0 20 = 40

60 80

Stop traiﬁing here?

100

mnist = np.load('mnist.npz"')

X_train = mnist['x_train'][10000] /255.

y_train = np.array([np.eye(10)[n] for n in mnist['y_train']l[:10000]11])
x_valid = mnist['x train'][50000:]1/255.

y_valid = np.array([np.eye(10)[n] for n in mnist['y train'][50000:]1])
Xx_test = mnist['x test']/255.

y_test = np.array([np.eye(10) [n] for n in mnist['y_test']])

from keras.callbacks import EarlyStopping

rec = model.fit(x_train, y_train, epochs=100, batch_size=120,
validation_data=(x_valid, y valid),
callbacks=[EarlyStopplng(monltor— val_loss', patience=3)])

print(" Performance (training)"')
prlnt(Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_train, y_train)))
print(" Performance (validation)')
r1nt(Loss: %.5f, Acc: %.5T' % t
rlntg Performance (testing)')

print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_test, y_test)))

| " 1303-example-04c.py (partial)

Z\ : 26
—y y

uple(model.evaluate(x_valid, y_valid)))

EARLY STOPPING (1l Y4

The learning process is stopped automatically after 21 epochs:

Train on 10000 samples, validate on 10000 samples
Epoch 1/100

10000/10000 [=============] - 0s 27us/step - loss: 0.9330 - acc: 0.7552 -
val _loss: 0.5119 - val _acc: 0.8510

Epoch 21/100

10000/10000 [=============] - 0s 2lus/step - loss: 0.0876 - acc: 0.9783 -
val loss: 0.2068 - val _acc: 0.9373

Performance (training)

Loss: 0.09317, Acc: 0.97770

Performance (validation) The reason to setup another validation sample
Loss: 0.20682, Acc: 0.93730

. here Is to keep that the testing sample always
Performance (testing) : : :
Loss: ©.21634, Acc: 0.93480 provides a unbiased performance estimate.
The validation sample here Is “used” to decide
the ending of the training process already. This
validation setup is also recommended for hyper
parameter and model tuning.

= 2

WHAT ELSE WE CAN DO~

As we mentioned earlier, the size of training sample does m
With a larger training sample size, the issue of overtraining can be
mitigated. But if we cannot collect more data?

A method can still be tried is artificially increasing the training
data. This is in fact a very reasonable technique — remember in our
example the training data are just images of handwriting digits. One
can, slightly, twist or rotate the input images and it can be used as
another training sample. This will help the network to catch the
correct feature of the input images but not the small distortion nor
the local noise.

04 0

51 51

10 A
15
204

25 4

10 A 10 A

B .

20 1

25 4 25 1

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

28

ARTIFICIAL DATA

training
EXPANDING testing
0] j | w/olexpalnding |
Let’s triple the training data by randomly I R
rotate the images either +5°~+425°, oo L
or —5°~-25°. Some positive effect found! iy

0875 / w/ expanding

0 20 40 60 80 100

from skimage.transform import rotate
extl = np.array([rotate(img,np.random.uniform(+5.,+25.)) for
img in x_train])

ext2 = np.array([rotate(img,np.random.uniform(-25.,-5.)) for
img in x_train])

X_train_ext = np.vstack([x_train,extl,ext2])

y_train_ext = np.vstack([y_train,y_train,y_trainl)

recl = ml.fit(x_train, y_train, epochs=100,
batch_size=120,validation_data=(x_test, y_test))

rec2 = m2.fit(x_train_ext, y_train_ext, epochs=100,
batch_size=120,validation_data=(x_test, y_ test))

| N " 1303-example-05.py (partial)
/L\\ ‘ 27

INTERMISSION

®m We have introduced several methods to improve the learning
speed, and touched the issue of overtraining. If port (some of)
them back to the original example 1303—-example-01a.py, what's
the performance you can reach by now already?

m Surely this will take a long time to run, in particular if you expand
the training data size! Be aware!

CAN WE
WITH TH

m So far we are always using standard stochastic gradient descent
method with a given learning rate. Will a large/smaller learning rate
helps, or can one do something else to improve the learning?

m Let’s examine this by comparing the results with different learning

rates:

ml.compile(loss='categorical_crossentropy',
optimizer=SGD(1r=0.2))

m2 = clone_model(ml)
m2.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=2.0))

m3 = clone_model(ml)
m3.compile(loss='categorical_crossentropy',
optimizer=SGD(1r=20.))

SECERCIT IR " 1303-example-06.py (partial)
3
A~)

3.0 A

2.5 1

2.0 1

1.5 4

1.0 -

0.5 A1

0.0 A

Loss func.

Ir=0.2

0 2

1r=2.0

40 60 80 100

LEARNING RAT

m Come back to the definition of the learning method itself:

50 =0 —nVL

m The learning rate basically decide how much we should move at
each step. Too small learning rate will take a long time to train the
network (but you can already image for a super long run this might be
better!); too large rate will make the learning more likely a random
walk.

m Sometimes it might be a good idea to decrease the learning rate over
epoch and it might end up with a slightly better network, if the
network training already saturated quickly.

too small // just right! »~ too large 7~

’ %

&

’
= d 4 32
— y

KEEP THE MOMENTUM!?

® One can imagine the training with SGD is more likely to go downhill
in a valley. If the current direction is good (obviously going toward
lower altitude), why not to keep the MOMENTUM of your moving?

m This can be also an option within SGD algorithm to enable a
momentum based update. It might speed up the training with a

proper setup.

m Both of the options (decay of learning rate, momentum) are

supported within the framework of Keras:

keras.optimizers.SGD(1r=0.01,
momentum=0.0, decay=0.0, nesterov=False)

Note: the “nesterov’” option is a kind of
improved momentum method!

Z\ 33
—— P

Keep the

|
momentum.//

/

KEEP THE MOMENTUM! (1H

m Again, let’s try these option(s)!

m We only tested “momentum” since it can speed up of the training,
while the decay of learning rate is generally for the network fine-
tune and it is hard to see the effect

e

0.25 4

® The loss function converges quicker
with momentum method!

0.20 A

0.15 A

0.10 +

w/o momentum

0.05 A

ml.compile(loss='categorical_crossentropy’,

optimizer=SGD(1r=2.0)) 11 w/ momentum
m2 = clone_model(ml) R T O T T (Rt
m2.compile(loss='categorical_crossentropy', |

optimizer=SGD(1lr=2.0, momentum=0.4))

[\- L " 1303-example-06a.py (partial)
34

SIZE OF MINI-BATCH!?

tried to train your network with different mini-batch size!

® In principle larger mini-batch will reduce the “randomness” of the
SGD algorithm and results a smoother training, but it also suffers
from less frequent updates. But too small mini-batch will also make

your training like a random walk.

recl = ml.fit(x_train, y_train, epochs=100,
batch_size=10)

rec2 = m2.fit(x_train, y_train, epochs=100,
batch _size=30)

rec3 = m3.fit(x_train, y_train, epochs=100,
batch_size=300)

/ 1303-example-06b.py (partial)

[\ 3
— P

0.5

0.4

0.3

0.2 A

0.1 -

0.0 A

Loss func.

size = |0

size = 30

0

20 40 60

80 100

DIFFERENT TRAINING
ALGORITHM!

SGD algorithm is powerful and easy to understand /implement, but
there are some issues indeed:

Only depends on the gradient calculated by the batched data.

Difficult to choose a proper learning rate, and all parameters are
learning with the same speed (only a global learning rate).

May run into a local minimum instead of the global one.

This is the reason why there are many other algorithms developed to
improve these points.

Many of these SGD variations introduce an adaptive learning rate
according to the situation of the network training.

36

DIFFERENT TRAINING
ALGORITHM? (I

Adagrad: applying regularization to the learning rate. Larger/
smaller gradient would give smaller/larger learning rate.

Adadelta : extended Adagrad with simplification and reduced the
dependence to the global learning rate.

RMSprop: a kind of variation of Adagrad and regularization with
RMS of gradient. Good for large variant case.

Adam: a kind of variation of RMSprop + momentum. Combining the
good features of Adagrad and RMSprop.

~

Adamax: variation of Adam, with simplified learning rate 4"
regularization formula.

Nadam: Adam + Nesterov momentum.

37 =

DIFFERENT TRAINING
ALGORITHM? (Il

m In general SGD is slower but very robust with good parame

m If you want a quicker converge with a complex network, those

algorithms with adaptive learning can be better.

m With our simple network SGD actually performs very well!

ml.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=2.0))

m2 = clone_model(ml)
m2.compile(loss="'categorical_crossentropy',
optimizer=RMSprop())

m3 = clone_model(ml)
m3.compile(loss="'categorical_crossentropy',
optimizer=Adadelta())

/ 1303-example-06c.py (partial)
38
— P

0.5

0.4 -

0.3 1

0.2 A

0.1

0.0 A

Loss func.

Adadelta

SGD

20 40 60 80 100

D

-FERENT ACTIVATION

-

NCTION!?

Up to now we are mostly using the sigmoid function as our
activation. The only exception is the output layer, where a softmax

function has been introduced.

A different choice is the hyperbolic tangent. It is very close to the

sigmoid function but with —1 as the
non-active value instead of zero:

tanh(x) ,

\

tanh(z) = i
e* + e~
1 4 tanh(z/2)
o(z) = 0

N 4+

o

Using hyperbolic tangent requires a slightly different scale since the

out range becomes [-1, +1]. Some studies suggest tanh can have a
better performance in some of the cases since it has a symmetric

response.
39

D

-FERENT ACTIVATION

-

NCTION? (1)

In fact, the most common selection of
activation function in modern network
is the rectified linear unit “ReLU”

(not the sigmoid function!), and it looks oL H . 5 |
like this: —

Obviously this is very different from the sigmoid or tanh! Why this
works better than the classical choices?

N

One obvious feature is that the gradient will not vanish with large
input z! This will not slow down the training speed as usually
happening for the sigmoid-like functions.

Another good feature is the ReLU function can “switch-off” subset
of the neurons with an output zero. This can reduce the overtraining
issue. But it might be hard to “switch-on” those neurons again.

40

D

F

-

m See how good we can reach within 40 epochs of training:

Accu.

R
NCTION? (1l

m Let’s try to compare ReLU and sigmoid activations, but with
larger / complicated network of 768-256-256-10 structure.

-NT ACTIVATION

optimizer=SGD(1lr=1.0), metrics=['accuracy'])

.add(Dense(10, activation='softmax'))
.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=0.2), metrics=['accuracy'])

ml = Sequential() oo
ml.add(Reshape((784,), input_shape=(28,28))) o2s
ml.add(Dense(256, activation='sigmoid')) 0300
ml.add(Dense(256, activation='sigmoid')) 0073
ml.add(Dense(10, activation='softmax')) -
ml.compile(loss="'categorical_crossentropy', 10004

m2 = Sequential() o]
m2.add(Reshape((784,), input_shape=(28,28))) 0575
m2.add(Dense(256, activation='relu')) 0850 -
m2.add(Dense(256, activation='relu')) :

/ 1303-example-06d.py (partial)

training
testing

w/ S|gm0|d

25 30 35 40

0.975 4
0.950 A

0.925 4

//

|

w/ RelLU

5 10

15 20 25 30 35 40

\£ mproves!

4]

neurons and /or more hidden layers?

Let’s integrated several improvements discussed up to now: Full
training sample + ReLu activation + Adadelta optimizer + Dropout +
a much larger network of 2 hidden layers of 512 neurons:

mode 1

mode L.
mode L.
mode L.
model.
model.
mode L.

mode L.

mode L.

= Sequential()
add (Reshape((28%28,), input_shape=(28,28)))

add(Dense(512, activation='relu'))

add(Dropout(0.2)) .
add(Dense(512, activation='relu')) 62_9h|;(;16etworl< hfs
add(Dropout(0.2)) 5 parameters
add(Dense(10, activation='softmax')) to be tuned.

compile(loss="'categorical_crossentropy',
optimizer=Adadelta(), metrics=['accuracy'])

fit(x_train, y_train, epochs=20, batch_size=128)
e 1303-example-07.py (partial)

42

()

We can have a great performance of 98.5% accuracy which r
to our performance from SVM with Gaussian kernel!

Epoch 20/20

60000/60000 [===========] - 5s 91lus/step - loss: 0.0065 - acc: 0.9979
Performance (training)

Loss: 0.00114, Acc: 0.99987

Performance (testing)

Loss: 0.06721, Acc: 0.98490

Can we do even better with a deeper network? e.g. adding a couple
of big layers or many smaller layers?

In fact it is not so obvious. A larger network will definitely have
much more parameters to be optimized and have a stronger
capability to describe the data, but it is definitely much more difficult
to train. In particular, a deeper network will be even harder.

43

| ARGER/DEEPER NETWORK. £
(Il :

m Let’s try several different network models and see if we
can have interesting findings?

784-(256x2)-10 784-(256x4)-10 784-(256x8)-10
train for 40 epochs train for 40 epochs train for 100 epochs

1.000 1.000 1.000

0.995 A 0.995 4 0.995 4

0.990 A 0.990 -+ 0.990 -

0.985 A 0.985 1 0.985 4

0.980 A 0.980 -+ 0.980 1

0.975 A 0.975 4 0.975 4

0.970 A 0.970 + 0.970 4

Ending testjaccuracy | | Ending test accurjacy
198.4% [98.4%

Ending test accuracy
98.5%

0.965 A 0.965 4

T T T T T 0.960 -
20 25 30 35 40 0

0.960

0.960 T T T T T T
20 25 30 35 40 0

60 80 100

A more complex network does require a longer training time.
! Why it is difficult to train a deeper network?
D

44

WHY IT IS DIFFICULTTO 47/
TRAIN A DEEP NETWORK? A

m Surely a deeper network does contain much more weights/bias to'be
tuned. But this is not the only reason — vanishing gradients with a
deeper network. Small gradients = slow learning.

m Let’s consider a chain of neurons and calculate the gradient

according to back propagation: oL OL
Ty o'(24) - o
@ &5 s output
oL oL

=0'(21) - w2 - 0'(22) - w3 - 0'(23) - wa - 0" (24) -

by oy
Generally the weights are small (<1) after training, and o’(z) is less

then 0.25 by definition, if the sigmoid function is used. This will

enforce JL < 0.01568_[’ The updating on by will be

[\ 0bq 0b4 much slower than ba.
™. D

45

WHY IT IS DIFFICULTTO 477
TRAIN A DEEP NETWORK? (&5

And this is not the full story. The small 0’(z) is not a problem for
ReLU activation. However, if we have large weights, say >> 1, the
gradient will become very large when network goes deeper. Then we
are going to have an exploding gradient problem instead.

The intrinsic problem is that the gradients are unstable with deeper
network, given they are evaluated with a production of many layers
of weights and derivatives.

In fact such unstable gradient problem is a complex issue and
depending one many other factor (and hyperparameters) as well.
Although it sounds difficult to get a decent deep network trained,
but one can, still get a better performing deep network, with a
different network structure.

46

Here comes the Convolutional Neural Network

47

CONVOLUTIONAL Yy
NETWORK ’

Up to now we are using a network first by “reshape” of the input
28%28 pixels into a flat input of 784 neurons. Although it works
rather well but we do not take into account the nature of images in
fact. The local information (of adjacent pixels) is lost.

The convolutional networks use a special architecture which is
particularly well-adapted to image recognition. The architecture of
convolutional network makes the training of deep, multi-layer
networks easier.

There are several ideas introduced for the convolutional neural
networks to be discussed in the following slides: local receptive
fields, shared weights, and the pooling.

48

LOCAL RECEPTIVE FIELDS

In a typical convolutional network, the input layer is encoded in the
following structure. For example, instead of fully connected
network, one only has the first 5x5 block of neurons being connected
to one neuron in the first hidden layer, and next 5x5 block connected
to the second neuron...

Input layer
8 first hidden layer
O0000O O >0 0000
BIAVES) O00O0O00O O L O00O00OO
O000O0 O00000 O o000 O00O00O0O
0J0]0101010101010]10 O00000 0OO0O00O0O0O0O0OO0 O000O0O0O
0J0]0]010)10101010]0. O0000O0 0OO000O0O0O0OO0O O00000O
0J0]0101010101010]0. O0000O0 0OO0O0O0O0O0O0OOO OO000O00O
0J0]01010)0101010]0. 0J0]01010)0101010]0.
0J0]0]010)0101010]e 0J0]01010)0)01010]e

It we have 28%28 as the input image, and with a 5X5 local
representative field, the first hidden layer will be 24 x24.

/\ : 49

SHARED WEIGHTS/BIAS .

The second important feature is that the local representative/fields/
have a shared weights/bias through out the whole first hidden layer.
e.g. the same 5x5 weights and a common bias are shared by all of
the neurons on the first hidden layer.

This means all of the neurons of
the hidden layer can detect exactly
the same feature.

4 4
o b+ D Wit
Input layer

i=0 §=0

The map from the input layer to
the hidden layer is usually called a
feature map.

A feature map only keep 25
weights and 1 bias!

The shared weights/bias are often
said to define a kernel or a filter.

FEATURE MAPS

Input E» i
28%x28 ”H{ Nx24x24
neurons JJ eature maps

- For example here are the trained
16 feature maps (or kernels/
filters) in the next example.

- Basically each map supposes to
pick up a different feature from

| the input images!
[\ >!
— D

output from the feature map

B

POOLING LAYERS

In addition to the convolutional layers, a pooling layer is ustially /

added right after them. A pooling layer is to simplify the information
from the convolutional layer, for example a 2x2 pooling layer shrink
the input 24x24 feature map into a 12x12 units:

O
O
OO
OO
O
O
O
O
O
O

@
OO0O0O00O00O00O
OO

0]0]0]0]0]010]0]0
0]0]0]0]0]0]0]0]e
OO00O00O0

OO00O0O0O

OO00O00O0QO0O
0]0]0]0]0]01e]0]e
OO0O0O00O000O0O
OO0O0O00O0OO0O

OO0OOOC

pooling units
O0000O0
c@0O000
OO0000O0
O0000O0
O0000O0
O0000O0

Usually this is applied to each
feature map output layer

52

Max-pooling: simply outputs
the maximum activation value
in input region.

L2 pooling: take the square
root of the quadrature sum of
the activations.

No additional weight/bias but
just condensing information
from the convolutional layer.

PUT ALL TOGETHER:
CONVOLUTIONAL N

Here we just draw the structure of a typical convolutional
network. And it will be implemented in our upcoming example
code. We construct the network with 16 filters:

—0

fully connected — |

network 9

44 o 3

Input ?',} % —4

B T LoR24x24 > e

feature maps 16% 2% |2 56

16 x 26 = 416 pavameters pooling units -7

—8

Although you may think this is a complicated model, but in 9

fact the total # of parameters are much smaller than our
previous example, only 23,466 weights/bias!

53

PUT ALL TOGETHER (I

m Easy implementation with Keras:

Just the model

C e e e e s discussed In the
from keras.models import Sequential previous pagel!
from keras.layers import

from keras.optimizers import Adadelta

model = Sequential()

model.add(Reshape((28,28,1), input_shape=(28,28)))
model.add(Conv2D(16, kernel size=(5,5), activation='relu'))
model.add (MaxPooling2D(pool_size=(2,2))) I 5x5 convolutional layer
model.add(Flatten()) I 2x2 pooling layer
model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
optimizer=Adadelta(),
metrics=['accuracy'])

/ 1303-example-08.py (partial)

Z\ ‘ 54
—y y

PUT ALLTOGETHER (lll)

And we can reach a very good performance already:

Epoch 20/20

60000/60000 [===========] 13s 217us/step - loss: 0.0363 - acc: 0.9890
— val_loss: 0.0371 - val _acc: 0.9874

Performance (training)

Loss: 0.02537, Acc: 0.99267

Performance (testing)

Loss: 0.03712, Acc: 0.98740

A testing accuracy of 98.7% reached, only 126 images are mis-
identified. Remember we only put a layer of convolutional network

and # of parameters is only 1/28 comparing to the previous flat
784-512-512-10 network!

Can we do even better? Let’s try to add more layers!

55

HOW ABOUT ADDING MORE.
FEATURES MAPS?

—>

— 44 q

Input ZEE | ¢

>

28x%28 N

> |

> |

neurons

"l 32%24x24

]

feature maps 32%x12%x]2 N

pooling units

Epoch 20/20

Performance (training)

Performance (testing)

Loss: 0.01816, Acc: 0.99518

Loss: 0.03244, Acc: 0.98900

Now we reached 98.9%
test accuracy, only 110 digits
are wrongly tagged!

|
4 —— 1
| - i
|
}
- ‘ |
| "

56

ADD ANOTHER RHIDDEN
FULLY CONNECTED LAYER!

y
.’.

Let’s add another fully connected layer and see the performance?

— 4449
o | ¢

Input 8
28x28]

neurons (‘

32%24x24
feature maps

Epoch 20/20

Performance (training)
Loss: 0.00094, Acc: 0.99988
Performance (testing)

Loss: 0.02896, Acc: 0.99230

fully connected,
network

N\
\\\

\\t\\‘\:\\\\\v A’vllllgf
WX XK X477
NIRESER %A
\\\\‘“\-‘} X e ih/}',’}%
N
SRR
RS
IR

KT WV, &
A QKX
/”'«é{‘/, sz k&ﬁ“‘{{\‘:\ll:\
XN
IR 7 RSN
T ZA A‘ QAN

77 XN
|5\

7
7/

/i

Now we go beyond 99.2%!

512 hidden
neurons

57

DOUBLED LAYERS!

Let’s config our model by two convolution+pooling layers, and

two fully connected layers. Then see how good can we do here?

model =
model.
mode L.
mode L.
mode L.
mode L.
model.
model.
mode L.
mode L.
mode L.
mode L.
mode L.

Sequential()

add (Reshape((28,28,1), input_shape=(28,28)))

add(Conv2D(32, kernel size=(5, 5), activation='relu'))

add (MaxPooling2D(pool_size=(2,2)))

add(Conv2D(32, kernel size= (5 5), activation='relu'))

add (MaxPooling2D(pool_size=(2,2)))

add(Flatten())

add(Dropout(0.2)) Performance (training)
add(Dense(512, activation='relu')) Loss: 0.00167, Acc: 0.99960
add(Dropout(0.2)) Performance (testing)
add(Dense(512, activation='relu')) Loss: ©0.01988, Acc: 0.99480
add(Dropout(0.2))

add(Dense(10, activation=‘softmax'))

" 1303-example-08a.py (partial)

Now we go beyond 99.4%!

58

DOUBLED LAYERS! (II)

35 27 624 2-7 8-9 6-5 7-1 4-6 /-2 9-4 NOW we Only Have 52
be 1 & .
4% 9§l5- 7-1 3:17 9—‘>I3 94 5—% 6? 4% 65'1 wrongly tagged images

% 1 72 % ¢ F (0 &g ¢ (052% failed).

2-0 5-3 6—-1 8-0 9-5 7-9 6-0 64 5-0 6—-8

82z L D 0, A o B g Some of them are also

728 2-7 620 829 305 924 9-4 702 593 3-8 difficult for real humans!
8£;: o‘—?:" 8@ oi 8—:?9 oj__g 8—‘3'! 4—’;': 7—»52 29 Remember the best

X S,f% v O3 0 5 § ZF A trained network (world
& & record) is with 0.21%

failure rate. Still rooms to
be improved!

In any case convolutional neural network is a kind of deep
network good for image recognition!

/‘\ ‘ >?
— ;/)

IDEAS

Recurrent neural network (RNN):

Up to now our network has a fixed flow throughout the
training, but what will happen if we allow the network to vary
itself along with time sequence?

Unlike feedforward neural network, RNN can use their internal
state (“memory”) to process a sequence of inputs. This gives
RNN a good approach to the unsegmented data, for example,

language / speech recognition.
Recurrent network

H_J

output layer

| input layer Y (class/target)
/\ . hidden layers: “deep” if > 1 60
R »

IDEAS (I

Generative adversarial network (GAN):

The basic structure of GAN is to have two network “fighting”
with each other: one is to find “fake” images out of the pool,
another one is to generate fake images.

Once it has been trained, you can use the generator to produce
lots of “nearly true” fake images, e.g. photo of a person who
never exists in the real world, or convert your doodle to a fancy

graph! /

Training set V} “ Discriminator
d R
Random /7] / —’ - ~ LFake
non;e] \
L e — % _
Generator _/ Ake image

6l

OTHER DEEP NETWORKS & #7/

IDEAS (Ill)

Reinforcement Learning (RL):

In our example network, the required responses of our model
are relatively simple (just which digit, 0-9). But in many
problems, for example, playing chess, this is not a simple task as
no clear classification of good /bad labels.

Then the reinforcement learning is a kind of idea to build the
environment for your program to learn how to survive by itself
(only give it a goal to reach, e.g. beating the opponent, getting
higher scores etc). Let the environment to be the teacher.

A famous example is the AlphaGoZero, —, -

which is trained without any prior —
knowledge of Go, but just let to
figure out how to play Go by itself!

State s, Rewardr,

Action a,

62

FINAL COMMMENT:
PHYSICIST'S ML

Physicists also use a lot of ML to solve the problems found in the
experiments or theories. But what are the core difference between a
physicists” problem and a generic problem?

Surely I cannot comment for everyone — but at least I can say the
particle physicists have a rather different prospective regarding ML
tools comparing to generic users.

The key point of particle physicists” ML is about its statistical
interpretation: we do not just concern about if your ML tool is
working or not, we also worry about how correct it performs. e.g.
even if you know the accuracy of your network is 99.5%, we also
want to know the error of this value, e.g. 99.5+0.XX%, and also the
performance difference between the ideal situation and and real
application.

63

FINAL COMMMENT:
PHYSICIST'S ML (I

So unlike the generic problem (e.g. image recognition, etc.), we

need to find a way to preserve the information and still use it to
present physics results, instead of just dump everything into the
network. i.e.

(Particle) Physics ML Solution

Generic ML Solution Preserved
O ' physics
O/ A\ 0 information
) O 00—
e L
/ \—‘/v :

input data

So the (particle) physics ML solution is generally weaker than
the generic ML due to lack of key information in ML. But we

/\ use It to do further statistical analysis afterwards.
64

HANDS-ON SESSION

Practice 01:

Trial #1:

In the 1303-example-04a.py we have tried a L2 regularization
method to reduce the overtraining issue. What will be the
situation if we switched to L1 regularization?

Trial #2:

In the 1303-example-08. py configuration, we are using 5x5
block in our convolutional layer. What will be the performance if
we take a different size, for example 3x3 or 7x77?

65

HANDS-ON SESSION

Practice 02:

Up to now we are always using the same testing sample to measure
the performance. But what will happen if we rotate our testing data
and see how good we can still separate the handwriting digits?

You can take one of the ending example, e.g. 1303-examp le-08. py
or 1303-example-08a. py, train your network, but in the end use
the rotated test sample to see the performance. The method /code to
rotate your images can be found in 1303-examp le-05. py.

Performance (training):
Loss: 0.xxxx, Acc: 0.yyyy
Performance (testing):
Loss: 0.xxxx, Acc: 0.yyyy

66

