
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 1-1:  
Introduction to Python

1

Kai-Feng Chen
National Taiwan University

2019

PYTHON:
AN INTRODUCTION
■ Quote from Wikipedia: “Python is a widely used general-purpose,

high-level programming language. Its design philosophy
emphasizes code readability, and its syntax allows programmers to
express concepts in fewer lines of code than would be possible in
languages such as C. The language provides constructs intended to
enable clear programs on both a small and large scale.”

■ The core philosophy (as called “The Zen of Python”):

▫ Beautiful is better than ugly.

▫ Explicit is better than implicit.

▫ Simple is better than complex.

▫ Complex is better than complicated.

▫ Readability counts.

2

In short:  
Must be simple and beautiful

PYTHON:
AN INTRODUCTION (II)
■ Python development was started in December 1989.

■ Python's principal author: Guido van Rossum.

■ The origin of the name comes from Monty Python (Monty
Python's Flying Circus, a British television comedy show),  
not the elongated legless animal.

3

Monty Python's Flying CircusGuido van Rossum

PYTHON,
THE PROGRAMMING LANGUAGE

■ Python is a high-level language; others: C/C++, Fortran, Java, etc.

■ The computers can only run the “machine language”, which is not
human readable (well, if you are a real human).

■ The programs written in a high-level language are shorter and
easier to read, and they are portable (not restricted to only one
kind of computer). However, they have to be processed
(“translated”) before they can run.

4

“HELLO WORLD” IN
C/C++

5

#include <stdio.h>

int main()
{

printf("hello world!\n");
}

% gcc helloworld.cc
% ./a.out
hello world!
%

helloworld.cc

■ If you run it in a unix-like system with a gcc compiler:

Well, the common starting point for any programming language.

“HELLO WORLD” IN
PYTHON

6

■ Run it in your terminal with python interpreter:

print('hello world!')

% python helloworld.py
hello world!
%

helloworld.py

All you need is just a single line!

The standard filename extension for python is “.py”.

THE COMPILER (& LINKER)

7

■ A compiler reads the source code and translates it before the
program starts running; the translated program is the object code
or the executable.

■ Once a program is compiled, it can be executed it repeatedly
without further translation.

This is what we did for the  
C version of “hello world”.

■ An interpreter reads a high-level program (the source code) and
executes it.

■ It processes the program little-by-little at a time, reading lines and
performing computations.

THE INTERPRETER

8

The python version of “hello
world” program is executed by

the python interpreter.

PYTHON,
THE INTERPRETER
■ Python is considered an interpreted language because Python

programs are executed by an interpreter.

▫ Rapid turn around: no needs of compilation and linking as in C
or C++ for any modification.

▫ Hybrid Python programs are compiled automatically to an
intermediate form called bytecode, which the interpreter then
reads.

▫ This gives Python the development speed of an interpreter
without the performance loss in purely interpreted languages.

▫ However for serious speed limited computations you still need
to use C, or even Fortran.

9

PYTHON,
THE INTERPRETER (II)
■ There are actually two ways to use the interpreter:  

interactive mode and script mode.

■ Running your program in script mode:

▫ As we did in the previous “hello world” example: put your
code into a file, process it with the python interpreter.

▫ The Unix/Linux “#!” trick:

10

#!/usr/bin/env python
print('hello world!')

% chmod +x helloworld.py
% ./helloworld.py
hello world!

helloworld.py

⇐ Make it as an executable file

PLAY WITH PYTHON
INTERACTIVELY (I)

11

% python
>>> 2+2
4
>>> # I’m a comment. I will not do anything here.
... 2+2 # anything after ‘#’ is a comment.
4
>>> 6/3
2.0
>>> (50-5*6)/4
5.0
>>> 6/-3
-2.0
>>> 2**8
256
>>> 10%3
1

■ Let’s try some simple Python commands in the interactive mode:

Use the python interpreter as a calculator!
The regular precedence is followed:

(,) ⇒ ** ⇒ *,/,// ⇒ % ⇒ +,-⇐ this is exponentiation (28)

⇐ this is modulus

PLAY WITH PYTHON
INTERACTIVELY (II)

12

>>> 8/3
2.6666666666666665
>>> 8//3
2
>>> 9998//9999
0
>>> 8/3.
2.6666666666666665
>>> 8/(6.6/2.2)
2.666666666666667
>>> 8/3+1
3.6666666666666665
>>> round(3.1415927,3)
3.142

■ Float point number versus integer:

⇐ integer divide

⇐ rounding off to 3rd digit

⇐ automatically convert to float since python 3

⇐ round to integer

PLAY WITH PYTHON
INTERACTIVELY (III)

13

>>> width = 20
>>> height = 5*9
>>> area = width * height
>>> area
900

>>> x = y = z = 1
>>> x
1
>>> x + y + z
3

■ You can assign a variable with “=”:

■ You can assign multiple variables as well:

PLAY WITH PYTHON
INTERACTIVELY (IV)

14

>>> a = 2j
>>> a*a
(-4+0j)
>>> b = complex(3,4)
>>> a+b
(3+6j)
>>> 8j/3j
(2.6666666666666665+0j)
>>> b.real + b.imag
7.0
>>> abs(b)
5.0

■ Complex number is also supported. The imaginary part can be
written with a suffix “j”.

⇐ Using the function complex(real, imag)

⇐ Complex numbers are always float.

⇐ Exact the real/imaginary part
 with .real and .imag

⇐ absolute value

FIRST VISIT WITH
STRINGS

15

>>> 'I am a string!'
'I am a string!'
>>> "me too!"
'me too!'
>>> 'anything quoted with two \' is a string.'
"anything quoted with two ' is a string."
>>> "\" also works."
'" also works.'
>>> "pyt" 'hon'
'python'
>>> sentence = 'I am a string variable.'
>>> sentence
'I am a string variable.'

■ Python supports for strings are actually very powerful. See several
examples below:

⇐ Two string literals next to each other  
 are automatically concatenated

FIRST VISIT WITH
STRINGS (II)

16

>>> lines = "line1\nline2\nline3"
>>> print lines
line1
line2
line3
>>> reply = '''I
... also have
... 3 lines'''
>>> print reply
I
also have
3 lines

■ More: multiline strings

⇐ Use ''' or """ to start/end multiline strings.

FIRST VISIT WITH
STRINGS (III)

17

>>> 'oh'+'my'+'god'
'ohmygod'
>>> 'It\'s s'+'o'*20+' delicious!!'
"It's soooooooooooooooooooo delicious!!"
>>> '1234'+'1234'
'12341234'
>>> int('1234')+int('1234')
2468
>>> float('1234')/100
12.34
>>> a = b = 2
>>> str(a)+' plus '+str(b)+' is '+str(a+b)
'2 plus 2 is 4'

■ More: operators “+”, “*”, and type conversions

We will talk more on python strings afterwards.

VALUES AND TYPES

■ A value is one of the basic things a program works with, like a
letter or a number.

▫ 1234 is an integer. 1234 ⇒ value; integer ⇒ type.

▫ ‘hello’ is a string: ‘hello’ ⇒ value; string ⇒ type.

■ The interpreter can also tell you what type a value has:

18

>>> type('hello!')
<class 'str'>
>>> type(1234)
<class 'int'>
>>> type(3.14159)
<class 'float'>
>>> type(3+4j)
<class 'complex'>

TYPES & MORE

19

>>> float(1234)
1234.0
>>> type(float(1234))
<class 'float'>
>>> type('1234')
<class 'str'>
>>> type(int('1234'))
<class 'int'>
>>> type(str(1234))
<class ‘str'>
>>> type(complex('3+4j'))
<class 'complex'>

■ Type casting is easy:

TYPES & MORE (II)
■ Few more complicated (but very useful) types are also supported.

Will be discussed in a near future lecture.

20

>>> type(3<4)
<class 'bool'>
>>> type(open('tmpfile','w'))
<class '_io.TextIOWrapper'>
>>> type([1,2,3,4,['five',6.0]])
<class 'list'>
>>> type((1,2,'three',4))
<class 'tuple'>
>>> type({'name':'Chen','phone':33665153})
<class 'dict'>
>>> type({'a','b','c'})
<class 'set'>

VARIABLES

■ A variable is a name that refers to a value.

■ An assignment statement creates new variables and gives them
values (you have seen this already):

■ Programmers generally choose names for their variables that are
meaningful – they document what the variable is used for.

■ Variable names can be arbitrarily long, can be with both letters and
numbers.

■ The underscore character “_” can appear in a name as well.

21

>>> pi = 3.1415926536
>>> last_message = 'what a beautiful day'

VARIABLES (CONT.)

■ The variable names have to start with a letter or “_”

■ It is a good idea to begin variable names with a lowercase letter.

■ Python’s keywords: keywords are used to recognize the structure
of the program, and cannot be used as variable names.

22

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

INTERMISSION

■ Now it’s the time to play with your python interpreter:

▫ As a simple calculator.

▫ Play with the strings.

▫ Examine the python built-in types.

▫ Define your variables and check any possible break-down cases.

23

■ A program is a sequence of instructions that specifies how to
perform a mathematical/symbolic computation.

■ This is a simple example of mathematical computation:

A STEP TOWARD
PROGRAMMING

24

s = t = 1.
for n in range(1,21):
 t /= n
 s += t
print ("1/0!+1/1!+1/2!+1/3!+...+1/20! =",s)

1/0!+1/1!+1/2!+1/3!+...+1/20! = 2.71828182846

⇐ t /= n is equivalent to t = t/n

THE PRINT STATEMENT

■ As you already seen in the “hello world!” program, as well as the
previous example, the print statement simply present the output to
the screen (your terminal).

■ A couple of examples:

25

>>> print('show it now!')
show it now!
>>> print(1,2,(10+5j),-0.999,'STRING')
1 2 (10+5j) -0.999 STRING
>>> print(1,2,3,4,5)
1 2 3 4 5
>>> print(str(1)+str(2)+str(3)+str(4)+str(5))
12345

⇐ connect w/ comma

Remark: for python 2, the ‘print’ was not a function, you
can use something like print ‘hello world!’.

STRUCTURE OF
A PROGRAM
■ Input:  

get data from the keyboard, a file, or some other device.
■ Output:  

display data on the screen or send data to a file or other device.
■ Math:  

perform basic mathematical operations like addition and
multiplication.
■ Conditional execution:  

check for certain conditions and execute the appropriate code.
■ Repetition:  

perform some action repeatedly, usually with some variation.

26

Every program you’ve ever used, no matter how complicated, is
made up of instructions that look pretty much like these.

GIVE ME A FLYSWATTER

■ Programming is error-prone. Programming errors are called bugs
and the process of tracking them down is called debugging.

■ Three kinds of errors can occur in a program:

▫ Syntax errors

▫ Runtime errors

▫ Semantic errors

27

SYNTAX ERRORS

■ Syntax refers to the structure of a program and the rules about that
structure.

■ Python can only execute a program if the syntax is correct;
otherwise, the interpreter displays an error message.

■ An example:

28

>>> y = 1 + 4x
 File "<stdin>", line 1
 y = 1 + 4x
 ^
SyntaxError: invalid syntax
>>>

You probably already see a
couple of syntax errors in

your previous trials.

RUNTIME ERRORS

■ A runtime error does not appear until after the program has
started running.

■ These errors are also called exceptions because they usually
indicate that something exceptional (and bad) has happened.

■ The following “ZeroDivisionError” only occur when it runs.

29

>>> a = b = 2
>>> r = ((a + b)/(a - b))**0.5 * (a - b)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>>

SEMANTIC ERRORS

■ If there is a semantic error in your program, it will run successfully,
but it will not do the right thing.

■ It does something else.

■ The problem is that the program you wrote is not the exactly
program you wanted to write.

■ The meaning of the program (its semantics) is wrong.

■ Identifying semantic errors can be tricky because it requires you to
work backward by looking at the output of the program and trying
to figure out what it is doing.

■ (Much) more difficult to debug.

30

SEMANTIC ERRORS

■ As an example:

31

s = t = 1.
for n in range(1,21):
 t /= n
s += t
print ("1/0!+1/1!+1/2!+1/3!+...+1/20! =",s)

1/0!+1/1!+1/2!+1/3!+...+1/20! = 1.0

☐☐☐☐s += t

2.71828182846

Just one line with missing intent gives
you a completely different answer!

DEBUGGING

■ It is very difficult to write a bug free program at the first shot.

■ Programming and debugging can be the same thing.  
Programming is the process of debugging a program until it does
exactly what you want.

■ Having a good programming/coding habit sufficiently helps.

■ Re-run a buggy program never helps!

32

SOME COMMON ISSUES

■ As observed from previous lectures, there were some common
issues from the students…

■ Issue #1: How to use the interpreter mode –– starting the
interpreter mode you can just type “python” in your terminal or
in your command line window:

33

% python
>>> 2+2
4
>>>

In the slides of this
lecture, this is always
shown in a blue box.

SOME COMMON ISSUES
(CONT.)
■ In the interpreter mode, the python interpreter can be used as a

calculator, ie. if you type in any math operations it will show the
answer on the screen directly.

■ If you type in any variable, the value of the variable will be shown.

■ If you type in any function, the return value of the function will be
shown.

34

% python
>>> 2+2
4
>>> x = 123
>>> x
123
>>> type(x)
<class 'int'>

⇐ this is a function

⇐ this is a variable

SOME COMMON ISSUES
(CONT.)
■ Issue #2: How to use the script mode –– put your code into a file

(mostly named with .py, any text editor can be used!), and execute
in the terminal command “python xxx.py”.
■ if you use the Unix/Linux “#!” trick in your code, then you do not

need to type in “python xxx.py”, but just “xxx.py”, if you have
added the executable permission to the file.

35

⇐ ask python to run your script

⇐ the #! trick

SOME COMMON ISSUES
(CONT.)
■ In the script mode, you cannot do what we did in interpreter

mode. You cannot just type the math calculations, or variables, or
functions to show the output. You have to use the “print” at least.

36

2+2 # this will not show anything
type(123) # this will not show anything

print(2+2) # this will print 4 on the screen
print(type(123)) # this will print <class 'int'> on the screen

In the slides of this lecture, for the code in the
script mode, it is always shown in a yellow box!

SOME COMMON ISSUES
(CONT.)
■ Issue #3: But I’m using an IDE from Anaconda / Canopy… if this

is the case, you have both “modes” available in a single screen:

37

script mode

interpreter  
mode

If you put your code in script mode, you
have to follow the regular coding rule!
Press the “run” to execute your code in

the interpreter window!

SOME COMMON ISSUES
(CONT.)
■ Issue #4: Why I double-clicked my xxx.py, it just shows

something quickly and disappeared quickly? –– You are likely
using a windows system. The default action when a .py file is
double-clicked will be just “run it”. Since your program runs very
fast, your program terminate and the command line window also
closed right away, so you cannot see the output.

- Solution #1: start a command line window by yourself and run
the program by typing the commands.

- Solution #2: always use your IDE to load your .py code and run.

- Solution #3: add the following two lines to the end of your code:

38

import msvcrt
msvcrt.getch() ⇐ this will wait for a key (Windows only!).

HANDS-ON SESSION

■ Up to now we have gone through:

▫ The basic python interface

▫ Variables, types, and operators

■ Now you should be able to do some useful calculations!

■ Let’s start our first round of  
hands-on session now!

39

HANDS-ON SESSION

■ Practice 1:  
Get your working environment ready now, and type in your first
“hello world!”.

40

HANDS-ON SESSION

■ Practice 2:  
Use the python interpreter as a calculator, and calculate the
following simple math problems:  

▫ Given , what’s the real part and imaginary part?  

▫ Calculate the magnitude of the total gravitational force that is
acted on point mass A:  
 
 
 

41

z =
�2

1 +
p
3i

3m
5m

4m 3 kg

4 kg

A: 5 kg

G = 6.67384 × 10–11 m3kg–1s–2

F =
GM1M2

R2

