
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 1-2:  
Control flow

1

Kai-Feng Chen
National Taiwan University

2019

CONTROL FLOW

■ You are not always on the
same route, do you?

2

CONDITIONAL
EXECUTION
■ One definitely needs the ability to check some certain conditions

and change the behavior of the program accordingly.

■ Conditional statements give us this ability.

■ The simplest form is the if statement:

■ The boolean expression (x>0) after if is called the condition.

■ If it is true, then the indented statement (print) gets executed.
Otherwise nothing will happen.

3

if x > 0:
 print('x is positive!')

if x > 0 :

 print('x is positive!')

THE STRUCTURE

4

The condition,
which must be a

boolean expression.
header is ending with a colon (:)

HEADER
BODY

Body has to be indented.

Indentation is important. The lines started with the
same indentation is treated as a group. The

convention is four spaces, but this is not restricted.

The body can
contain any number

of statements.

BOOLEAN EXPRESSIONS

■ A boolean expression is either true or false.

■ For example, the basic operator “==” compares two operands and
produces True if they are equal:

■ The True and False (T,F must be capital) belong to bool type:

5

>>> 5==5
True
>>> 5==6
False

>>> type(True)
<class 'bool'>

RELATIONAL OPERATORS

■ The == operator is one of the relational operators; the others are:

■ A common error is to use a single equal sign “=” instead of a
double equal sign “==”.

■ There is no “=<” or “=>”.

6

 x != y # x is not equal to y
 x > y # x is greater than y
 x < y # x is less than y
 x >= y # x is greater than or equal to y
 x <= y # x is less than or equal to y

LOGICAL OPERATORS

■ There are three logical operators: “and”, “or”, “not”.

■ The operands of the logical operators should be boolean
expressions, but Python is not very strict – any nonzero number is
interpreted as True.

7

x > 0 and x < 10

n % 2 == 0 or n % 3 == 0

not (x > y)

➦True 0 < x < 10
➥False otherwise

➦True if n is multiple of 2 or 3
➥False otherwise

➦True if x is less or equal to y
➥False x > y

ALTERNATIVE
EXECUTION
■ Alternative execution –– with two possibilities and the condition

determines which one gets executed.

■ The syntax:

■ Since the condition must be true or false, exactly one of the
branches will be executed.

8

if x%2 == 0:
 print('x is even')
else:
 print('x is odd')

CHAINED
CONDITIONALS
■ Sometimes there are more than two possibilities –– one way to

express a computation like that is a chained conditional:

■ Exactly one branch will be executed. There is no limit on the
number of elif (“else if”) statements.

■ If there is an else, it has to be at the end.

9

if x < y:
 print('x is less than y')
elif x > y:
 print('x is greater than y')
else:
 print('x and y are equal')

NESTED
CONDITIONALS
■ One conditional can also be nested within another. For example:

10

 if x == y:
 print('x and y are equal')
 else:
 if x < y:
 print('x is less than y')
 else:
 print('x is greater than y')

If-else block #1

If-else block #2

The first branch contains a simple statement.
The second branch contains another if statement,
which has two branches of its own.

indentation of the
statements define

the blocks.

NESTED
CONDITIONALS (II)
■ Indentation makes the structure apparent. But nested conditionals

become difficult to read very quickly. Good to avoid them.

■ Logical operators often provide a way to simplify nested
conditional statements.

11

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

if 0 < x and x < 10:
 print('x is a positive single-digit number.')

Simplified with “and”:

COMMENT: INDENTATION
■ Leading whitespace at the beginning of lines is used to define the

indentation level of the line, which is used to determine the
grouping of statements.

■ Due to the nature of various text editors, it is unwise to use a
mixture of spaces and tabs for the indentation.

12

def perm(l):
 if len(l) <= 1:
 return [l]
 r = []
 for i in range(len(l)):
 s = l[:i] + l[i+1:]
 p = perm(s)
 for x in p:
 r.append(l[i:i+1] + x)
 return r

Example of a correctly (but confusingly?) indented code:

INTERMISSION

■ Try the following logic operations:  
 
 
 
 
Do you see True or False? Why? 
 
 
 
 
Do you see True or False? Why?

13

>>> a = 1.0/3.0
>>> b = 1.0 - 2.0/3.0
>>> a == b

>>> not (((True and (True or False) and True) and
False) or False) and False or True

INTERMISSION (II)

■ Try this kind of “weird-indented” programs?  
 
 
 
 
 
or  

14

 print "a"
 print "aa"
 print "aaa"
 print "aaaa"

x = 3
if x < 4:
 print('x is smaller than 4.')
 if x > 1:
 print('x is greater than 1.')

Which line do you
expect to see the
(syntax) error?

INTERMISSION (III)

■ Try this kind of “weird-indented” programs?  
 
 
 
 
 
 
 
 
 
 
 

15

x = y = 2
if x > 1:
 if y < 4:
 x += y
 y += 4
 elif x + y > 1:
 y = (x + y)*2
 else:
 x -= (y / 2)
elif y == x % 2:
 y = x**2
else:
 x -= y**2
print(x,y)

What do you
expect to see in the

end (x,y)?

⇐ x += y is the same as x = x + y
y += 4 is the same as y = y + 4

ITERATION

■ Computers are often used to automate repetitive tasks: repeating
identical or similar tasks.

■ Because iteration is so common, Python provides several language
features to make it easier:

▫ The while statement, which can be used as general loops.

▫ The for statement, which is usually used to run through a block
of code for each item in a list sequentially.

■ An example (printing 1 to 10 on the screen):

16

n = 1
while n <= 10:
 print(n)
 n += 1

THE “WHILE” STATEMENT

17

n = 1
while n <= 10 :
 print(n)
 n += 1

The condition
Setting the initial

value to n
header is also ending with a colon

HEADER
BODY

n += 1 is the same as n = n + 1,
means n should be updated with n+1

■ The flow of execution for a while statement:
▫ Evaluate the condition, yielding True or False.
▫ If the condition is false, exit the while statement.
▫ If the condition is true, execute the body and then go back to step 1.

TERMINATION OF THE
LOOP
■ The loop should change some of the variables so that eventually

the condition becomes false and ends the loop (e.g. the n+=1
statement).

■ Otherwise the loop will repeat forever as an infinite loop.

■ Or use the break statement to jump out of the loop:

18

n = 1
while True:
 print(n)
 if n>=10:
 break
 n += 1

⇐ an infinite loop actually!

⇐ jump out of the loop

CONTINUE THE LOOP

■ Break versus Continue (can be confusing for beginners):

▫ The break statement, which should jump out of the loop can
continue to execute the next statement.

▫ The continue statement, which should jump back to the head of
the loop, check the condition, and continue to the next iteration.

19

n = 0
while True:
 n += 1
 if n > 10:
 break
 if n % 2 == 0:
 continue
 print(n)
print('the end!')

continue the loop

break the loop

LOOP – ELSE
STATEMENT
■ Similar to the if statement, else can be attached to the end of loop.

■ The code block after else will be executed if the loop ended
normally (without calling the break statement):

20

n = 0
m = 5
while n<10:
 n += 1
 print n
 if n==m:
 print('n ==',m,'hit. Break the loop.')
 break
else:
 print('ended normally!')

⇐ if m is not between 1–10, the ‘ended normally!’ will be printed.

THE “PASS”
STATEMENT
■ The pass statement does nothing. It can be used when a statement

is required syntactically but the program requires no action.

■ For example:

21

while True:
 pass # this is a do-nothing, infinite loop

n = 3
if n == 1:
 print('One!')
elif n == 2:
 print('Two!')
elif n == 3:
 print('Three!')
else:
 pass ⇐ do nothing, simply a placeholder for now

THE “FOR” STATEMENT

■ The for statement in Python differs a bit from what you may be
used to in C – it iterates over the items of any sequence (a list or a
string), in the order that they appear in the sequence.

■ An example (iterating the letters in a string):

22

letters = 'bhJlmprsty'
for initial in letters:
 print(initial + 'ack', end=' ')

back hack Jack lack mack pack rack sack tack yack

Output:

⇐ loop over the letters

ACCESSING A LIST

■ The for statement can access to the elements in a list.  
For example:

23

animals = ['cat','dog','horse','rabbit','mouse']
for a in animals:
 print(a)

odd_numbers = [1,3,5,7,9]
for n in odd_numbers:
 print(n)

The list “odd_number” can be actually replaced by
a simple call to the built-in function range()

THE RANGE() FUNCTION

■ If you do need to iterate over a sequence of numbers, the built-in
function range() comes in handy. It can generate lists containing
arithmetic progressions:

24

>>> range(10)
range(0, 10)
>>> type(range(10))
<class 'range'>
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 10))
[5, 6, 7, 8, 9]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(-10, -100, -30))
[-10, -40, -70]

⇐ since python 3 range() has its own type!

The given end point
(e.g. 10) is never part of

the generated list.

RANGE() + FOR

25

animals = ['cat','dog','horse','rabbit','mouse']
for i in range(len(animals)):
 print(i,'=>',animals[i])

The function len() return the number of elements in
a list or how many characters in a string.

■ To iterate over the indices of a sequence, you can combine range()
and len() as follows:

for n in range(1,10,2):
 print(n)

■ Get a list of odd numbers:

A LITTLE BIT MORE
ON THE LIST
■ Python has a number of data types, used to group together other

values. The most versatile is the list. For example:

26

>>> a = ['spam','eggs',100,1234]
>>> a
['spam', 'eggs', 100, 1234]
>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:3]
['eggs', 100]

 ⇐ Access to the elements in a reversed order

 ⇐ Get a sub list

A LITTLE BIT MORE
ON THE LIST (CONT.)
■ Few more operations with python list:

27

>>> b = ['spam','eggs',[1,2,[3,4,5]]]
>>> b
['spam', 'eggs', [1, 2, [3, 4, 5]]]
>>> b[0] = 'foo'
>>> b
['foo', 'eggs', [1, 2, [3, 4, 5]]]
>>> b.append(1+3j)
>>> b
['foo', 'eggs', [1, 2, [3, 4, 5]], (1+3j)]
>>> len(b)
4

 ⇐ there are 4 items!

 ⇐ anything can be in a list;
including another list!

 ⇐ list is mutable!

A LITTLE BIT MORE
ON THE STRING

28

>>> word = 'Help' + 'Me'
>>> word
'HelpMe'
>>> word[4]
'M'
>>> word[0:2]
'He'
>>> word[0:-2]
'Help'
>>> len(word)
6

■ The basic operations on the string are quite similar to that of list.

■ A similar way can be used to access individual characters, or  
a sub-string.

 ⇐ Get a sub string

 ⇐ character counting

A LITTLE BIT MORE
ON THE STRING (CONT.)

29

>>> fruit = 'banana'
>>> fruit
'banana'
>>> fruit.upper()
'BANANA'
>>> fruit[0]
'b'
>>> fruit[0] = 'c'
TypeError: 'str' object does  
not support item assignment
>>> 'c'+fruit[1:]
'canana'

Python string/list features are
actually very powerful!

We will come back to discuss them
in details at a upcoming lecture.

■ Few more operations with python string:

 ⇐ return the upper case

 ⇐ you cannot replace one of the characters! 
python strings are immutable!

 ⇐ you can only do this

PUT IT ALL TOGETHER
■ Testing prime numbers:

30

numbers = [17,59,83,129,187]
for m in numbers:
 for n in range(m):
 if n<2:
 continue
 if m%n == 0:
 print(m,'is a multiple of',n)
 break
 else:
 print(m,'is a prime number')

 ⇐ Surely you can do range(2,m)  
instead of the ‘continue’ statement.

17 is a prime number
...
187 is a multiple of 11

PUT IT ALL TOGETHER (II)
■ Or one can get the testing number with the raw_input function:

31

inp = input('Please enter a number: ')
m = int(inp)
for n in range(m):
 if n<2:
 continue
 if m%n == 0:
 print (m,'is a multiple of',n)
 break
else:
 print (m,'is a prime number')

Please enter a number: 127
127 is a prime number

 ⇐ input by keyboard

INTERMISSION

■ Please try to find out:

▫ Is 1237 a prime number?  
How about 12347, 123457, and 1234567?

▫ Print out all of the factors of 12345678.

32

HANDS-ON SESSION

■ Up to now we have gone through:

▫ The basic structure and syntax of python

▫ Variables and operators

▫ Branching, conditionals, and iterations

■ You should be able to write a meaningful program and carry out
some interesting calculations already!

■ Let’s start our 2nd round of  
hands-on session now!

33

HANDS-ON SESSION

■ Practice 1:  
Print a multiplication table up to 12x12 on your screen:

34

2x1 = 2
2x2 = 4
2x3 = 6
2x4 = 8
2x5 = 10
2x6 = 12
...
12x12 = 144

HANDS-ON SESSION

■ Practice 2:  
Find out all of the prime numbers which are smaller than 10000.

35

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89
97 ... 9973

HANDS-ON SESSION

■ Practice 3:  
A score and grade mapping is given below:  

90–100: A+ 85–89: A 80–84: A–  
77–79: B+ 73–76: B 70–72: B–  
67–69: C+ 63–66: C 60–62: C– 
50–59: D 40–49: E 0–39: F  

 
Please write a small program which can convert the score to grade
levels, e.g.:

36

Please enter a score: 95
Your grade is “A+”.

 ⇐ input by keyboard
 ⇐ output by your code

