
INTRODUCTION TO 
NUMERICAL ANALYSIS
Lecture 1-4:  
More on sequence types & data structures

1

Kai-Feng Chen
National Taiwan University

2019



SEQUENCE TYPES:  
STRINGS, LISTS AND TUPLES
■ These sequence types (string, list and tuple) are one of the core 

features of python. Very important and extremely useful!

■ A sequence is a container of objects which are kept in a specific 
order. The individual objects in a sequence can be identified by 
their position or index. 

▫ String: or str, a container of single-byte ASCII characters.

▫ Tuple: a container of anything with a fixed number of elements.

▫ List: a container of anything with a dynamic number of 
elements.

2

Tuples and strings are immutable. We can examine the object, 
looking at specific characters or items, but we cannot change the 

object. On the other hand, Lists are mutable.



SEQUENCE TYPES

■ All the sequence types have common characteristics.

■ Literal values –– each sequence type has a literal representation:

▫ String uses quotes : 'string' or "string".

▫ tuple uses (): (1,'b',3.1).

▫ list uses []: [1,'b',3.1].

■ Operations –– there are three common operations:

▫ + will concatenate sequences to make a longer one. 

▫ * is used with a number to repeat the sequence several times. 

▫ [ ] operator is used to select elements.

3

We will go through these 3 sequence types (in details).



STRINGS REVISIT

■ We have slightly “touched” strings already in the previous 
lectures. But the python strings are much more powerful than that. 

■ A string contains a sequence of characters, which can be accessed 
with the bracket operator:

4

>>> fruit = 'banana'
>>> fruit[0]
'b'
>>> fruit[-1]
'a'

  ⇐ indexing from left-hand side

fruit ⇒ ‘ b a n a n a ’
 0 1 2 3 4 5 6index =

-6 -5 -4 -3 -2 -1

  ⇐ indexing from right-hand side



COUNTING AND SLICING

■ Counting: the function len() returns # of characters in a string.

■ Slicing: operator [n:m] returns the part of the string from the  
“n-th” character to the “m-th” character:

▫ The first character (n) is included. 

▫ The last character (m) is NOT included.

5

>>> fruit = 'banana'
>>> fruit[1:4]
'ana'
>>> fruit[1:-2]
'ana'
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

  ⇐ start from the first character

  ⇐ extend to the last character



STRINGS ARE IMMUTABLE

■ It is not allowed to use the [] operator on the left side of an 
assignment, with the intention of changing a character in a string:  
 
 
 
 
 

■ Solution: create a new string that is a variation on the original:

6

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

>>> new_greeting = 'J' + greeting[1:]
>>> print(new_greeting)
Jello, world!



STRING METHODS

■ Similar to functions — methods take arguments and returns a 
value, but with a slightly different syntax.

■ Examples:  
 
 
 
 
 

■ Get the full help of string methods:

7

>>> word = 'banana'
>>> new_word = word.upper()
>>> print(new_word)
BANANA
>>> 'ORANGE'.lower()
'orange'

  ⇐ instead of upper(string),  
    the syntax is string.upper()

>>> help(str)



FIND METHOD

■ The method find() determines if a specific character/substring 
occurs in string, or in a substring of string if starting index beg and 
ending index end are given.

■ A couple of examples:

8

>>> word = 'banana'
>>> index = word.find('a')
>>> print(index)
1
>>> word.find('na')
2

  ⇐ return the index of the first  
character found in the string.

  ⇐ can be a substring rather than a character.



FIND METHOD (II)

■ The full syntax is [just type help(str.find) to show it]:  
 
 

■ The start/end are the starting/ending index in the search:

9

find(...)
    S.find(sub [,start [,end]]) -> int

>>> word.find('na')
2
>>> word.find('na', 3)
4
>>> name = 'bob'
>>> name.find('b', 1, 2)
-1

  ⇐ the ending index is not  
included as well.



THE IN OPERATOR

■ The find() method should be used only if you need to know the 
position of a substring. To check if something is in the string or not, 
it is better to use the in operator.

■ Similarly the not in operator works just in a similar way. 

■ For example:

10

>>> 'nana' in 'banana'
True
>>> 'seed' in 'banana'
False
>>> 'seed' not in 'banana'
True



COMPARISON OF STRINGS

■ The relational operators can be applied to strings as well:  
 
 

■ These relational operations are based on the standard character-by-
character comparison rules. For example:

11

 x == y   x > y   x >= y  
 x != y   x < y   x <= y

>>> word = 'banana'
>>> 'banana' == word
True
>>> 'Banana' == word
False

  ⇐ It’s case-sensitive!



COMPARISON OF STRINGS 
(II)
■ Few more string comparison examples:

12

>>> 'abc' > 'abc'
False
>>> 'abc' > 'Abc'
True
>>> 'abd' > 'abc'
True
>>> 'abcd' > 'abc'
True
>>> 'Abcd' > 'abc'
False

  ⇐ ‘A’ has a smaller ASCII code than ‘a’.

  ⇐ It’s comparing the characters one-by-one  
in sequence.



STRING FORMATTING 

■ One of the important string features is the string formatting. This 
can be done through the operator %, which is unique to the strings 
and makes up for the pack of having functions from C's printf() 
family. For example:

13

>>> print('My name is %s and weight is %d kg!' % ('Zara', 
21))
My name is Zara and weight is 21 kg!
>>> print('The value of pi is close to %.2f.' % math.pi)
The value of pi is close to 3.14.

This is a classical way in python and is not really different from C!  
Remark: newer python (2.6 and above) introduced a new string method 

format() which can do a similar thing but more flexible operation.



STRING FORMATTING (II)

■ The basic syntax:  
 
 
 
 
 

■ A couple of common  
format symbol:

14

'%f' % 1.234567
                     ⇑ 
The format symbol

    ⇑ 
The value to be inserted

The % operator
          ⇓

%c character
%s string
%d signed integer
%x hexadecimal integer
%e exponential notation
%f floating point number
%g the shorter of %f and %e

'%s = %f' % ('pi',3.14159)
                      ⇑ 
The values to be inserted (with TUPLE format)



STRING FORMATTING (III)

■ Other extended functionality (examples):

15

>>> hbar = 1.054571726*10**-34
>>> hbar
1.054571726e-34
>>> print('%f %e %g' % (hbar,hbar,hbar))
0.000000 1.054572e-34 1.05457e-34
>>> print('Serial: %05d' % 42)
Serial: 00042
>>> print('Serial: %5d' % 42)
Serial:    42
>>> print('Price: %9.2f' % 50.4625) 
Price:     50.46
>>> print('Rate: %+.2f%%' % 1.5)
Rate: +1.50%

  ⇐ precision limitation + 
fill space

  ⇐ fill 0 up to 5 characters

  ⇐ 3 way to present  
float point number

  ⇐ fill space up to 5 characters



INTERMISSION

■ Given  
 
 
What are the following output?

16

>>> fruit = 'banana'

>>> fruit[-0]
>>> fruit[len(fruit)]
>>> fruit[-10:]
>>> fruit[-10]
>>> fruit[3:3]
>>> fruit[:]
>>> fruit[3:10]
>>> fruit[10:]



LISTS

■ A list is also a sequence of values. String contains only characters. 
In a list, they can be any type. 

■ There are several ways to create a new list; the simplest is to 
enclose the elements in square brackets [ ]:

17

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> mix = ['spam', 2.0, 5, [10, 20]]
>>> print(cheeses, numbers, '\n', empty, mix)
['Cheddar', 'Edam', 'Gouda'] [17, 123] 
[] ['spam', 2.0, 5, [10, 20]]

The character '\n' wraps to next line.



LISTS ARE MUTABLE

■ Accessing the elements is the same as for accessing the characters 
of a string with the bracket operator.  
 
 

■ Lists are mutable (unlike the strings!):

18

>>> print(cheeses[0])
Cheddar

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print(numbers)
[17, 5]



LIST INDICES

■ List indices work the same way as string indices:

▫ Any integer expression can be used as an index.

▫ If you try to read or write an element that does not exist, you get 
an IndexError.

▫ If an index has a negative value, it counts backward from the 
end of the list.

19

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> cheeses[0]
'Cheddar'
>>> cheeses[-1]
'Gouda'

  ⇐ indexing from left-hand side

  ⇐ indexing from right-hand side



LIST COUNTING & SLICING

■ The function len() also returns # of elements in a list.

■ Slicing: operator [n:m] returns the part of the list from the  
“n-th” item to the “m-th” item:

▫ The first item (n) is included. 

▫ The last item (m) is NOT included.

20

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> cheeses[1:2]
'Edam'
>>> cheeses[1:]
['Edam', 'Gouda']



LIST METHODS

■ Just like the strings, python also provides methods that operate on 
lists. For example, append() adds a new element to the end, 
insert() update the list by inserting the item at the position index.

21

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> cheeses.append('Mozzarella')
>>> cheeses
['Cheddar', 'Edam', 'Gouda', 'Mozzarella']
>>> cheeses.insert(1,'Parmesan')
>>> cheeses
['Cheddar', 'Parmesan', 'Edam', 'Gouda', 'Mozzarella']



LIST METHODS (II)
■ Adding a list to another list is possible, which is the extend() 

method:  
 
 
 
 
 

■ If you use append() instead of extend() here:

22

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> italian_cheeses = ['Mozzarella', 'Parmesan']
>>> cheeses.extend(italian_cheeses)
>>> cheeses
['Cheddar', 'Edam', 'Gouda', 'Mozzarella', 'Parmesan']

>>> cheeses.append(italian_cheeses)
>>> cheeses
['Cheddar', 'Edam', 'Gouda', ['Mozzarella', 'Parmesan']]



DELETING ELEMENTS

23

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print(t,'<-->',x)
['a', 'c'] <--> b

  ⇐ list is modified and returns the  
element that was removed.

■ There are several ways to delete elements from a list. If you know the 
index of the element you want, you can use pop():

■ If you know the element you want to remove (but not the index), 
you can use remove():

>>> t = ['a', 'b', 'c']
>>> t.remove('b')
>>> print(t)
['a', 'c']



DELETING ELEMENTS (II)

24

■ The del operator also works in its own way:

■ Especially if you want to remove more than one element, you can 
use del with a slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del t[1:5]
>>> print(t)
['a', 'f']

>>> t = ['a', 'b', 'c']
>>> del t[1]
>>> print(t)
['a', 'c']



FINDING IN LIST

25

>>> t = ['a', 'b', 'c']
>>> t.index('b')
1

■ Find the location in a list by index() method:

■ Counting a specific element in the list can be done by count():

>>> t = ['b', 'a', 'n', 'a', 'n', 'a']
>>> t.count('a')
3

■ More on list methods:

>>> help(list)



CONVERTING  
STRING TO LIST
■ The string method split() returns a list of all the words in the 

string (splits on all whitespace if left unspecified):

26

>>> s = '''Learn from yesterday,
... live for today,
... hope for tomorrow.
... The important thing is to not stop questioning'''
>>> s.split('\n')
['Learn from yesterday,', 'live for today,', 'hope for 
tomorrow.', 'The important thing is to not stop questioning']
>>> s.split()
['Learn', 'from', 'yesterday,', 'live', 'for', 'today,', 
'hope', 'for', 'tomorrow.', 'The', 'important', 'thing', 'is', 
'to', 'not', 'stop', 'questioning']



INTERMISSION

■ Try this magical way to split and joint the strings:  
 
 
 
 
 
 
What do you find here? What’s the easiest way to get a single 
spaceless string, e.g. 
“EnglertBroutHiggsGuralnikHagenKibble”? 

27

>>> text = 'Englert-Brout-Higgs-Guralnik-Hagen-Kibble'
>>> l = text.split('-')
>>> l
['Englert', 'Brout', 'Higgs', 'Guralnik', 'Hagen', 'Kibble']
>>> '/'.join(l)



INTERMISSION (II)

■ What will happen if you try to append a list to itself? 
 
 
 
Try to do it and see what you find.

■ Instead of append, if you use the extend() method and “+” 
operator, what will you find? 

28

>>> t = ['a', 'b', 'c']
>>> t.append(t)

>>> t = ['a', 'b', 'c']
>>> t.extend(t)
>>> t = t + t



FUNCTIONAL 
PROGRAMMING TOOLS
■ There are three built-in functions that are very useful when used 

with lists: filter(), map(), and reduce().

■ The filter(function, sequence) returns a ‘filter’ object consisting of 
those items from the sequence for which function(item) is true: 

29

>>> def is_odd(x):
...     return x % 2 == 1
... 
>>> filter(is_odd, [1,2,3,4,5,6,7])
<filter object at 0x10c17deb8>
>>> list(filter(is_odd, [1,2,3,4,5,6,7]))
[1, 3, 5, 7]



FUNCTIONAL 
PROGRAMMING TOOLS (II)
■ map(function, sequence) calls function(item) for each of the 

sequence’s items and returns a “map” object containing of the 
return values. For example:

30

>>> def cube(x):
...     return x*x*x
... 
>>> map(cube, [1,2,3,4,5,6,7])
<map object at 0x10c168320>
>>> list(map(cube, [1,2,3,4,5,6,7]))
[1, 8, 27, 64, 125, 216, 343]
>>> def add(x, y):
...     return x+y
...
>>> list(map(add, [1,2,3], [2,3,4]))
[3, 5, 7]



FUNCTIONAL 
PROGRAMMING TOOLS (III)
■ reduce(function, sequence) returns a single value constructed by 

calling the binary function function on the first two items of the 
sequence, then on the result and the next item, and so on. 

■ This may not be as straightforward as the previous two calls, but it 
is indeed useful:

31

>>> from functools import reduce
>>> def add(x, y): return x+y
...
>>> reduce(add, [1,2,3,4,5,6,7])
28

Surely you can use loop to do exactly the 
same thing without a problem.



LAMBDA FUNCTION

■ In the previous slides you may find that the code becomes “not-so-
elegant” when introducing the short/simple functions.

■ A solution to make your code even shorter with the Lambda 
functions.

32

>>> def is_odd(x):
...     return x % 2 == 1
... 
>>> is_odd2 = lambda x : x % 2 == 1
>>> list(filter(is_odd, [1,2,3,4,5,6,7]))
[1, 3, 5, 7]
>>> list(filter(is_odd2, [1,2,3,4,5,6,7]))
[1, 3, 5, 7]
>>> list(filter(x:x%2==1, [1,2,3,4,5,6,7]))
[1, 3, 5, 7]

  ⇐ this is the same 
as the “is_odd”!

input 
argument

output 
return



OBJECTS AND VALUES

■ If we execute these assignments and following statements:  
 
 
 
 
To check whether two variables (a,b) refer to the SAME object, one 
can use the is operator (while the regular == operator check the 
contents). 

33

>>> a = 'banana'
>>> b = 'banana'

>>> a is b
True
>>> a == b
True

 a  ‘banana’
 b  ‘banana’ or  a  ‘banana’

 b  

Same content or same object?

  ⇐ same object

  ⇐ same content

Python creates only one  
‘banana’ string in this example.



OBJECTS AND VALUES

■ But when you create two lists, you actually get two objects:  
 
 

■ In this case we would say that the two lists are equivalent, but not 
identical, because they are not the same object. 

■ “a == b” does not imply “a is b”:

34

>>> a is b
False
>>> a == b
True

 a   [1,2,3]
 b   [1,2,3]

>>> a = [1,2,3] 
>>> b = [1,2,3]

Python can create two separate lists 
with the same elements.



ALIASING

■ If a refers to an object and you assign b = a, then both variables 
refer to the same object:  
 
 
 
 
  

■ The association of a variable with an object is called a reference. 

■ If the aliased object is mutable (such as list!), changes made with 
one alias affect the other:

35

 a   [1,2,3]
 b   

>>> a = [1,2,3] 
>>> b = a
>>> a is b
True

>>> b[0] = 17
>>> print(a)
[17, 2, 3]

Be careful about this when you are 
developing your code!



TUPLES

■ A tuple is a sequence of values. The values can be any type, and 
they are indexed by integers, so the tuples are a lot like lists. 

■ The important difference is that tuples are immutable.

■ Examples for creations of tuples:

36

>>> 'a', 'b', 'c', 'd', 'e'
('a', 'b', 'c', 'd', 'e')
>>> ('a', 'b', 'c', 'd', 'e')
('a', 'b', 'c', 'd', 'e')
>>> tuple('abcde')
('a', 'b', 'c', 'd', 'e')
>>> ('a',) 
('a',)

  ⇐ comma-separated values as a tuple

  ⇐ it is common to enclose  
tuples in parentheses:

  ⇐ The function tuple() will convert 
any sequence to a tuple.

  ⇐ single element tuple



TUPLE (II)

■ Most list operators also work on tuples. The bracket operator 
indexes an element as usual:  
 
 
 
   

■ You can’t modify the elements of a tuple, but you can replace one 
tuple with another:  

37

>>> t = ('a', 'b', 'c', 'd', 'e')
>>> t[0]
'a'

>>> t[0] = 'A'
TypeError: 'tuple' object does not support item assignment
>>> t = ('A',) + t[1:]
>>> t
('A', 'b', 'c', 'd', 'e')



TUPLE ASSIGNMENT

■ You already saw the tuple assignment before:  
 
 
 
 
 

■ It is often very useful to swap the values of two variables:

38

def fib(n):    
    """Print a Fibonacci series up to n."""
    a, b = 0, 1
    while a < n:
        print (a, end=' ')
        a, b = b, a+b

temp = a 
a = b
b = temp

a, b = b, a

  ⇐ here

  ⇐ here as well!

Tuple assignment is much more elegant!



TUPLES AS  
RETURN VALUES
■ A function can only return one value, but if the value is a tuple, 

the effect is the same as returning multiple values.

■ For example, the function divmod() takes two arguments and 
returns a tuple of two values, the quotient and remainder:

39

>>> t = divmod(7,3)
>>> t
(2, 1)
>>> quot, rem = divmod(7,3)
>>> print('quotient =',quot,'and remainder =',rem)
quotient = 2 and remainder = 1

When coding for your own function – you 
just need to do something like “return a, b”



DICTIONARIES
■ Again a dictionary is similar to a list, but more general. 

■ Indices have to be integers in lists; in a dictionary they can be 
(almost) any type (which are called keys).

■ Each key maps to a value.

40

>>> en2fr = {'one':'une', 'two':'deux', 'three':'trois'}
>>> en2fr['two']
'deux'
>>> en2fr['two'] = 'DEUX'
>>> en2fr['two']
'DEUX'
>>> en2fr['four'] = 'quatre'
>>> en2fr
{'one': 'une', 'two': 'DEUX', 'three': 'trois', 'four': 'quatre'}

  ⇐ values can be modified, but not the keys

  ⇐ new key-value pair can be added

Remark: the order of elements in dictionary may not be obvious!



DICTIONARIES (II)

■ The in operator works on dictionaries; it tells you whether 
something appears as a key in the dictionary:

41

>>> en2fr = {'one':'une', 'two':'deux', 'three':'trois'}
>>> 'two' in en2fr
True
>>> 'deux' in en2fr
False
>>> 'deux' in en2fr.values()
True
>>> for k in en2fr:
...     print(k,'=>',en2fr[k])
... 
three => trois
two => deux
one => une



REVERSE LOOKUP

■ Lookup: given a dictionary d and a key k, it is easy to find the 
corresponding value v = d[k]. 

■ Reverse lookup:  given d and v and then find k. There is no simple 
syntax to do it, you have to search. For example:

42

>>> def reverse_lookup(d, v):
...     for k in d:
...         if d[k] == v:
...             return k
... 
>>> reverse_lookup(en2fr,'trois')
'three'

It is obvious the performance of such search cannot be high...



INTERMISSION

■ There are several methods to produce a list of n2 like this:  
 
 

■ Try the following:

▫ Write a standard loop and append the elements one-by-one.

▫ Use the map() function.

▫ Use the following single line list comprehensions:  
 
 

43

>>> [x**2 for x in range(100)]

[0,1,4,9,16,25,36,49,...,9801,9604]



INTERMISSION

■ Try to run this:  
 
 
 
 
 
 
What do you see? Please also attach the missing last line  
“Life is love - enjoy it.” to the end. 

44

non = ['song','game','challenge','dream','sacrifice']
act = ['sing','play','meet','realize','offer']
for n,a in zip(non,act):
    print('Life is a %s - %s it.' % (n,a))

zip() function “zip” the lists to be paired items...



HANDS-ON SESSION

■ Practice 1:  
Write a small program to print  
this on the screen using string  
format setting:

45

e =              2.72
e =             2.718
e =            2.7183
e =           2.71828
e =          2.718282
e =         2.7182818
e =        2.71828183
e =       2.718281828
e =      2.7182818285
e =     2.71828182846
e =    2.718281828459
e =   2.7182818284590
e =  2.71828182845905
e = 2.718281828459045



HANDS-ON SESSION
■ Practice 2:  

Write a small program to operate on the following list:  
 
 
 
Build a new list with the Geometric Mean of the two adjoint 
numbers, take the floor to integer, ie.  
 

   
 
Print the output list on the screen, and what is sum of all the 
numbers in the list?

46

[3,17,31,97,43,11,2,29,51,97,67,5,79,13,87,53,19]

[7,22,54,... ]

p
3⇥ 17 ⇡ 7.1414 ) 7

p
17⇥ 31 ⇡ 22.9565 ) 22

· · ·



HANDS-ON SESSION

■ Practice 3:  
Write a small program to count how many 0,1,2,3,4,5,6,7,8,9 in first 
300 digits of ! below (e.g. how many 0’s, how many 1’s, etc.):

47

3.141592653589793238462643383279502884197169399375105
82097494459230781640628620899862803482534211706798214
80865132823066470938446095505822317253594081284811174
50284102701938521105559644622948954930381964428810975 
66593344612847564823378678316527120190914564856692346
0348610454326648213393607260249141273


