
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 1-5:  
I/O, exceptions and class

1

Kai-Feng Chen
National Taiwan University

2019

INPUT & OUTPUT:
SCREEN VERSION
■ Printing to the screen –– the simplest way to produce output is

using the print statement. You are already doing that all the time!  
 
 

■ Reading keyboard Input –– python provides the built-in function
input to read a line of text from standard input:

2

>>> print('Hello World!')
Hello World!

>>> var = input('Your input: ')
Your input: Hello World!
>>> var
'Hello World!'

 ⇐ var contains the inputted string.

OPENING AND CLOSING
FILES
■ One of the simplest ways for programs to maintain their data is by

reading and writing text files (in permanent storage, e.g. hard
drives).

■ The open() function returns a file object, and is most commonly
used with two arguments: filename and mode. The close() method
of a file object flushes any unwritten information and closes the file
object:

3

>>> fout = open('foo.txt', 'w')
>>> fout
<_io.TextIOWrapper name='foo.txt' mode='w' encoding='UTF-8'>
>>> fout.close()
>>> fout.closed
True

OPENING AND CLOSING
FILES (II)
■ The access_mode determines the mode in which the file has to be

opened, i.e., read, write, append, etc.

▫ r : opens a file for reading only. This is the default file access
mode.

▫ w : opens a file for writing only; overwrites the file if the file
exists.

▫ a : opens a file for appending. If the file does not exist, it creates
a new file for writing.

■ One can also add a b (e.g. ‘rb’, ‘wb’) to open a file for reading/
writing in binary format.

4

READING AND WRITING
FILES
■ The file object provides a set of access methods.

■ The write() method writes any string to an open file. It does not
add a newline character ('\n') to the end of the string.  
 
 
 
 
 
You should get the following content in foo.txt:

5

fout = open('foo.txt', 'w')
fout.write('Imagination is more important than
knowledge.\n---Albert Einstein\n')
fout.close()

Imagination is more important than knowledge.
---Albert Einstein

READING AND WRITING
FILES (II)
■ The read() method reads a string from an open file. It is important

to note that Python strings can have binary data and not just text.

■ For example: 
 
 
 
 
 
This is the output:

6

fin = open('foo.txt')
str = fin.read()
print 'foo.txt: ',str
fin.close()

foo.txt: Imagination is more important than
knowledge.
---Albert Einstein

READING AND WRITING
FILES (III)
■ The read() method, accept a parameter which is the number of

bytes to be read from the opened file. If count is missing, then it
tries to read as much as possible (until the end of file).

7

>>> fin = open('foo.txt')
>>> fin.read(30)
'Imagination is more important '
>>> fin.read(30)
'than knowledge.\n---Albert Eins'
>>> fin.read(30)
'tein\n'
>>> fin.read(30)
''

LOOP WITH FILE OBJECT

■ It is quite common to read the file line-by-line and process the
content with a loop. This can be carried out as following:

8

fin = open('foo.txt')
for l in fin:
 print('line:',l)
fin.close()

line: Imagination is more important than knowledge.\n
\n
line: ---Albert Einstein\n
\n

You may notice the new line character (‘\n’) is in the content of
each line which has been read in.

 ⇐ add by print statement come with “l” ⇑

LOOP WITH FILE OBJECT (II)

■ Alternatively the readline() method will simply read a “line” back.
A similar method named readlines() will read everything and pack
them into a list of strings.

9

>>> fin = open('foo.txt')
>>> fin.readline()
'Imagination is more important than knowledge.\n'
>>> fin.close()

>>> fin = open('foo.txt')
>>> fin.readlines()
['Imagination is more important than knowledge.\n',
'---Albert Einstein\n']
>>> fin.close()

SEEKING THROUGH
A FILE
■ The tell() method tells you the current position within the file.  

The seek() method changes the current position within the file.

10

>>> fin = open('foo.txt')
>>> fin.read(30)
'Imagination is more important '
>>> fin.tell()
30
>>> fin.seek(10, 0)
>>> fin.read(30)
'n is more important than knowl'
>>> fin.seek(0, 2)
>>> fin.tell()
65

 ⇐ move to position 10, starting from beginning

 ⇐ move to the end of file

Remark: the second parameter of seek() can be  
0 (beginning of file), 1 (current position), or 2 (end of file), but 1, 2  

are not always working for text mode.

INTERMISSION

■ We only tried to write a string into the file. How could we store a
complex object like a list? e.g.  
 
 
What do you get if you do so? 
 
 
 
Alternatively please try this:

11

>>> fout = open('foo.txt', 'w')
>>> fout.write(l)

>>> fout = open('foo.txt', 'w')
>>> fout.write(str(l))

>>> l = [123, 2+5j, 3.14159, 'whatever']

INTERMISSION (II)

■ You may find that you can finally get a file (foo.txt) with the
following content:  
 

■ Try to read it back with the following commands:  
 
 
 
 
Alternatively do this in addition to the lines above:

12

>>> fin = open('foo.txt')
>>> tmp = fin.read()
>>> print(tmp)

>>> l = eval(tmp)
>>> print(l)

[123, (2+5j), 3.14159, 'whatever']

WHEN SOMETHING GOES
WRONG...
■ If you write a code like this and run it:

13

fout = open('data.txt','w')
fout.write('ABCDEFG')
fout.close()

fin = open('date.txt')
tmp = fin.read()
fin.close() iambuggy.py

 ⇐ an obvious typo here

FileNotFoundError: [Errno 2] No such file or
directory: 'date.txt'

You code will just stop and raise an exception.

WHEN SOMETHING GOES
WRONG...(II)
■ A lot of things can go wrong in your code, especially when you are

accessing to files. For example:

14

>>> open('a_file_does_not_exist.txt')
FileNotFoundError: [Errno 2] No such file or
directory
>>> open('/etc/passwd', 'w')
PermissionError: [Errno 13] Permission denied
>>> open('/usr/bin')
IsADirectoryError: [Errno 21] Is a directory

Whenever you try to do something invalid, your program will
stop immediately. Although this is not a critical issue (at least you

will know what is wrong), but it makes your program  
“not-so-professional”.

CATCHING EXCEPTIONS

■ To avoid these errors, one can go ahead and try first — and deal
with problems if they happen with a special routine — which is
exactly what the try statement does.

15

try:
 fin = open('bad_file')
 for line in fin:
 print(line)
 fin.close()
except:
 print('Something went wrong.')

In this case, your program does not stop with the
exception and continue to the except block.

CATCHING EXCEPTIONS (II)

■ You can also attach the else block and finally block:

▫ else: if there is no exception then execute this block.

▫ finally: this would always be executed.

16

try:
 fin = open('foo.txt')
 for line in fin:
 print(line)
 fin.close()
except:
 print('Something went wrong.')
else:
 print('It is working well.')
finally:
 print('whatever, this block will be executed.')

CATCHING EXCEPTIONS (III)

■ One can also separate different types of exceptions and execute
different block of code:

17

try:
 print('Do something here...')
 # access to file, do some calculations, etc.
except OSError:
 print('There much be system-related error!')
except ValueError:
 print('The value must be wrong!')
else:
 print('Everything fine, move ahead!')

 The list of standard exceptions can be found at
https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

RAISING AN EXCEPTION

■ You can even raise an exception and send the code to run the
exception block instead of the nominal path. This can be done by
the raise statement.  
 
 
 
 

■ In the above example, if you input a number greater than 10 the
program will stop with a ValueError exception.

■ Surely if you put the raise within the try statement, the code will
jump to your predefined exception block.

18

n = int(input('Please enter an integer less than 10:'))

if n>=10:
 raise ValueError('invalid input!')

INTERMISSION

■ What will happen if the code generate an exception which is not in
the exception block list, e.g.:  
 
 
 
 
 
 

■ Try to produce few different types of exceptions with some  
obvious “buggy” code.

19

try:
 x = y = 1
 z = (x+y)/(x-y)
except OSError:
 print('There much be system-related error!')
else:
 print('Everything is fine!')

CLASSES AND OBJECTS

■ We have used many of Python’s built-in types; now we are going
to define a new type with the Python class extension.

■ Defining a class is quite straightforward, for example:

20

class Point(object):
 'Example point class for 2D space.'

 def __init__(self, x=0., y=0.):
 self.x,self.y = x,y

Now we get a new class named “Point”.  
By default it has two attributes x and y.

 ⇐ constructor

 ⇐ doc string

 ⇐ here object is the base class

CLASSES AND OBJECTS (II)

21

>>> class Point(object):
... def __init__(self, x=0., y=0.):
... self.x,self.y = x,y
...
>>> Point
<class '__main__.Point'>

Point is defined at the top level,  
 ⇐ its “full name” is __main__.Point.

>>> p = Point()
>>> p
<__main__.Point object at 0x1005cfd10>

■ In the previous slide, a class named Point has been defined:

■ To create a Point object, you call Point() as if it were a function:

Creating a new object is called instantiation, and the object is
an instance of the class.

ATTRIBUTES

■ In the example point class, it has two default attributes of x,y.

■ Values can be assigned to an instance using the dot notation:  
 
 
 

■ The assigned values are only valid within the assigned instance:

22

>>> p.x = 2.0
>>> p.x, p.y
(2.0, 0.0)

>>> q = Point()
>>> q.x, q.y
(0.0, 0.0)

ATTRIBUTES (II)

■ Unlike C/C++, the Python class attributes can be actually added
on-the-fly to the specific instance. One can start with an empty
class and insert your data and form a “structure-like” object:

23

>>> class placeholder:
... pass
...
>>> obj = placeholder()
>>> obj.pi = 3.14159
>>> obj.list = [1,2,3]
>>> obj.str = 'hello world!'
>>> print(obj.pi,obj.list,obj.str)
3.14159 [1, 2, 3] hello world!

INSTANTIATION

■ Many classes like to create objects with instances customized to a
specific initial state. Therefore a class may define a special method
named __init__(): 
 
 
 
Class instantiation automatically invokes __init__() for the newly
created class instance. In the example this is valid:

24

 def __init__(self, x=0., y=0.):
 self.x,self.y = x,y

>>> p = Point(3.,4.)
>>> p.x, p.y
(3.0, 4.0)

METHODS

■ Usually a method (object) can be defined under the class block:  
 
 
 
 
 
A method can be called right after it is bound:

25

class Point(object):

 def rho(self):
 return (self.x**2+self.y**2)**0.5

>>> p = Point(3.,4.)
>>> p.rho()
5.0

The first argument of a method is called self. The attributes
stored in the instance can be accessed through it.

BASE METHODS
OVERRIDING
■ You can always override some of the default base (magic)

methods, which can be very useful to build up your own object
and interact with some other standard Python operations.

■ All of these base methods are named similar to __init__ (which is
indeed one of the base methods in fact). A couple of examples:

▫ __del__(self): destructor; called when it is deleted.

▫ __str__(self): define how the object to string conversion.

▫ __cmp__(self,other): define how to compare two objects:  
returning negative value if self<other; returning positive value
if self>other; zero if self == other.

▫ __add__(self,other): define how to add two objects, ie. the
“+” operator.

26

BASE METHODS
OVERRIDING (II)
■ So if you define the class like this:

27

class Point(object):
 'Example point class for 2D space.'

 def __init__(self, x=0., y=0.):
 self.x,self.y = x,y

 def rho(self):
 return (self.x**2+self.y**2)**0.5

 def __str__(self):
 return '(x=%g,y=%g)' % (self.x,self.y)

 def __lt__(self,other):
 return self.rho()<other.rho()

 def __add__(self,other):
 return Point(self.x+other.x, self.y+other.y)

 def __mul__(self,other):
 return self.x*other.x+self.y*other.y

 ⇐ just compare the
distance toward origin.

BASE METHODS
OVERRIDING (III)
■ Let’s try it out:

28

>>> p = Point(1.,2.)
>>> q = Point(2.,3.)
>>> print('p = '+str(p)+', q = '+str(q))
p = (x=1,y=2), q = (x=2,y=3)
>>> print('Is p closer to the origin than q?',p<q)
Is p closer to the origin than q? True
>>> str(p+q)
'(x=3,y=5)'
>>> p*q
8.0

Surely you can add more and more “magic”
methods to the class, and it will become very

much similar to a regular built-in python type.

More information: https://www.python-course.eu/
python3_magic_methods.php

https://www.python-course.eu/python3_magic_methods.php

ALIASING AND
COPYING

29

■ Remember if you assign b = a, where a is a list. Both variables refer
to the same object (aliasing):  
 
 
 
 

■ This is also the behavior for your defined class, e.g.

>>> a = [1,2,3]
>>> b = a
>>> a is b
True

 a [1,2,3]
 b

>>> a = Point(3,4)
>>> b = a
>>> a is b
True
>>> a.x = 3.5
>>> b.x
3.5

 a Point()
 b

ALIASING AND
COPYING (II)
■ Aliasing can make a program difficult to read because changes in

one place might have unexpected effects in another place. Copying
an object is often an alternative to aliasing.

■ A quick solution is the copy module.

30

>>> import copy
>>> a = Point(3,4)
>>> b = copy.copy(a)
>>> a is b
False
>>> a.x = 3.5
>>> b.x
3

 a Point()
 b Point()

 ⇐ the copy.copy() function

ALIASING AND
COPYING (III)
■ However, there could be such a case –– an object (such as list) is an

attribute of your class. The copy.copy() function will not copy the
underneath object but a reference. This is called a shallow copy.

31

>>> import copy
>>> class mydata:
... def __init__(self,save):
... self.data = save
...
>>> a = mydata([1,2,3])
>>> b = copy.copy(a)
>>> b is a
False
>>> b.data is a.data
True

 ⇐ although b is not an alias of a

 ⇐ but b.data is still a reference of a.data

ALIASING AND
COPYING (IV)
■ The solution is the deep copy with the copy.deepcopy() function. It

copies not only the object but also the objects it refers to, and the
objects they refer to, and so on.

32

>>> a = mydata([1,2,3])
>>> c = copy.deepcopy(a)
>>> c is a
False
>>> c.data is a.data
False

 ⇐ now c.data is a full copy of a.data, not
a reference anymore.

Remark: the copy module works well with regular type like list!

CLASS INHERITANCE

■ Instead of starting from scratch, you can create a class by deriving
it from a preexisting class by listing the parent class in parentheses
after the new class name.

■ The child class inherits the attributes of its parent class, and you
can use those attributes as if they were defined in the child class. A
child class can also override data members and methods from the
parent.

33

class Point(object):
 'Example point class for 2D space.'

In the previous example, object is the base (parent) class.
Class object is the most base type in Python.

CLASS INHERITANCE (II)
■ An example of inheritance:

34

 class counting:
 def __init__(self, init_value=0):
 self.counter = init_value
 def add_a_count(self):
 self.counter +=1
 print('counter+1:',self.counter)

 class double_counting(counting):
 def add_two_counts(self):
 self.counter +=2
 print('counter+2:',self.counter)

 dc = double_counting(10)
 dc.add_a_count()
 dc.add_two_counts() counter+1: 11

counter+2: 13
 ⇐ method in counting
 ⇐ method in double_counting

screen printout

INTERMISSION

■ Try to “observe” how many base (magic) methods have to be
overwritten for a full-functioning type. You can try this to see how
a Python complex number class working:  

■ The copy module works with built-in object as well. Try to make a
copy of a list of list, and see if sub-lists are real copies or just a
reference.

35

>>> help(complex)

>>> l = [[1,2,3],[4,5,6]]

HANDS-ON SESSION

36

first name = Kai-Feng
last name = Chen
phone number = 33665153
address = R529, Department of Physics, NTU

■ Practice 1 (a):  
Write a small program with input() function to fill a small form like
this:

Store those information into 4 variables:  
first_name, last_name, phone_number, address

and write them to a file with the same format shown above.

HANDS-ON SESSION

37

■ Practice 1 (b):  
Instead of input(), read the data back from the file and parse the file
line-by-line. Store those information back and store them as a list of
list, e.g.

[['last name', 'Chen'], ['first name', 'Kai-
Feng'], ['phone number', '33665153'],
['address', 'R529, Department of Physics,
NTU']]

HANDS-ON SESSION

38

■ Practice 2 (a):  
A “cash” class is implemented as below, finish the method convert()
to handle the correct TWD ⇔ EUR converting.

class cash(object):
 'An example class to handle cash in different currency'

 def __init__(self, amount = 0., currency = 'TWD'):
 self.amount = amount
 self.currency = currency

 def __str__(self):
 return str(self.amount)+' '+self.currency

 def convert(self, target_currency = ‘EUR'):
 # converting from self.currency to target_currency
 pass

my_bill = cash(1000.0,'TWD')
print('>>> My bill shows',my_bill)

my_bill.convert('EUR')
print('>>> After converting to EUR, my bill shows',my_bill)

my_bill.convert('TWD')
print('>>> After converting to TWD, my bill shows',my_bill)

implement it!  
 ⇓ Just take 1 EUR = 36.4 TWD

HANDS-ON SESSION

39

■ Practice 2 (b):  
Implement a magic method __add__() that allows you to ADD two
“cash” classes if their currencies are the same:

class cash(object):
 'An example class to handle cash in different currency'

 def __init__(self, amount = 0., currency = 'TWD'):
 self.amount = amount
 self.currency = currency

 def __add__(self,other):
 # add two cash class and return the sum
 return cash(0.)

my_bill_1 = cash(100.0,'TWD')
my_bill_2 = cash(500.0,'TWD')
print('>>> My bills (1+2) in total:',my_bill_1+my_bill_2)

my_bill_3 = cash(50.0,'EUR')
my_bill_4 = cash(20.0,'EUR')
print('>>> My bills (3+4) in total:',my_bill_3+my_bill_4)

 ⇓ implement it!

HANDS-ON SESSION

40

■ Practice 2 (c):  
Improve your magic method __add__() that allows you to ADD two
“cash” classes even if their currencies are different:

class cash(object):
 'An example class to handle cash in different currency'

 def __init__(self, amount = 0., currency = 'TWD'):
 self.amount = amount
 self.currency = currency

 def __add__(self,other):
 # add two cash class and return the sum
 return cash(0.)

my_bill_1 = cash(100.0,'TWD')
my_bill_2 = cash(500.0,'TWD')

my_bill_3 = cash(50.0,'EUR')
my_bill_4 = cash(20.0,'EUR')

print('>>> My bills (1+4) in total:',my_bill_1+my_bill_4)
print('>>> My bills (3+2) in total:',my_bill_3+my_bill_2)

improve it! take the target
 ⇓ currency from ‘self ’

Remark: you can get the
template code for this
practice 2 from CEIBA

