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THE ART OF  
NUMERICAL ANALYSIS
■ Wikipedia: numerical analysis is the study of algorithms that use 

numerical approximation (as opposed to general symbolic 
manipulations) for the problems of mathematical analysis.

■ This does not require a very precise calculation. Sometimes the key 
point is to solve the problems with a (relatively) quick-and-dirty(?) 
way, comparing to a full analytical solution. 
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Babylonian clay tablet (1800–1600 BC) with 
annotations. The approximation of the square 
root of 2 is four sexagesimal figures, which is 

about six decimal figures. 1 + 24/60 + 51/602 + 
10/603 = 1.41421296...



THE ART OF  
NUMERICAL ANALYSIS (II)
■ Thanks to the rapid development of computers, now we don’t 

need to do the calculations on a piece of clay, nor with papers and 
pens. 

■ The real speciality of computers is repetition. Your computer can 
do whatever any extremely boring calculations for million times. 
Sometimes it can be a powerful tool to solve the problems which 
cannot be calculated with the old fashioned way.

■ Caveat: it does not mean one can always do brainless calculations 
(sometimes we do!). Smarter way can provide quick and precision 
results; stupid way will never produce what you want. 
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THE FUN

■ This course would like to introduce you the merit of numerical 
analysis (or some not-so-stupid methods to solve the problems).

■ As mentioned in the first lecture, the most important goal of this 
course is to have fun!

■ The fun: sometimes, you may find  
you are able to do some extremely  
difficult/fancy things with only  
little efforts!
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I’m going to show you a demo 
why the numerical analysis can 
be entertaining!
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Have you ever think of converting a nice 
piece of tune to the sheet music?
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Surely if you are able to find a good musician, 
it will work in principle...

(Still a tough job!)



TECHNICALLY  
SPEAKING...
■ ––In principle–– if you can find some 

softwares to analyze your CD. Finally 
you may be able to produce a music 
sheet, ie.:

▫ Rip the wave from your favorite 
music CD [EASY].

▫ Analyze the wave and extract the 
notes, store it to a midi file  
[TOUGH].

▫ Use some software to read the 
midi file and produce the sheet 
music [FINE]. 
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CATCH THE PITCH

■ If you do some googling, indeed there are some software can do 
wave–midi conversion. Unfortunately most of them are paid 
software...

■ But if you think about this more carefully, find the key of a tune is 
nothing magical but a Fourier transformation, right?
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If one can do a scan over all 
of the possible pitches, find the  
one/few keys with highest  
amplitudes, you already know 
how to do a wave-midi conversion!



PYTHON + SCIPY CAN DO 
THE WORK!
■ It is not difficult at all to use Python + SciPy + NumPy to do such 

a job. All you need to do are:

▫ Prepare the source wave file.

▫ Read the wave file as a NumPy array (SciPy already has such 
function!).

▫ For each time interval, perform the Fourier transformation (with 
SciPy) for each target frequency. Record the amplitudes as a 
function of pitch and time.

▫ Clean up (removing the noise and unwanted harmonics).

▫ Phrase the data and write to a MIDI file accordingly (with 
MidiUtil python package, googled). 

▫ Done!
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A CONCEPTUAL EXAMPLE

■ We need a reference wave file; let’s get the “pitch standard” from 
the Wikipedia:  
http://en.wikipedia.org/wiki/A440_(pitch_standard)  
 
 
 
 
 
 

■ You’ll find a file with sine wave at 440 Hz. Convert it to a standard 
wave file by ffmpeg or any other tool you may find. 
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http://en.wikipedia.org/wiki/A440_(pitch_standard


A CONCEPTUAL EXAMPLE 
(II)
■ Let’s load the wave with SciPy and draw it with Matplotlib:
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import scipy
import scipy.io.wavfile as wavfile
import matplotlib.pyplot as plt

rate, data = wavfile.read('Sine_wave_440.wav')
t = scipy.linspace(0.,1.,rate,endpoint=False)    

plt.figure(figsize=(8,6), dpi=80)
plt.plot(t[:rate//100],data[:rate//100])
plt.xlabel('Time [sec]')
plt.ylabel('Amplitude')    
plt.show()

period ~2.3 ms,  
roughly right!



A CONCEPTUAL EXAMPLE 
(II)
■ Call the discrete Fourier transform package:

12

import scipy
import scipy.fftpack as fftpack
import scipy.io.wavfile as wavfile
import matplotlib.pyplot as plt

rate, data = wavfile.read('Sine_wave_440.wav')

fft = abs(scipy.fft(data[:rate]))
freqs = fftpack.fftfreq(rate,1./rate)

plt.figure(figsize=(8,6), dpi=80)
plt.plot(freqs[:1200],scipy.log10(fft[:1200]))
plt.xlabel('Freqency [Hz]')
plt.ylabel('log10(Amplitude)')  
plt.show()

Sharp peak at 440 Hz!



STEP 1: LOADING THE WAVE

■ Real work –– start with loading a wave file into a NumPy array.

■ For stereo waves, I simply average the left and right channels to 
make a mono wave. 

■ Remove the beginning  
period with zero  
amplitude.

13

Although it sounds a lot 
of things to carried out, 
but in reality only ~15 

lines of code needed up to 
this figure.



STEP 2: A LITTLE BIT OF 
KNOWLEDGE OF MUSIC
■ Before performing the Fourier 

transformation, one need to know 
what are the frequencies we need to 
analyze. 

■ You may find a frequency table like 
this. But it is easier to use this 
definition:
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fm = 2
m�69

12 ⇥ 440Hz

One only need to consider  
21 ≤ m ≤ 108 (88 keys in total)



STEP 3: FOURIER 
TRANSFORMATION
■ Perform the Fourier transformation for each targeting frequency 

for every time interval (here I use 1/16 second).

■ Make a 2D array of amplitudes per key per time step. 
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This can be done with 
NumPy/SciPy easily. 
Although it will take a 

while to read the manual. 

We do see lots of noise  
and harmonics!



STEP 4: FILTERING

■ Here I use a very simple hand-made “cleaning-up” code.

■ For each time interval: sort the keys according to the amplitudes; 
pedestal is obtained by averaging the lower-amplitude keys (I took 
weaker 72 keys).

■ Subtract the pedestal, and  
clean up the nodes with a  
threshold (2.5σ cut here).

■ Remove isolated notes.

■ Also wipe out any near by  
notes and harmonics.
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STEP 5: CONVERT TO  
MIDI/SHEET MUSIC
■ Joint the block and write to a MIDI file (with the help of MidiUtil 

package). 

■ Use some free software (I tried MidiSheetMusic, although it is not 
very precise...) to read the midi and generate the sheet music.
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1

output



PERFORMANCE TEST
■ Surely we shall start with something much simpler in order to 

ensure the code is working.

■ Test sample #1: 8 single notes, from C4 to C5, each note takes 1 sec 
(with 1/4 sec mute time, sine wave only).
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1

output

Original  
WAVE

Converted MIDI



■ But the real songs have chords, in most of the cases...

■ Test sample #2: 4 chords, each takes 1 sec (also sine waves)  
C4+E4+G4, 
C4+F4+A4, 
B3+D4+G4, 
C3+E3+G3+C4+E4+G4+C5+E5+G5

PERFORMANCE TEST (II)
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1

output

Original  
WAVE

Converted MIDI



A REAL SONG?
■ How about a real song? Well, this is much harder...

■ Test song: Dvořák: Humoresque In G Flat, Op. 101/7  
(Yo-Yo Ma + Itzhak Perlman)
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1

output

A REAL SONG? (II)
■ The sheet music would look like this:

21

Converted MIDI

Converted MIDI
(lower threshold)



COMMENTS

■ You probably noticed this is not trivial to analyze a real song with 
such a super naive code (but it is already fancy enough, right?)

■ With some more googling, it seems that doing such thing 
(analyzing a wave and catching the right pitch) is a research level 
(still in development) topic. 

■ With the support of NumPy and SciPy, doing all the work above 
only requires ~200 lines of coding. It is not difficult at all –– surely 
it will not be easy if you want to improve the performance further. 
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All the work done here is already a nice demo of 
numerical analysis (and it is FUN!). 



INTERMISSION

■ Anybody wants to sing a song and let’s  
convert it to a MIDI file?
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Then we will come back with the first step toward 
numerical analysis –– errors in computation.



FIRST STEP TOWARD NUMERICAL ANALYSIS: 
ERRORS IN COMPUTATION

■ As you may already know:  
if you pick up a calculator 
and insert any number, and 
start to press [√] for many 
many times, in the end you’ll 
finally reach exactly the 
number ”1”.

■ This is nothing but a simplest 
show of computation 
uncertainty.
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FIRST STEP TOWARD NUMERICAL ANALYSIS: 
ERRORS IN COMPUTATION (II)
■ Types of errors:
▫ Blunders / human error / bugs: 

Well, actually this is the #1 case. Typographical errors many 
enter your program or data, running a wrong program, 
inserting a wrong data file.
▫ Random errors:  

Although it may be rare, but the chance  
is not absolute zero to have some  
random error simply due to unstable  
power, unstable system, noise, or even  
cosmic ray (this is a serious problem  
for the PC in the space). 
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FIRST STEP TOWARD NUMERICAL ANALYSIS: 
ERRORS IN COMPUTATION (III)
■ Types of errors (cont.):
▫ Approximation errors: 

Basically, this is the error due to the selected algorithm. In 
principle if we throw away some higher order term, naturally 
we have this error in the calculations.
▫ Roundoff errors: 

Surely, the numbers (especially the float point numbers) in the 
computers are not infinitely precise. Then it's very easy to have 
this round-off error at the end of the digits. 
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Today we will discuss these two types of errors.
Assuming I made no mistake and the cosmic muons 

do not hit my PC.



BITS, BYTES, INTEGERS...

■ A bit is the basic unit in computing and physically implemented 
with a two-state device (0 or 1).

■ Historically, the byte was the number of bits used to encode a 
single character. Now it has been fixed to 8 bits, permitting the 
values between 0 and 255 (=28-1).

■ In python, the integer are implemented using long in C, which 
gives them 8 bytes (64 bits) of precision. The long integers in 
python have unlimited precision.
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Range of integer: –(263) ~ (263)–1
The long type in python can be very long, e.g.  

123456789123456789123456789123456789123456789
In python 2, the long integers and integers are 
different (need to add“L” in the end for python 2).



FLOATING POINT 
ARITHMETIC
■ Floating-point numbers are represented in computer hardware as 

base 2 (binary) fractions.

■ In python, floating point numbers are implemented using double 
in C (64 bits in total). The internal representation follows the  
IEEE 754 binary64 standard with 3 components:

▫ Fraction precision: 53 bits (52 bits explicitly stored)

▫ Exponent width: 11 bits

▫ Sign bit: 1 bit
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(�1)sign ⇥ 2exponent�1023 ⇥
 
1 +

52X

i=1

b
52�i2

�i

!
The real value  
is expressed as 



FLOATING POINT 
ARITHMETIC (II)
■ Given the “fraction” part of float point number has a limited 

precision (up to 52+1 bits), the float point number cannot be 100% 
precise for most of decimal fractions.  

■ In general, the decimal floating-point numbers you enter are only 
approximated by the binary floating-point numbers.

■ The precision of a 64-bit float point number is approximately  
16 decimal digits.

■ Some factors:
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Largest number: 1.7976931348623157x10+308

Minimal positive number: 2.2250738585072014x10–308

Machine epsilon: ~2.22x10–16



FLOATING POINT 
ARITHMETIC (III)
■ It is good to keep in mind that there is no real continuous  

“real number” in computation. 

■ For example, 0.1 is not 1/10, but  
0.1000000000000000055511151231257827021181583404541015625.

■ It is not surprising at all to see something like this:  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>>> 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1
0.9999999999999999 
>>> 0.1+0.2-0.3
5.551115123125783e-17

Spoon is not real,  
real number is also not real...
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Let’s take the standard 
example of π calculation!



GIVE ME A π

■ Let's practice a very classical calculation of π: 
approximating a circle by polygons (Liu Hui method):
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After many iterations: 
 

S0 =

rh
1�

p
1� (S/2)2

i2
+ (S/2)2

1�
p

1� (S/2)2
S/2R = 1

S

⇡ ⇡ S ⇥Nsides

2



A NAIVE IMPLEMENTATION
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■ Step 0: Hexagon

■ Step 1: Dodecagon

diameter = 2

S6 = 1

π ≈ 3

S12 =

rh
1�

p
1� (S6/2)2

i2
+ (S6/2)2 =

r
2�

q
4� S2

6

S12 =

q
2�

p
3 ⇡ 0.5176

⇡ ⇡ S12 ⇥ 12

2
⇡ 3.1058



A NAIVE IMPLEMENTATION 
(II)
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■ Coding time! Just a plain python code can do this:

import math 

nsides = 6 
length = 1. 

for i in range(20): 
    length = (2. - (4. - length**2)**0.5)**0.5 
    nsides *= 2   
    pi = length*nsides/2. 

    print('-'*30) 
    print('Polygon of',nsides,'slides:') 
    print('pi(calc) = %.15f' % pi) 
    print('diff = %.15f' % abs(math.pi-pi)) 

l201-example-01.py



RESULTS

■ Output:
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Polygon of 12 slides:
pi(calc) = 3.105828541230250, diff = 0.035764112359543

Polygon of 24 slides:
pi(calc) = 3.132628613281237, diff = 0.008964040308556

Polygon of 48 slides:
pi(calc) = 3.139350203046872, diff = 0.002242450542921

Polygon of 96 slides:
pi(calc) = 3.141031950890530, diff = 0.000560702699263

Polygon of 192 slides:
pi(calc) = 3.141452472285344, diff = 0.000140181304449

Smaller 
approximation
error with more 
sides (closer to 
a real circle).



RESULTS (II)

■ How about more steps?
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384 slides: pi(calc) = 3.141557607911622, diff = 0.000035045678171
768 slides: pi(calc) = 3.141583892148936, diff = 0.000008761440857
1536 slides: pi(calc) = 3.141590463236762, diff = 0.000002190353031
3072 slides: pi(calc) = 3.141592106043048, diff = 0.000000547546745
6144 slides: pi(calc) = 3.141592516588155, diff = 0.000000137001638
12288 slides: pi(calc) = 3.141592618640789, diff = 0.000000034949004
24576 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
49152 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
98304 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
196608 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
393216 slides: pi(calc) = 3.141593669849427, diff = 0.000001016259634
786432 slides: pi(calc) = 3.141592303811738, diff = 0.000000349778055
1572864 slides: pi(calc) = 3.141608696224804, diff = 0.000016042635011
3145728 slides: pi(calc) = 3.141586839655041, diff = 0.000005813934752
6291456 slides: pi(calc) = 3.141674265021758, diff = 0.000081611431964

Oh-oh...



WHAT’S WRONG HERE?

■ Go back to the recursive formula:
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S0 =

q
2�

p
4� S2

S is actually a very small number!
When we do the calculation, we have to worry 
about the finite accuracy of the float point number.

For a 6291456 slides polygon, S ~ 1/1,000,000 (1 over 1M):

It's already not too far from the limit of 
a double-precision float point number!
This is a typical round-off error!

4� S2 ⇡ 4� 10�12



ANOTHER CLASSICAL METHOD:
LEIBNIZ FORMULA
■ Let's start from the trigonometric function:
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Without adding “small” number to “big” number anymore, 
always adding smaller and smaller numbers.

tan
⇣⇡
4

⌘
= 1 ! arctan(1) =

⇡

4

arctan(x) = x� x

3

3
+

x

5

5
� x

7

7
+

x

9

9
� ...

! 1� 1

3
+

1

5
� 1

7
+

1

9
� ... =

1X

n=0

(�1)n

2n+ 1
=

⇡

4

⇡

4



ANOTHER CLASSICAL METHOD:
LEIBNIZ FORMULA (II)
■ Coding time. Such a calculation can be done easily with python!
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import math 

pi = 0. 
numerator = 1. 

for n in range(1001): 
    pi += numerator/(2.*n+1.)*4. 
    numerator = -numerator 
                 
    if n%100 == 0: 
        print('-'*30) 
        print('Sum up to',n,'step:') 
        print('pi(calc) = %.15f' % pi) 
        print('diff = %.15f' % abs(math.pi-pi)) 

l201-example-02.py

  ⇐ sum up to n=1000 first!



RESULTS: LIEBNIZ FORMULA

■ It’s working, but very inefficient! Improving one more digit takes 
10x steps in the summation:
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Sum up to 100 step:
pi(calc) = 3.151493401070991, diff = 0.009900747481198

Sum up to 1000 step:
pi(calc) = 3.142591654339544, diff = 0.000999000749751

Sum up to 10000 step:
pi(calc) = 3.141692643590535, diff = 0.000099990000741

Sum up to 100000 step:
pi(calc) = 3.141602653489720, diff = 0.000009999899927

Sum up to 1000000 step:
pi(calc) = 3.141593653588775, diff = 0.000000999998981



A LITTLE BIT OF 
IMPROVEMENT (A TRICK!)
■ It's not really hard: we can just pick up a smaller x!
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arctan(x) = x� x

3

3
+

x

5

5
� x

7

7
+

x

9

9
� ...

⇡

6

1

p
3

tan
⇣⇡
6

⌘
=

1p
3

! arctan

✓
1p
3

◆
=

⇡

6

! 1p
3
[1� 1

3 · 3 +
1

5 · 9 � 1

7 · 27 +
1

9 · 81 � ...] =
⇡

6

It converges much quicker then the previous version. This is 
due to that the Taylor expansions are calculated around x = 0.



A LITTLE BIT OF 
IMPROVEMENT (II)
■ Coding time again!

42

import math 

pi = 0. 
numerator = 1./3.**0.5 

for n in range(31): 
    pi += numerator/(2.*n+1.)*6. 
    numerator *= -1./3. 
                 
    print('-'*30) 
    print('Sum up to',n,'step:') 
    print('pi(calc) = %.15f' % pi) 
    print('diff = %.15f' % abs(math.pi-pi)) 

l201-example-02a.py



A LITTLE BIT OF 
IMPROVEMENT (III)
■ With only <30 terms, the limit of precision already reached (Bravo!)
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Sum up to 10 step:
pi(calc) = 3.141593304503083, diff = 0.000000650913289

Sum up to 20 step:
pi(calc) = 3.141592653595636, diff = 0.000000000005843

Sum up to 30 step:
pi(calc) = 3.141592653589794, diff = 0.000000000000001

REMARK: Surely, this is not the real modern way to 
calculate π up to many digits. 

(And surely this is not the purpose of this course...so no worry.)
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Calculation of π is in fact 
rather interesting. Left for 

your own study!



REMARK:  
HOW THE ERRORS BEHAVE
■ After N iterations of computing –
▫ Approximation errors:  

In principle, the approximation errors will be reduced if we go 
for more iterations (e.g. more terms in Taylor expansions).  
 

▫ Roundoff errors:  
The roundoff error goes to the opposite direction, the more 
iterations, the error actually accumulates.
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✏
approx

⇡ ↵

N�

✏
roundo↵

⇡
p
N✏m

(α,β are algorithm dependent parameters)

(εm is machine dependent precision)



REMARK:  
HOW THE ERRORS BEHAVE
■ Limitation of the total error:
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Example: π with Liebniz formula (ver. π/4): α ≈ 1, β ≈ 1  
(since every 10x steps, we improve the calculation by 1 digit)
 

If we do the calculation in double precision, when will we catch
the smallest (critical) total error?

✏
total

⇡ ✏
approx

+ ✏
roundo↵

⇡ ↵

N�
+

p
N✏m

@✏
total

@N
= 0 ! ⇡ � 1

N2

+
10�16

2
p
N

✏minimum ⇡ 4⇥ 10�11

(when N~70,000,000,000)

It's actually just a rough guesstimation, but it's always good to keep 
this idea in mind when you write your code!



HANDS-ON SESSION
■ Practice 1:  

The python decimal module provides support for decimal floating 
point arithmetic. By default it the module can already provide a 28 
digits or more number and can interact with other python 
operations normally. For example:
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float a+b-c = 5.55111512313e-17
decimal a+b-c = 0.0

import decimal
 

a, b, c = 0.1, 0.2, 0.3
 

dec_a = decimal.Decimal('0.1')
dec_b = decimal.Decimal('0.2')
dec_c = decimal.Decimal('0.3')
 

print('float a+b-c =',a+b-c)
print('decimal a+b-c =',dec_a+dec_b-dec_c)

  ⇐ ‘Decimal’ object instead of normal float type



HANDS-ON SESSION

■ Modify l201-example-01.py to calculate π by replacing the 
numbers all with the Decimal() object and see what you can get!

■ Hint:
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import math 

nsides = 6 
length = 1. 

for i in range(20): 
    length = (2. - (4. - length**2)**0.5)**0.5 
    nsides *= 2   
    pi = length*nsides/2. 

    print('-'*30) 
    print('Polygon of',nsides,'slides:') 
    print('pi(calc) = %.15f' % pi) 
    print('diff = %.15f' % abs(math.pi-pi))

l201-example-01.py

  ⇐ add import decimal

  ⇐ replaced by decimal.Decimal(‘1.’)

  ⇑ to be re-written carefully!!

  ⇐ to be re-written carefully!!

  ⇐ you can replace it by float(pi) for now



HANDS-ON SESSION

■ Practice 2:  
The Riemann zeta function is given by  
 
 
 
Modify l201-example-02.py to calculate π using this formula, 
and see how accurate you can reach with 1000, 10000, 100000 
terms.  
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⇡2

6
=

1

12
+

1

22
+

1

32
+

1

42
+ · · ·
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Some of these can be 
tried as well!


