DDOD ,
INTRODUCTION TO /|

NUMERICAL ANALYSIS | \

Lecture 2-1: \ \!
The Art of Numerical Analysis \

Kal-Feng Chen
National Taiwan University

THE ART OF Yy
NUMERICAL ANALYSIS A

Wikipedia: numerical analysis is the study of algorithms that use
numerical approximation (as opposed to general symbolic
manipulations) for the problems of mathematical analysis.

This does not require a very precise calculation. Sometimes the key
point is to solve the problems with a (relatively) quick-and-dirty(?)
way, comparing to a full analytical solution.

Babylonian clay tablet (1800-1600 BC) with
annotations. The approximation of the square
root of 2 is four sexagesimal figures, which is

about six decimal figures. 1 + 24 /60 + 51/602 +
10/603 = 1.41421296...

THE ART OF
NUMERICAL ANALYSIS (11)

Thanks to the rapid development of computers, now we don’t
need to do the calculations on a piece of clay, nor with papers and
pens.

The real speciality of computers is repetition. Your computer can
do whatever any extremely boring calculations for million times.
Sometimes it can be a powerful tool to solve the problems which
cannot be calculated with the old fashioned way.

Caveat: it does not mean one can always do brainless calculations
(sometimes we do!). Smarter way can provide quick and precision
results; stupid way will never produce what you want.

THE FUN

m This course would like to introduce you the merit of numerical
analysis (or some not-so-stupid methods to solve the problems).

® As mentioned in the first lecture, the most important goal of this
course is to have fun!

® The fun: sometimes, you may find
you are able to do some extremely
difficult/fancy things with only
little etforts!

I'm going to show you a demo
why the numerical analysis can
be entertaining!

b 4

s Al A

Have you ever think of converting a nice * F 4
piece of tune to the sheet music? oy
7 A~
& ¥ /1~ /
. .
y > . _

Surely if you are able to find a good musician,

it will work in principle...
(Still a tough job!)

TECHNICALLY
SPEAKING...

® —In principle— if you can find some
softwares to analyze your CD. Finally
you may be able to produce a music
sheet, ie.:

o Rip the wave from your favorite
music CD [EASYI.

0 Analyze the wave and extract the
notes, store it to a midi file
[TOUGHI.

1 Use some software to read the

ANV g rm o am e -

midi file and produce the sheet it 575 FEEp fo8

music [FINE]. N s otm o R

[\ !
— P

CATCH THE PITCH

m If you do some googling, indeed there are some software can do |
wave-midi conversion. Unfortunately most of them are paid
software...

m But if you think about this more carefully, find the key of a tune is
nothing magical but a Fourier transformation, right?

If one can do a scan over all

of the possible pitches, find the
one/few keys with highest
amplitudes, you already know
how to do a wave-midi conversion!

PYTHON + SCIPY CAN DO £
THE WORK

[t is not difficult at all to use Python + SciPy + NumPy to do such
a job. All you need to do are:

Prepare the source wave file.

Read the wave file as a NumPy array (SciPy already has such
function!).

For each time interval, perform the Fourier transformation (with
SciPy) for each target frequency. Record the amplitudes as a
function of pitch and time.

Clean up (removing the noise and unwanted harmonics).

Phrase the data and write to a MIDI file accordingly (with
MidiUtil python package, googled).

Done!

{

=4/ \J
=

/i
%’

A CONCEPTUAL EXAMPLE /)

AR

® We need a reference wave file; let’s get the “pitch standard” from
the Wikipedia:
http:/ /en.wikipedia.org /wiki/A440 (pitch_standard)

A440 (pitch standard)

From Wikipedia, the free encyclopedia

For other uses, see A440.
A440, which has a frequency of 440 Hz, is the musical note A above middle C and serves as a general tuning standard for musical

pitch.

Prior to the standardization on 440 Hz, many countries and organizations followed the Austrian govemment's 1885 recommendation of %

435 Hz. The American music industry reached an informal standard of 440 Mz in 1926, and some began using it in instrument (@)

manufacturing. In 1936 the American Standards Association recommended that the A above middle C be tuned to 440 Hz.!"! This ry,

standard was taken up by the Intemational Organization for Standardization in 1955 (reaffirmed by them in 1975) as 1SO 16./2 Although

not universally accepted, since then it has served as the audio frequency reference for the calibration of acoustic equipment and the A440 o) Play (hekrinto), &

tuning of piancs, violins, and other musical instruments.

® You'll find a file with sine wave at 440 Hz. Convert it to a standard
wave file by ffmpeg or any other tool you may find.

http://en.wikipedia.org/wiki/A440_(pitch_standard

A CONCEPTUAL EXAMPLE 4

()

Let’s load the wave with SciPy and draw it with Matplotlib:

import scipy

import scipy.io.wavfile as wavfile

import matplotlib.pyplot as plt

rate, data = wavfile.read('Sine wave 440.wav') jperuadm~2§3rns,
t = scipy.linspace(0.,1.,rate,endpoint=False) roughly rlght!

30000

plt.figure(figsize=(8,6), dpi=80)
plt.plot(t[:rate//100],data[:rate//100]) 2000}
plt.xlabel('Time [sec]')
plt.ylabel ('Amplitude’)
plt.show()

10000}

oL

Amplitude

—10000f

—20000f

—30000 I I I I
0.000 0.002 0.004 0.006 0.008 0.010

Time [sec]
|

(1)

Call the discrete Fourier transform package:

import scipy

import scipy.fftpack as fftpack
import scipy.io.wavfile as wavfile
import matplotlib.pyplot as plt

rate, data = wavfile.read('Sine wave 440.wav')

fft = abs(scipy.fft(data[:rate]))
fregs = fftpack.fftfreq(rate,1l./rate)

plt.figure(figsize=(8,6), dpi=80)
plt.plot(fregs[:1200],scipy.loglO(££t[:1200]))
plt.xlabel ('Fregency [Hz]')
plt.ylabel('logl0(Amplitude) ')

plt.show()

/‘\ 12
— p

log10(Amplitude)

Sharp peak at 440 Hz!

0 200

400

600
Fregency [Hz]

800

1000

1200

714\
&

/)
7
J

L
&
A

NSO

STEP |: LOADING IHE WAV

m Real work — start with loading a wave file into a NumPy array.

m For stereo waves, I simply average the left and right channels to
make a mono wave.

1000 }

®m Remove the beginning
period with zero

500}

amplitude.

Amplitude

Although it sounds a lot
of things to carried out,
but in reality only ~15

lines of code needed up to
thlS ﬁgure. 0.0 0.2 0.4 - [Sec]o.‘e 0.8 1.0

Z\ 3
o P

=500

-1000

STEP 2:A LITTLE BIT OF
KNOWLEDGE OF MUSIC

Now MIDI

Frequenc} Keyboard pame Dumber
. . . s 108
m Before performing the Fourier 31293 35200 T
2960.0 r05 9 g7 |53 103
. -4 F? =
2637.0
transformation, one need to know 20090 5 2, O
e ¢t 9o
h he f - q a7 1255 N
what are the frequencies we need to 16612 1565 R
< 13969 S0 4
Fb 89
13185 :
anal 7e 12445 41747 B & X
y . 1108.7 1046.5 ce 8 g4
967.77
: : Ba0.61 20000 s oo
® You may find a frequency table like s R D
622.25 S0 29 ES %
hi o : hi S54.37 533 25 =
this. But it 1s easier to use this g g 38 e =2
415.30 395 0 aa 10 69
d ﬁ 't' . 369.99 349,23 . & 4
e n]. lon. 311.13 329'§3 E4 _.. b4
e 27718 S50 pa 9 62
1. SR C4 61 g0
™m —069 233.08 520 00 B3 g4 9
— 2 12 X 44OHZ 207.65 196,00 a0 o
m — e 185.00 724 61 Ss? s o
* 155.56 Loa o2 E3 52
138.59 19081 D3 54 50
- 3 @
. 11654 170 03 82 & &
One only need to consider 10385 5750 2 3L
92.493 57,307 2 & g
. 82.407 e :
77.782 ; E2 o 40
21 <m < 108 (88 keys in total) R mas By
58.270 o5 oo Bl ., 35
51.913 29 999 AL H R
46249 33 goq o1 2 3
654 F1 30 29
38.991 36 a0 Bl 28
34 648 33 gqg gi 5 20
29.135 27500 J— B 2%
14 —

STEP 3: FOURIER
TRANSFORMATION

m Perform the Fourier transformation for each targeting frequ
for every time interval (here I use 1/16 second).

ncy

»
»

m Make a 2D array of amplitudes per key per time step.

We do see lots of noise
and harmonics!

This can be done with
NumPy /SciPy easily. 0

0 2 R} 6 8 10 12 14 16

Although it will take a Time (1/32 beats)
\ while to read the manual. —

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
L —— R
15

STEP 4: FILTERING

m Here I use a very simple hand-made “cleaning-up” code.

m For each time interval: sort the keys according to the amplitudes;
pedestal is obtained by averaging the lower-amplitude keys (I took

weaker 72 keys).

m Subtract the pedestal, and

clean up the nodes with a
threshold (2.50 cut here).

B Remove isolated notes.

m Also wipe out any near by
notes and harmonics.

B

0 2 4 6 8 10 12 14 16
Time [1/32 beats])

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

S

STEP 5: CONVERT TO
MIDI/SHEET MUSIC

Joint the block and write to a MIDI file (with the help of MidiUtil
package).

Use some free software (I tried MidiSheetMusic, although it is not
very precise...) to read the midi and generate the sheet music.

output

N
/ I'H [~ &7 1} @7
1l - A L4 /

femmemeeseaeaeaeaon-n, . 4 9 L

PERFORMANCE TEST ‘

m Surely we shall start with something much simpler in order to
ensure the code is working.

m Test sample #1: 8 single notes, from C4 to C5, each note takes 1 sec
(with 1/4 sec mute time, sine wave only).

Original o
60 |
WAVE
_ 5o —
2 40—
30/
20
10}
Converted MIDI % 20 a0 60 80 100 120 140
Time [1/32 beats]
output
9 5 7 3 | =3 =1 % 7 J 7 d% =3 =3
(g, ’ -d; / / 91 Vi / a / [7] / A Vi Vi

[\ '8
— P

PERFORMANCE TEST (I

® But the real songs have chords, in most of the cases...

m Test sample #2: 4 chords, each takes 1 sec (also sine waves)

C4+E4+(4,
C4+F4+ A4,

B3+D4+(A4, 80
C3+E3+G3+C4+F4+G4+CHh+ES+GH

Original
WAVE

30 40 50 60 70
Time [1/32 beats]

7 7
L L

Converted MIDI

A 9
— P

A REAL SONG!?

How about a real song? Well, this is much harder...

Test song: Dvordk: Humoresque In G Flat, Op. 101/7
(Yo-Yo Ma + Itzhak Perlman)

HHMORFQO"' IN GG—-FLAYTY MA!O .
()p 101, No 74 -

20

A REAL SONG? (II)

m The sheet music would look like this:

output
AP %__hﬁg et — e
e et e
i ““ ﬂ: : £ g I I . i ——— AN
= v b i v v
i
- . Converted MIDI
—{—F-H-"—B—|—k—p) s .
DY) b ddv_t' id : r.r :;. IP %l-J.'

%
N
®
No[®
No[®
®
s
b

A I . — J._PN Converted MID
5 = ' - F — (lower threshold)

FJ) A : I) :' i 1 1 J;

0 50 100 150 200 250 300
Time [1/32 beats)

COMMENTS

B You probably noticed this is not trivial to analyze a real song with
such a super naive code (but it is already fancy enough, right?)

m With some more googling, it seems that doing such thing
(analyzing a wave and catching the right pitch) is a research level
(still in development) topic.

m With the support of NumPy and SciPy, doing all the work above
only requires ~200 lines of coding. It is not difficult at all — surely
it will not be easy if you want to improve the performance further.

All the work done here is already a nice demo of

numerical analysis (and it is FUN!).

= 23

INTERMISSION —

® Anybody wants to sing a song and let’s
convert it to a MIDI file?

Then we will come back with the first step toward
numerical analysis — errors in computation.

FIRST STEP TOWARD NUMERICAL ANALYSIS:

“RRORS IN COMPUTATION k&

24

® As you may already know:
if you pick up a calculator
and insert any number, and
start to press [V] for many
many times, in the end you’ll
finally reach exactly the
number "1”.

® This is nothing but a simplest
show of computation
uncertainty.

FIRST STEP TOWARD NUMERICAL ANALYSIS: _ 471 /
ERRORS IN COMPUTATION (1) A== =

Types of errors:
Blunders / human error / bugs:
Well, actually this is the #1 case. Typographical errors many
enter your program or data, running a wrong program,
inserting a wrong data file.
Random errors:
Although it may be rare, but the chance
is not absolute zero to have some
random error simply due to unstable
power, unstable system, noise, or even
cosmic ray (this is a serious problem
for the PC in the space).

25

FIRST STEP TOWARD NUMERICAL ANALYSIS:

FRRORS IN COMPUTATION! (Il £

m Types of errors (cont.):

0 Approximation errors:
Basically, this is the error due to the selected algorithm. In
principle if we throw away some higher order term, naturally
we have this error in the calculations.

o Roundoff errors:
Surely, the numbers (especially the float point numbers) in the
computers are not infinitely precise. Then it's very easy to have
this round-off error at the end of the digits.

Today we will discuss these two types of errors.

Assuming I made no mistake and the cosmic muons
do not hit my PC.

BITS, BY TES, INTEGERS..

m Abit is the basic unit in computing and physically implemented /)
with a two-state device (0 or 1).

m Historically, the byte was the number of bits used to encode a
single character. Now it has been fixed to 8 bits, permitting the
values between 0 and 255 (=28-1).

® In python, the integer are implemented using long in C, which
gives them 8 bytes (64 bits) of precision. The long integers in
python have unlimited precision.

Range of integer: —(2%) ~ (2%%)-1

The long type in python can be very long, e.g.
123456789123456789123456789123456789123456789

In python 2, the long integers and integers are
/ different (need to add“L” in the end for python 2).
D

27

FLOATING POINT
ARITHMETIC

m Floating-point numbers are represented in computer hardware as
base 2 (binary) fractions.

® In python, floating point numbers are implemented using double
in C (64 bits in total). The internal representation follows the
IEEE 754 binary64 standard with 3 components:

0 Fraction precision: 53 bits (52 bits explicitly stored)
o Exponent width: 11 bits
O Slgn bit: 1 bit exponent fraction

sign (11 bit) (52 bit)
[If |

O
O
o0

NN

52
The real value __1\sign exponent —1023 1 i
is expressed as (=1) X2 8 (i 2; b5z

1=

[\ 28
— P

FLOATING POINT
ARITHMETIC (I

m Given the “fraction” part of float point number has a limited
precision (up to 52+1 bits), the float point number cannot be 100%
precise for most of decimal fractions.

® In general, the decimal floating-point numbers you enter are only
approximated by the binary floating-point numbers.

m The precision of a 64-bit float point number is approximately
16 decimal digits.

m Some factors:

Largest number: 1.7976931348623157x10+398

Minimal positive number: 2.2250738585072014x10-°9
Machine epsilon: ~2.22x10-16

FLOATING POINT
ARITHMETIC (1IN

m It is good to keep in mind that there is no real continuous
“real number” in computation.

m For example, 0.1 is not 1/10, but
0.1000000000000000055511151231257827021181583404541015625.

m It is not surprising at all to see something like this:

>>> (0.1+0.1+0.1+0.1+0.14+0.1+0.1+0.140.1+0.1
0.9999999999999999
>>> 0.140.2-0.3

5.551115123125783e-17

Spoon is not real,
! real number is also not real...
»

30

Let’s take the standard

m
o
=
©
—
=
)
—
©
@)
=
g
@)
Q
—
3
©
P
Q

GIVE MEA 1T

m Let's practice a very classical calculation of 7t
approximating a circle by polygons (Liu Hui method):

S = \/[1 — /11— (5/2)2}2 +(5/2)2

1 —+/1—(5/2)2

After many iterations:
- S X Nsides

R
2

A NAIVE IMPLEMENTAI IQN, ’

m Step 0: Hexagon G

diameter = 2

m Step 1: Dodecagon

512:\/[1—\/1— 56/2 56/22—\/2—\/4 52

S12 = /2~ VB~ 05176

S 12
—_— ooy 212 X 2 10rs

' 2
I 33
. »

A NAIVE IMPLEMENTATION ¢4/
(I) S

m Coding time! Just a plain python code can do this:

import math

o
1.

nsides
length

for i in range(20):
length = (2. — (4. — length*x2)*x0.5)%*0.5
nsides *= 2
pi = lengthxnsides/2.

print('-"%30)

print('Polygon of',nsides, 'slides:"')
print('pi(calc) = %.15f' % pi)
print('diff = %.15f"' % abs(math.pi-pi))

/ 120 | -example-01.py

I .
— P

RESULTS

m Output:

Polygon of
pi(calc) =

Polygon of
pi(calc) =

Polygon of
pi(calc) =

Polygon of
pi(calc) =

Polygon of
pi(calc) =

12 slides:
3.105828541230250,

24 slides:
3.132628613281237,

48 slides:
3.139350203046872,

96 slides:
3.141031950890530,

192 slides:
3.141452472285344,

diff

diff

diff

diff

diff

0.035764112359543

0.008964040308556

0.002242450542921

0.000560702699263

0.000140181304449

Smaller
approximation
error with more
sides (closer to

a real circle).

=

35

RESULTS (I

How about more steps?

384 slides: pi(calc) = 3.141557607911622, diff = 0.000035045678171
768 slides: pi(calc) = 3.141583892148936, diff = 0.000008761440857
1536 slides: pi(calc) = 3.141590463236762, diff = 0.000002190353031
3072 slides: pi(calc) = 3.141592106043048, diff = 0.000000547546745
6144 slides: pi(calc) = 3.141592516588155, diff = 0.000000137001638
12288 slides: pi(calc) = 3.141592618640789, diff = 0.000000034949004
24576 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
49152 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
98304 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
196608 slides: pi(calc) = 3.141592645321216, diff = 0.000000008268577
393216 slides: pi(calc) = 3.141593669849427, diff = 0.000001016259634
786432 slides: pi(calc) = 3.141592303811738, diff = 0.000000349778055
1572864 slides: pi(calc) = 3.141608696224804, diff = 0.000016042635011
3145728 slides: pi(calc) = 3.141586839655041, diff = 0.000005813934752
6291456 slides: pi(calc) = 3.141674265021758, diff = 0.000081611431964
Oh-oh...

"

36

WHAT'S WRONG HERE!

m Go back to the recursive formula:

S’:\/Q—\/zL—S?

Sis actually a very small number!

When we do the calculation, we have to worry
about the finite accuracy of the float point number.

For a 6291456 slides polygon, S ~ /1,000,000 (I over [M):

It's already not too far from the limit of
4—8*~4-10"" a double-precision float point number!
This is a typical round-off error!

A 37
— P

ANOTHER CLASSICAL METHO
LEIBNIZ FORMULA

m Let's start from the trigonometric function:

. tan (g) =1 — arctan(l) = g
4 CIJS 335 5137 339

arctan(x) = x — | — | — ...

3 5 7 9
11 11 B

— (=) o=
S e A = —
375770 E;mmq 4

Without adding “small” number to “big” number anymore,
always adding smaller and smaller numbers.

A 38
— P

ANOTHER CLASSICAL METHO
| EIBNIZ FORMULA (II)

m Coding time. Such a calculation can be done easily with python!

import math

pi1 = 0.
numerator = 1.

for n in range(1001): < sum up to n=1000 first!
pi += numerator/(2.xn+1.)x*4.
numerator = —numerator

if n%100 == 0:
print('-"%30)

print('Sum up to',n, 'step:"')
print('pi(calc) = %.15f' % pi)
print('diff = %.15f' % abs(math.pi-pi))

" 1201-example-02.py

A 3
— P

)\

/ X

o
|-

v !
Y |
:
‘ -
\ y
a— ,’
,,
|

.,
RESULTS: LIEBNIZ I-ORIVIUIJA\/

N
\\\"

It's working, but very inefficient! Improving one more digit takes
10x steps in the summation:

Sum up to 100 step:

pi(calc) = 3.151493401070991, diff = 0.009900747481198
Sum up to 1000 step:

pi(calc) = 3.142591654339544, diff = 0.000999000749751
Sum up to 10000 step:

pi(calc) = 3.141692643590535, diff = 0.000099990000741

Sum up to 100000 step:
pi(calc) = 3.141602653489720, diff

0.000009999899927

Sum up to 1000000 step:
pi(calc) = 3.141593653588775, diff

S .

0.000000999998981

A LITTLE BIT OF
IMPROVEMENT (A TRICK))

m It's not really hard: we can just pick up a smaller x!

- (77) 1 . (1) 70

an (—) = s arctan [— | = —

m 6 V3 V3 6
6

V3 3 5 T .9
arctan(x) = x — | — | —
3 D 7 9
1 1 1 1 1 T
4 11— 1 — - — . ==
V3 3-3 5-9 727 9-81 6

It converges much quicker then the previous version. This is
due to that the Taylor expansions are calculated around x = 0.

B .
— P

A LITTLE BIT OF
IMPROVEMENT (II)

m Coding time again!

import math

pi = 0.
numerator = 1./3.%%0.5

for n in range(31):
pi += numerator/(2.*n+1.)x*6.
numerator *x= -1./3.

print('-"'%30)

print('Sum up to',n, 'step:")
print('pi(calc) = %.15f' % pi)
print('diff = %.15f' % abs(math.pi-pi))

/ 120 | -example-02a.py

42

A LITTLE BIT OF
IMPROVEMENT (Il

With only <30 terms, the limit of precision already reached (Bravo!)

Sum up to 10 step:

pi(calc) = 3.141593304503083, diff 0.000000650913289

Sum up to 20 step:

pi(calc) = 3.141592653595636, diff 0.000000000005843

Sum up to 30 step:

pi(calc) = 3.141592653589794, diff 0.000000000000001

REMARK: Surely, this is not the real modern way to

calculate TT up to many digits.
(And surely this is not the purpose of this course...so no worry.)

43

Calculation of 7t is in fact
rather interesting. Left for

your own study!

HOW THE ERRORS BEHAVE

After N iterations of computing —

REMARK: y

Approximation errors:
In principle, the approximation errors will be reduced if we go
for more iterations (e.g. more terms in Taylor expansions).

84
€Eapprox ~ W (&, are algorithm dependent parameters)

Roundoff errors:
The roundoff error goes to the opposite direction, the more
iterations, the error actually accumulates.

€roundoff =~ VIN€,, (Emis machine dependent precision)

L\ 45
— p

REMARK:
HOW THE ERRORS BEHAVE A=

m Limitation of the total error:

@
€total ~ €approx + €roundoff ~ NB =V Nem

Example: TT with Liebniz formula (ver. T1/4): & = |, = |
(since every |0x steps, we improve the calculation by | digit)

It we do the calculation in double precision, when will we catch
the smallest (critical) total error?

O€total 0~ 110710 €l x 107 1]
ON ~ N2 ' 9N (when N~70,000,000,000)

It's actually just a rough guesstimation, but it's always good to keep
this idea in mind when you write your code!

B)

HANDS-ON SESSION

m Practice 1: /
The python decimal module provides support for decimal floating
point arithmetic. By default it the module can already provide a 28
digits or more number and can interact with other python

operations normally. For example:

import decimal

a, b, c=20.1, 0.2, 0.3

dec_a = decimal.Decimal('0.1") < ‘Decimal’ object instead of normdl float type
dec b = decimal.Decimal('0.2")

dec ¢ = decimal.Decimal('0.3")

print('float a+b-c =',atb-c)
print('decimal at+b-c =',dec a+dec b-dec c)

float at+b-c = 5.55111512313e-17
decimal a+b-c¢c = 0.0

B .
— P

HANDS-ON SESSION

® Modify 1201-example-01.py to calculate © by replacingthe
numbers all with the Decimal() object and see what you can get!

» Hint:

import math
< add import decimal

6
1. < replaced by decimal.Decimal(‘l.)

nsides
length

for i in range(20):
length = (2. - (4. — length*x*2)%x*0.5)*x0.5
nsides x= 2 M to be re-written carefully!!

p1 = length*nsides/2. < ¢ be re-written carefully!!

'-'%30)

'Polygon of',nsides, 'slides:"')
print('pi(calc) = %.15Ff' % pi) < you can replace it by float(pi) for npw
print('diff = %.15f' % abs(math.pi-pi))

I .
—— P

print(
printg
(

120 | -example-01.py

HANDS-ON SESSION

m Practice 2:
The Riemann zeta function is given by

2 1 1 1 1

6 12

Modify 1201-example-02.py to calculate 7t using this formula,
and see how accurate you can reach with 1000, 10000, 100000
terms.

Z\ 49
— P

How to find Pi ...

7 = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 . .. ‘ ot
L 4 1 4 P 1.8 1 A 4 4. 13 —

st T 14202+ 14 1+ 1+ 2+ 143+ I+ 1A+ 2+ 1 ¢ -
7= (—1)v—1log(-1) 7 = RootOf|sin 6] B<0<4)
7 = 4arctan 1 ﬂ’=4(arctan%+arctan%)
00 " 2 1 1
= ([ooe-’ da:) 1r=16arctan-5—4arctanﬁ
' 22 a1 -z)!
=4 V1-22dx 1r=——/ dx
0 7 0 l+.1:2
w_/‘ dz s P B P
CJa1-22 S 12 24 24 24 2 e
o 2 2 92 £2 =2 2
r=2]] (2k) TS ol
iy (2k—1)(2k+1) 6+6+6+6+6+-
6 2
i 1 = = —
H l=—— e [0'0=0’ak=\/2+ak_1]
\Pﬂmesp P H >
k=1
o0
6 992
e Z_z - %
V=t /83 I(1103 + 26390k
£ (K1) "396%F

Some of these can be
tried as well!

w_il 4 2 1 1
- 4~ 16K\8k+1 8k+4 8k+5 B8k+6

k=0
2
([ao =1,ap4 = W] 4 [bo = ’Q,bk-n = \/akEk])
« = lim X — B 5
k—o0 4 [to = §,tks1 = tx — 2%(ax — ag41)?]

