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ANALYTICAL VERSUS 
NUMERICAL

■ If you know the exact form, it's always better to do the calculus 
analytically unless it's not really doable.

■ Although we could do the calculation numerically without a 
problem, but the precision is always a big issue. 

■ In this lecture, we will discuss the derivatives & integration for a 
black box function f(x).
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A GENERAL RULE:

f(x) =



ANALYTICAL VERSUS 
NUMERICAL

■ Even if you can do your derivatives or integrations analytically, it 
is still very useful to do the same thing in a numerical way as a 
very good cross check (ie. debug).

■ Suppose, you have >50 different functions to be implement in your 
code, and you are calculating their derivatives analytically,  even 
you have already calculated everything by yourself,  but it does 
not guarantee you have no typo in your code!
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ON THE OTHER HAND:

Numerical calculus will give you a 
quick and easy check first!



NUMERICAL DERIVATIVES

■ Suppose, you have a function f(x), and now you want to compute 
f’(x), it’s pretty easy, right? 
 

■ In principle we could insert a small h, maybe as small as possible 
under the conversion of the numerical calculations. But THIS IS 
NOT TRUE for numerical derivatives.

■ So, let's try such a simple function that we could actually do the 
exact calculations easily:
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f

0(x) ⇡ f(x+ h)� f(x)

h

By definition, for h → 0

f(x) = x

2
+ exp(x) + log(x) + sin(x)

f

0
(x) = 2x+ exp(x) +

1

x

+ cos(x)



LET'S GIVE IT A QUICK TRY!
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import math 

def f(x):   
    return x**2+math.exp(x)+math.log(x)+math.sin(x) 
def fp(x):  
    return 2.*x+math.exp(x)+1./x+math.cos(x) 

x, h = 0.5, 1E-2 
fp_exact = fp(x) 

while h>1E-15: 
    fp_numeric = (f(x+h) - f(x))/h  
    print('h = %e' % h) 
    print('Exact = %.16f,' % fp_exact, end=' ') 
    print('Numeric = %.16f,' % fp_numeric, end=' ') 
    print('diff = %.16f' % abs(fp_numeric-fp_exact)) 
    h /= 10.

l202-example-01.py

  ⇐ Starting from h = 1E-2

  ⇐ retry with smaller h!



A QUICK TRY...?
■ Output:
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Exact = 5.5263038325905010

h = 1e-02, Numeric = 5.5224259820642496, diff = 0.0038778505262513
h = 1e-03, Numeric = 5.5258912717413011, diff = 0.0004125608491998
h = 1e-04, Numeric = 5.5262623253238274, diff = 0.0000415072666735
h = 1e-05, Numeric = 5.5262996793148380, diff = 0.0000041532756629
h = 1e-06, Numeric = 5.5263034173247396, diff = 0.0000004152657613
h = 1e-07, Numeric = 5.5263037901376313, diff = 0.0000000424528697
h = 1e-08, Numeric = 5.5263038811759193, diff = 0.0000000485854184
h = 1e-09, Numeric = 5.5263038589714579, diff = 0.0000000263809570
h = 1e-10, Numeric = 5.5263038589714579, diff = 0.0000000263809570
h = 1e-11, Numeric = 5.5263127407556549, diff = 0.0000089081651540
h = 1e-12, Numeric = 5.5262461273741783, diff = 0.0000577052163226
h = 1e-13, Numeric = 5.5311311086825290, diff = 0.0048272760920280
h = 1e-14, Numeric = 5.5511151231257818, diff = 0.0248112905352809



OK, WHAT’S THE PROBLEM?

■ For a small h, let’s perform the Taylor expansions:
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f(x+ h) ⇡ f(x) + hf

0(x) +
h

2

2
f

00(x) +
h

3

6
f

000(x) + ...

f(x+ h)� f(x)

h

⇡ f

0(x) +
h

2
f

00(x) +
h

2

6
f

000(x) + ...

This is what we  
are calculating:

In principle, we have an approximation error of O(h), 
for such calculations. But there is another round-off error,

close related to the machine precisions:

f(x+ h) ⇡ f(x) + hf

0(x) +
h

2

2
f

00(x) +
h

3

6
f

000(x) + ...+ ✏m



THE PROBLEM? 

■ So, if we account for the numerical derivatives:
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f 0
numerical(x) =

f(x+ h)� f(x)

h
⇡ f 0(x) +


h

2
f 00(x) +

h2

6
f 000(x) + ...

�
+O

⇣✏m
h

⌘

The total error ~

For a double precision number: 

The total error will saturation at: 

O(h) +O
⇣✏m

h

⌘

✏m ⇡ O(10�15)�O(10�16)

h ⇡ O(
p
✏m) ⇡ O(10�8)

This simply limit the precision of numerical derivatives,
and it cannot be better then 10–8, unless...



THE TRICK IS  
ACTUALLY VERY SIMPLE...
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f(x+
h

2
) ⇡ f(x) +

h

2
f

0(x) +
h

2

8
f

00(x) +
h

3

48
f

000(x) + ...

f(x� h

2
) ⇡ f(x)� h

2
f

0(x) +
h

2

8
f

00(x)� h

3

48
f

000(x) + ...

f 0
numerical(x) ⇡

f(x+ h
2 )� f(x� h

2 )

h
⇡ f 0(x) +


h2

24
f 000(x) +O(h4)...

�
+O

⇣✏m
h

⌘

The total error ~

The total error will saturation at O(10–10) if 

O(h2) +O
⇣✏m

h

⌘
⇡ O(h2) +

✓
10�16

h

◆

h ⇡ O(✏1/3m ) ⇡ O(10�5)

This is the “central difference” method.



A QUICK TRY AGAIN!
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import math 

def f(x):   
    return x**2+math.exp(x)+math.log(x)+math.sin(x) 
def fp(x):  
    return 2.*x+math.exp(x)+1./x+math.cos(x) 

x, h = 0.5, 1E-2 
fp_exact = fp(x) 

while h>1E-15: 
    fp_numeric = (f(x+h/2.) - f(x-h/2.))/h 
    print('h = %e' % h) 
    print('Exact = %.16f,' % fp_exact, end=' ') 
    print('Numeric = %.16f,' % fp_numeric, end=' ') 
    print('diff = %.16f' % abs(fp_numeric-fp_exact)) 
    h /= 10.

l202-example-01a.py

  ⇐ Update here



A QUICK TRY AGAIN! (II)
■ Output:
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Exact = 5.5263038325905010

h = 1e-02, Numeric = 5.5263737163485871, diff = 0.0000698837580861
h = 1e-03, Numeric = 5.5263045313882486, diff = 0.0000006987977477
h = 1e-04, Numeric = 5.5263038395758635, diff = 0.0000000069853625
h = 1e-05, Numeric = 5.5263038326591731, diff = 0.0000000000686722
h = 1e-06, Numeric = 5.5263038325481508, diff = 0.0000000000423501
h = 1e-07, Numeric = 5.5263038323261062, diff = 0.0000000002643947
h = 1e-08, Numeric = 5.5263038367669983, diff = 0.0000000041764974
h = 1e-09, Numeric = 5.5263036369268530, diff = 0.0000001956636480
h = 1e-10, Numeric = 5.5263038589714579, diff = 0.0000000263809570
h = 1e-11, Numeric = 5.5263349452161474, diff = 0.0000311126256465
h = 1e-12, Numeric = 5.5266902165840284, diff = 0.0003863839935274
h = 1e-13, Numeric = 5.5266902165840284, diff = 0.0003863839935274
h = 1e-14, Numeric = 5.5511151231257818, diff = 0.0248112905352809



A FURTHER  
IMPROVEMENT
■ Let's repeat the trick of “cancellation”:
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f(x+
h

4
) ⇡ f(x) +

h

4
f

0(x) +
h

2

32
f

00(x) +
h

3

384
f

000(x) + ...

f(x� h

4
) ⇡ f(x)� h

4
f

0(x) +
h

2

32
f

00(x)� h

3

384
f

000(x) + ...

f(x+ h
4 )� f(x� h

4 )

h
⇡ 1

2
f 0(x) +

h2

192
f 000(x) +O(h4)...

f(x+ h
2 )� f(x� h

2 )

h
⇡ f 0(x) +

h2

24
f 000(x) +O(h4)...

Simply repeat the same trick to remove the h2 term.



A FURTHER  
IMPROVEMENT (II)
■ Then
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8

"
f(x+ h

4 )� f(x� h
4 )

h

#
�

"
f(x+ h

2 )� f(x� h
2 )

h

#
⇡ 3f 0(x) +

⇥
O(h4)...

⇤
+O

⇣✏m
h

⌘

8f(x+ h
4 )� 8f(x� h

4 )� f(x+ h
2 ) + f(x� h

2 )

3h
+
⇥
O(h4)...

⇤
+O

⇣✏m
h

⌘
f

0
numerical(x) ⇡

The total error ~

The total error will saturation at O(10–13) if 

O(h4) +O
⇣✏m

h

⌘
⇡ O(h4) +

✓
10�16

h

◆

h ⇡ O(✏1/5m ) ⇡ O(10�3)

Take this term and neglect the rest



JUST CHANGE A LINE...

14

import math 

def f(x):   
    return x**2+math.exp(x)+math.log(x)+math.sin(x) 
def fp(x):  
    return 2.*x+math.exp(x)+1./x+math.cos(x) 

x, h = 0.5, 1E-2 
fp_exact = fp(x) 

while h>1E-15: 
    fp_numeric = \ 
    (8.*f(x+h/4.)+f(x-h/2.)-8.*f(x-h/4.)-f(x+h/2.))/(h*3.) 
    print('h = %e' % h) 
    print('Exact = %.16f,' % fp_exact, end=' ') 
    print('Numeric = %.16f,' % fp_numeric, end=' ') 
    print('diff = %.16f' % abs(fp_numeric-fp_exact)) 
    h /= 10. l202-example-01b.py

  ⇙ Update here (note: a backslash “\” can wrap a python line)



JUST CHANGE A LINE...(II)
■ Output:
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Exact = 5.5263038325905010

h = 1e-02, Numeric = 5.5263038315869801, diff = 0.0000000010035208
h = 1e-03, Numeric = 5.5263038325903402, diff = 0.0000000000001608
h = 1e-04, Numeric = 5.5263038325925598, diff = 0.0000000000020588
h = 1e-05, Numeric = 5.5263038327701954, diff = 0.0000000001796945
h = 1e-06, Numeric = 5.5263038328442100, diff = 0.0000000002537091
h = 1e-07, Numeric = 5.5263038249246188, diff = 0.0000000076658822
h = 1e-08, Numeric = 5.5263037257446959, diff = 0.0000001068458051
h = 1e-09, Numeric = 5.5263040070011948, diff = 0.0000001744106939
h = 1e-10, Numeric = 5.5263127407556549, diff = 0.0000089081651540
h = 1e-11, Numeric = 5.5263497481898094, diff = 0.0000459155993084
h = 1e-12, Numeric = 5.5258020381643282, diff = 0.0005017944261727
h = 1e-13, Numeric = 5.5215091758024446, diff = 0.0047946567880564
h = 1e-14, Numeric = 5.5807210704491190, diff = 0.0544172378586181



GETTING START WITH 
NUMPY & SCIPY

■ NumPy‘s array type augments the Python language with an 
efficient data structure useful for numerical work, e.g., 
manipulating matrices. NumPy also provides basic numerical 
routines.

■ SciPy contains additional routines needed in scientific work: for 
example, routines for computing integrals numerically, solving 
differential equations, optimization, etc.
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In short:
NumPy = extended array + some routines
SciPy = scientific tools based on NumPy

FROM THE OFFICIAL WEBSITE:



TYPICAL WORK FLOW
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Working on your own 
research topic (TH/EXP)

Need numerical analysis
for resolving some 

numerical problems

Write your code with 
standard math module

Adding  
NumPy/SciPy/etc.

Other solutions:
Google other package/

write your own 
algorithm / Use a 

different language / 
etc...

Problem solved!

if not  
enough...

still not  
enough...

You can think NumPy/SciPy are nothing 
more than a bigger math module.

Don’t think they are something very fancy!



NUMERICAL DERIVATIVES  
IN SCIPY
■ Just google –– and you’ll find it’s just a simple function:
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http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html

http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html


LET’S GIVE IT A TRY
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import math 
import scipy.misc as misc 

def f(x):   
    return x**2+math.exp(x)+math.log(x)+math.sin(x) 
def fp(x):  
    return 2.*x+math.exp(x)+1./x+math.cos(x) 

x, h = 0.5, 1E-2 
fp_exact = fp(x) 

while h>1E-15: 
    fp_numeric = misc.derivative(f, x, h) 
    print('h = %e' % h) 
    print('Exact = %.16f,' % fp_exact, end=' ') 
    print('Numeric = %.16f,' % fp_numeric, end=' ') 
    print('diff = %.16f' % abs(fp_numeric-fp_exact)) 
    h /= 10.

l202-example-02.py

  ⇐ import scipy.misc module

  ⇐ just call it



LET’S GIVE IT A TRY (II)
■ This gives us the best precision of O(10–10) when h~10–6.
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Exact = 5.5263038325905010

h = 1e-02, Numeric = 5.5265834157978029, diff = 0.0002795832073019
h = 1e-03, Numeric = 5.5263066277866368, diff = 0.0000027951961359
h = 1e-04, Numeric = 5.5263038605413151, diff = 0.0000000279508141
h = 1e-05, Numeric = 5.5263038328479110, diff = 0.0000000002574101
h = 1e-06, Numeric = 5.5263038326591731, diff = 0.0000000000686722
h = 1e-07, Numeric = 5.5263038323261062, diff = 0.0000000002643947
h = 1e-08, Numeric = 5.5263038589714588, diff = 0.0000000263809579
h = 1e-09, Numeric = 5.5263038589714579, diff = 0.0000000263809570
h = 1e-10, Numeric = 5.5263038589714579, diff = 0.0000000263809570
h = 1e-11, Numeric = 5.5263127407556549, diff = 0.0000089081651540
h = 1e-12, Numeric = 5.5260240827692533, diff = 0.0002797498212477
h = 1e-13, Numeric = 5.5278004396086535, diff = 0.0014966070181526
h = 1e-14, Numeric = 5.5289106626332787, diff = 0.0026068300427777

Very similar situation found!



GO TO HIGHER ORDER
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h = 1e-02, Numeric = 5.5263035753822134, diff = 0.0000002572082876
h = 1e-03, Numeric = 5.5263038325648601, diff = 0.0000000000256408
h = 1e-04, Numeric = 5.5263038325881197, diff = 0.0000000000023812
h = 1e-05, Numeric = 5.5263038325537019, diff = 0.0000000000367990
h = 1e-06, Numeric = 5.5263038325481508, diff = 0.0000000000423501
h = 1e-07, Numeric = 5.5263038328812177, diff = 0.0000000002907168

x, h = 0.5, 1E-2 
fp_exact = fp(x) 

while h>1E-15: 
    fp_numeric = misc.derivative(f, x, h, order=5) 
    print('h = %e' % h)

  ⇓ update here

■ This gives us the best precision of O(10–11~10–12) when h~10–4.  
Not a dramatically improvement...

l202-example-02a.py (partial)



COMMENTS

■ You may already observed during our tests above, in the numeral 
derivatives, it is important to minimize the total error rather than 
the approximation error only:

▫ Reducing the spacing h to a very small number is not a good 
idea in principle; cancellation of higher order terms are more 
effective.

▫ In any case the numeral derivative cannot be very precise.

▫ Some algorithms can reduce the spacing according to the 
estimated approximation error. This is called “Adaptive 
Stepping”, e.g.
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h0 = h ·
✓

✏R
2✏T

◆ 1
3 ✏R : rounding error

✏T : approximation error

➡ for your own further study. Initial  
stepping

Updated  
stepping



INTERMISSION

■ You have learned that the central difference method cancels the 
term up to f’’, and the improved higher order method cancels the 
term up to f’’’. You may try the code (l202-xample-01a.py and 
l202-example-01b.py) and calculate the numerical derivative 
for a  polynomial up to x2 and x3. Can the calculation be 100% 
precise or not? 

■ For example you may try such a simple function:
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f(x) = 5x3 + 4x2 + 3x+ 2

! f

0(x) = 15x2 + 8x+ 3



NUMERICAL  
INTEGRATION
■ Starting from some super basic integration rules:

24

Rectangle rule

Trapezoidal rule

Simpson's rule



NUMERICAL  
INTEGRATION (II)
■ Let's practice a classical integration: the trapezoidal rule, e.g.
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f(x) = x� x

2 + x

3 � x

4 +
sin(13x)

13Z
f(x)dx =

x

2

2

� x

3

3

+

x

4

4

� x

5

5

� cos(13x)

169

fi fi+1

xi

xi+1

h

L



TRAPEZOIDAL RULE:  
IMPLEMENTATION
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import math 

def f(x): 
    return x - x**2 + x**3 - x**4 + math.sin(x*13.)/13. 
def fint(x): 
    return x**2/2. - x**3/3. + x**4/4. - x**5/5. - 
math.cos(x*13.)/169. 

fint_exact = fint(1.2)-fint(0.) 
area, x, h = 0., 0., 1E-3 
f0 = f1 = f(x)    
while x<1.2-h*0.5: 
    f0, f1 = f1, f(x+h) 
    x += h  
    area += f0+f1 
area *= h/2. 
  
print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
% (fint_exact,area,abs(fint_exact-area)))

l202-example-03.py

Exact: 0.1765358676046381,  
Numerical: 0.1765352854227494,  
diff: 0.0000005821818886

  ⇐ start with h = 10–3



HOW ABOUT  
A SMALLER STEP SIZE?
■ As expected, the precision cannot be improved by simply using a 

smaller h.

■ It's very time consuming: smaller h, more operations, more 
computing time needed.
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Exact = 0.1765358676046381

h = 1e-02, Numeric = 0.1764776451750985, diff = 0.0000582224295395
h = 1e-03, Numeric = 0.1765352854227494, diff = 0.0000005821818886
h = 1e-04, Numeric = 0.1765358617829089, diff = 0.0000000058217292
h = 1e-05, Numeric = 0.1765358675475263, diff = 0.0000000000571118
h = 1e-06, Numeric = 0.1765358676034689, diff = 0.0000000000011692
h = 1e-07, Numeric = 0.1765358677680409, diff = 0.0000000001634028
h = 1e-08, Numeric = 0.1765358661586719, diff = 0.0000000014459662



ERROR ANALYSIS: 
APPROXIMATION ERROR
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f(x+ h) ⇡ f(x) + hf

0(x) +
h

2

2
f

00(x) +
h

3

6
f

000(x) + ...

Z h

0
f(x+ ⌘)d⌘ ⇡ hf(x) +

h

2

2
f

0(x) +
h

3

6
f

00(x) +
h

4

24
f

000(x) + ...

h

2
[f(x) + f(x+ h)] ⇡ hf(x) +

h

2

2
f

0(x) +
h

3

4
f

00(x) +
h

4

12
f

000(x) + ...

Exact integration:

Trapezoidal rule:

Error per interval:

Approximation error:

� ⇡ h

3

12
f

00(x) + ...

✏
approx

⇡ O(h3)⇥ L

h
⇡ O(h2)

■ Consider Taylor expansions for f(x):



ERROR ANALYSIS: 
TOTAL ERROR
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■ If we believe the theory:

■ The total error:

✏
roundo↵

⇡ O(
p
N✏m) N / L

h
= total no. of operation steps.

✏
total

⇡ O(
p
N✏m) +O(h2) ⇡ O

✓
✏mp
h

◆
+O(h2)

For a double precision float point number, 

The best precision will be of O(10–12) when h ⇡ O(✏1/2.5m ) ⇡ O(10�6)

✏m ⇡ O(10�15)�O(10�16)

Well, this is just an order of magnitude guess, 
usually it's highly dependent on the algorithm and your exact coding.

(also, smaller h means much more computing time!)



AN EASY IMPROVEMENT
■ Another classical method: Simpson's Rule.

■ Instead of liner interpolation, we could use a 2nd-order (parabola) 
interpolation along 3 points:
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fi fi+1

xi
xi+1

h

L

fi+2

xi+2

h



THE FORMULAE

■ Treat the function as a parabola between the interval [–1,+1]:
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f(x) ⇡ ax

2 + bx+ c

Z +1

�1
f(x)dx =


a

3
x

3 +
b

2
x

2 + cx

�+1

�1

=
2a

3
+ 2c

f(+1) ⇡ a+ b+ c

f(0) ⇡ c

f(�1) ⇡ a� b+ c

Z +1

�1
f(x)dx =

f(�1)

3
+

4f(0)

3
+

f(+1)

3
Solve a,b,c :{

Z 2h

0
f(x+ ⌘)d⌘ ⇡ h

3
f(x) +

4h

3
f(x+ h) +

h

3
f(x+ 2h)

Z
f(x)dx ⇡ h

3
f1 +

4h

3
f2 +

2h

3
f3 +

4h

3
f4 +

2h

3
f5 + ...+

4h

3
fN�1 +

h

3
fN

Simpson’s rule:

Total integration:



SIMPSON’S RULE:  
IMPLEMENTATION
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import math 

def f(x): 
    return x - x**2 + x**3 - x**4 + math.sin(x*13.)/13. 
def fint(x): 
    return x**2/2. - x**3/3. + x**4/4. - x**5/5. - 
math.cos(x*13.)/169. 

fint_exact = fint(1.2)-fint(0.) 
area, x, h = 0., 0., 1E-3 
f0 = f1 = f2 = f(x)    
while x<1.2-h*0.5: 
    f0, f1, f2 = f2, f(x+h), f(x+h*2.) 
    x += h*2.  
    area += f0+f1*4.+f2 
area *= h/3. 
  
print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
% (fint_exact,area,abs(fint_exact-area)))

l202-example-04.py

Exact: 0.1765358676046381,  
Numerical: 0.1765358676063498,  
diff: 0.0000000000017117



SIMPSON’S RULE:  
ERROR ANALYSIS
■ Could we cancel the O(h3) and O(h4) term?
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f(x+ h) ⇡ f(x) + hf
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000(x) +
h
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24
f

(4)(x) + ...

f(x+ 2h) ⇡ f(x) + 2hf 0(x) + 2h2
f

00(x) +
4h3

3
f

000(x) +
2h4

3
f

(4)(x) + ...

h

3
f(x) +

4h

3
f(x+ h) +

h

3
f(x+ 2h)

⇡ 2hf(x) + 2h2
f

0(x) +
4h3

3
f

00(x) +
2h4
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000(x) +
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(4)(x) + ...

Z 2h

0
f(x+ ⌘)d⌘ ⇡ 2hf(x) + 2h2
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0(x) +
4h3

3
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00(x) +
2h4
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f

000(x) +
4h5
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(4)(x) + ...

� ⇡ h

5

90
f

(4)(x) + ...

✏
approx

⇡ O(h5)⇥ L

h
⇡ O(h4)



SIMPSON’S RULE:  
ERROR ANALYSIS (II)
■ The total error is given by:
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Is it true? Not too bad in principle...

✏
total

⇡ O(
p
N✏m) +O(h4) ⇡ O

✓
✏mp
h

◆
+O(h4)

The best precision could be of O(10–14) when h ⇡ O(✏1/4.5m ) ⇡ O(10�4)

Exact = 0.1765358676046381

h = 1e-02, Numeric = 0.1765358847654857, diff = 0.0000000171608476
h = 1e-03, Numeric = 0.1765358676063498, diff = 0.0000000000017117
h = 1e-04, Numeric = 0.1765358676047102, diff = 0.0000000000000721
h = 1e-05, Numeric = 0.1765358676043926, diff = 0.0000000000002455
h = 1e-06, Numeric = 0.1765358676131805, diff = 0.0000000000085424
h = 1e-07, Numeric = 0.1765358676224454, diff = 0.0000000000178073
h = 1e-08, Numeric = 0.1765358675909871, diff = 0.0000000000136510



COMMENTS
■ Maybe you already realized the general rule:

▫ The approximate error of numerical integration heavily 
depends on the algorithm (cancellation of higher order error).

▫ The round-off error and speed of calculation depend on the 
number of steps. 

▫ The best algorithm: as less steps/points as possible, with as 
higher order as possible. 

▫ Adaptive stepping can be a solution.

▫ Many integration rules can be generalized as sum of the 
weights times the function f(x) values, ie.
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Z
f(x)dx ⇡

NX

i=1

wi · f(xi)
The art is to find the best 

approximation of Wi with smallest N!



INTERMISSION

■ Those “fixed points” integration rules have several limitations –– 
such as you cannot integrate over singularities. Try to integrate 
over some functions with singularities and see what will you get?

■ Consider a function of polynomials up to x3 but without knowing 
its exact form. How many points of f(xi) are required to calculate 
its exact integration at least?
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THE TRICK?

■ Consider a function of polynomials up to x3 but without knowing 
its exact form. How many points of f(xi) are required to calculate 
its exact integration at least?

■ Maybe you are thinking of 4 times since one needs already 3 
points to describe a full parabola (up to x2). But in fact we only 
need to calculate TWICE. 
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f(x) = c3x
3 + c2x

2 + c1x+ c0Consider a function like:

In fact you only need to calculate f(x) twice  
to get an exact integration in [-1,+1]

I =

Z +1

�1
f(x)dx =

X
wif(xi) = f(� 1p

3
) + f(

1p
3
)



HOW IT COMES?
■ Assuming we can do it with two points, ie. 4 unknowns:
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I =

Z +1

�1
f(x)dx =

X
wif(xi) = w1f(x1) + w2f(x2)

And this 
integration should 
valid for any f(x) 

up to O(x3):

f(x) = 1 ) I =

Z +1

�1
1dx = 2 = w1 + w2

f(x) = x ) I =

Z +1

�1
xdx = 0 = w1x1 + w2x2

f(x) = x

2 ) I =

Z +1

�1
x

2
dx =

2

3
= w1x

2
1 + w2x

2
2

f(x) = x

3 ) I =

Z +1

�1
x

3
dx = 0 = w1x

3
1 + w2x

3
2

w1, w2 = 1, x1, x2 = ± 1p
3

Solve 4 questions 
for 4 unknowns:



HOW ABOUT HIGHER 
ORDER SOLUTIONS?
■ In a similar way one consider the case of 3 points, which should be 

able to solve the exact integration up to x5.
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f(x1)

f(x3)

x1 x3

w1
w2

f(x2)

x2

w3

2 points 
➡ 4 unknowns (xi, wi)
➡ solve up to x0, x1, x2, x3

3 points 
➡ 6 unknowns (xi, wi)
➡ solve up to x0, x1, x2, x3, x4, x5

・・・



HOW ABOUT HIGHER 
ORDER SOLUTIONS?
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I =

Z +1

�1
f(x)dx = w1f(x1) + w2f(x2) + w3f(x3)

w1 =
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9
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9

w3 =
5

9

x1 = �
r

3

5

x2 = 0

x3 = +

r
3

5

8
>>>>>>>><

>>>>>>>>:

f(x) = 1 ) I =

Z +1

�1
1dx = 2 = w1 + w2 + w3

f(x) = x ) I =

Z +1

�1
xdx = 0 = w1x1 + w2x2 + w3x3

f(x) = x

2 ) I =

Z +1
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= w1x
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1 + w2x

4
2 + w3x

4
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f(x) = x
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Z +1

�1
x

5
dx = 0 = w1x

5
1 + w2x

5
2 + w3x

5
3

Solve 6 questions 
for 6 unknowns.

6 unknowns



GAUSSIAN QUADRATURE

■ In fact this is called Gaussian quadrature of 2 and 3 points. By 
choosing proper locations of x and the associated weights on f(x), 
one can minimize the needs of calculation and get the best 
estimation of a fixed 1D integration.
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Fixed stepping: 
Trapezoidal/Simpson's

h h h …

Adjusted stepping  
to exact higher  

order term

x1 x2



GAUSSIAN QUADRATURE 
(CONT.)
■ For a simple integration problem we 

discussed above, the associated 
polynomials are  
Legendre polynomials Pn(x), and 
the method is usually known as 
Gauss-Legendre quadrature.

■ Given with n-points we get the exact 
integration up to x2n–1 power, the 
next term x2n is the approximation 
error. 

■ Several lower order points  
(xi are the roots of Pn(x) = 0)
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IF NOT WITHIN [–1,+1]?

■ In general case an integral over [a, b] must be transformed into an 
integral over [–1,+1] before applying the Gaussian quadrature rule. 
This change of interval can be carried out as following:
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Z b

a
f(x)dx =

b� a

2

Z +1

�1
f

✓
b� a

2
x+

a+ b

2

◆
dx

⇡ b� a

2

nX

i=1

wif

✓
b� a

2
xi +

a+ b

2

◆

Nothing special but a simple coordination 
transformation would work.



A QUICK IMPLEMENTATION
■ Let’s implement an example calculation with 21 points:
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fint_exact = fint(1.2)-fint(0.) 
npoints = 21 
weights = [[0.1460811336496904, +0.0000000000000000], 
 . . .  . . .  
           [0.0160172282577743, +0.9937521706203895]] 
area, min, max = 0., 0., 1.2 

for i in range(npoints): 
    x = ((max-min)*weights[i][1] + (max+min))/2. 
    area += f(x)*weights[i][0] 
area *= (max-min)/2. 

print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
      % (fint_exact,area,abs(fint_exact-area))) 

l202-example-05.py (partial)

Exact: 0.1765358676046381,  
Numerical: 0.1765358676046379, 
diff: 0.0000000000000002

With almost full precision with only 
21 points; Note the Simpson’s rule 
requires 10K operations!

  ⇓ see the code for the full table



WHEN THE CODE BREAKS?

■ In order to see the “break down” of the integration, let’s try to 
integrate over a simple polynomial up to xn:

■ The corresponding f(x) and fint(x) are:
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f(x) = 1 + x+ x

2 + x

3 + · · ·+ x

n

def f(x, n): 
    val = 0. 
    for i in range(n+1): val += x**i 
    return val 
   
def fint(x, n): 
    val = 0. 
    for i in range(n+1): val += x**(i+1)/(i+1) 
    return val

l202-example-05a.py (partial)

nX

i=0

x

i

<latexit sha1_base64="2/ZDZCohWzMkHMuTWfq/vgoOTbQ=">AAACEHicbVDLSsNAFJ3UV62vWJduBovgqiQq2I1QcOOygn1Am5bJdNIOnZmEmYm0hPyEH+BWP8GduPUP/AJ/w0mbhW09cOFwzn1x/IhRpR3n2ypsbG5t7xR3S3v7B4dH9nG5pcJYYtLEIQtlx0eKMCpIU1PNSCeSBHGfkbY/ucv89hORiobiUc8i4nE0EjSgGGkjDexyT8V8kNBbJ+0nIoXTPh3YFafqzAHXiZuTCsjRGNg/vWGIY06Exgwp1XWdSHsJkppiRtJSL1YkQniCRqRrqECcKC+Z/57Cc6MMYRBKU0LDufp3IkFcqRn3TSdHeqxWvUz8z+vGOqh5CRVRrInAi0NBzKAOYRYEHFJJsGYzQxCW1PwK8RhJhLWJa+lKtluqQKUmGXc1h3XSuqy6V1Xn4bpSr+UZFcEpOAMXwAU3oA7uQQM0AQZT8AJewZv1bL1bH9bnorVg5TMnYAnW1y+RYp2r</latexit>

nX

i=0

x

i+1

i+ 1
<latexit sha1_base64="9AiPYkIK7Ec0kSLpSiu3X8vFkUE=">AAACIHicbVDNSsNAGNz4W+tf1KOXpUUQhJKoYC9CwYvHCvYHmjRstpt26WYTdjdiCbn7HD6AV30Eb+JRX8DXcNPmYFsHFoaZb/bbHT9mVCrL+jJWVtfWNzZLW+Xtnd29ffPgsC2jRGDSwhGLRNdHkjDKSUtRxUg3FgSFPiMdf3yT+50HIiSN+L2axMQN0ZDTgGKktOSZFUcmoZfSayvrpzyD6WM/pWd2Bp1Ix2BOPbNq1awp4DKxC1IFBZqe+eMMIpyEhCvMkJQ924qVmyKhKGYkKzuJJDHCYzQkPU05Col00+lfMniilQEMIqEPV3Cq/k2kKJRyEvp6MkRqJBe9XPzP6yUqqLsp5XGiCMezRUHCoIpgXgwcUEGwYhNNEBZUvxXiERIIK13f3Jb8biEDmTdjL/awTNrnNfuiZt1dVhv1oqMSOAYVcApscAUa4BY0QQtg8ARewCt4M56Nd+PD+JyNrhhF5gjMwfj+BSWMo7Q=</latexit>



npoints = 5 
weights = [[0.5688888888888889, +0.0000000000000000], 
           [0.4786286704993665, -0.5384693101056831], 
           [0.4786286704993665, +0.5384693101056831], 
           [0.2369268850561891, -0.9061798459386640], 
           [0.2369268850561891, +0.9061798459386640]] 
min, max = 0., 1. 
   
for n in range(15): 
    fint_exact = fint(max,n)-fint(min,n) 
   
    area = 0. 
    for i in range(npoints): 
        x = ((max-min)*weights[i][1] + (max+min))/2. 
        area += f(x,n)*weights[i][0] 
    area *= (max-min)/2. 
   

    print('Power: %2d, Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
          % (n, fint_exact,area,abs(fint_exact-area))) 

WHEN THE CODE BREAKS? 
(CONT.)
■ In order to see the effect easier –– implement a  

5-point Gauss–Legendre quadrature instead of the 21-point version.

46 l202-example-05a.py (partial)



WHEN THE CODE BREAKS? 
(CONT.)
■ The integration does break after x2n:
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Power:  0, Exact: 1.0000000000000000, Numerical: 1.0000000000000000, diff: 0.0000000000000000
Power:  1, Exact: 1.5000000000000000, Numerical: 1.5000000000000002, diff: 0.0000000000000002
. . . . . .
Power:  6, Exact: 2.5928571428571425, Numerical: 2.5928571428571430, diff: 0.0000000000000004
Power:  7, Exact: 2.7178571428571425, Numerical: 2.7178571428571425, diff: 0.0000000000000000
Power:  8, Exact: 2.8289682539682537, Numerical: 2.8289682539682537, diff: 0.0000000000000000
Power:  9, Exact: 2.9289682539682538, Numerical: 2.9289682539682538, diff: 0.0000000000000000
Power: 10, Exact: 3.0198773448773446, Numerical: 3.0198759133282937, diff: 0.0000014315490509
Power: 11, Exact: 3.1032106782106781, Numerical: 3.1032013731418489, diff: 0.0000093050688292
Power: 12, Exact: 3.1801337551337552, Numerical: 3.1800998537274987, diff: 0.0000339014062565
Power: 13, Exact: 3.2515623265623268, Numerical: 3.2514709047199117, diff: 0.0000914218424151
Power: 14, Exact: 3.3182289932289937, Numerical: 3.3180253879631731, diff: 0.0002036052658205

f(x) = 1 + x+ x

2 + x

3 + · · ·+ x

9 + x

10 + · · ·
A 5-point integration rule can be exact up to here.     Not the rest…

Remark: What will you get if you 
still do 21-point integration?



NUMERICAL INTEGRATION 
WITH SCIPY
■ You’ll find there are many different integration tools in SciPy:
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http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

The quad is a general integration 
tool with QUADPACK.  

From the name you can already 
guess the algorithm!

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate


INTEGRATION WITH 
QUAD() FUNCTION

49

import math 
import scipy.integrate as integrate 
   
def f(x): 
    return x - x**2 + x**3 - x**4 + math.sin(x*13.)/13. 
def fint(x): 
    return x**2/2. - x**3/3. + x**4/4. - x**5/5. - 
math.cos(x*13.)/169. 
   
fint_exact = fint(1.2)-fint(0.) 
   
quad,quaderr = integrate.quad(f,0.,1.2,) 
   
print('Exact: %.16f' %  fint_exact) 
print('Numerical: %.16f+-%.16f, diff: %.16f' % \ 
      (quad,quaderr,abs(fint_exact-quad)))

l202-example-06.py

Exact: 0.1765358676046381 
Numerical: 0.1765358676046380+-0.0000000000000029 
diff: 0.0000000000000001



FINAL REMARK

■ It is very easy to use the NumPy/SciPy routines to do the 
numerical derivatives and integration: just import the module, call 
the function, get your results!

■ However the limitation of these functions is not different from our 
homemade code: don’t use a too small stepping size!

■ You may find the integration is very precise and fast –– this is due 
to the algorithm in the QUADPACK (based on Gaussian 
quadrature and written in Fortran). You can check the online 
document for details.

■ There are few other functions provided by SciPy library for solving 
the problems in different cases. You can again, dig out more by 
yourself!
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■ Practice 1:  
Integration rules with even higher orders can be constructed easily, 
for example, comparing Simpson’s rule to 3/8 rule:  
 
 
 
 
 
 
 
Try to modify l202-example-04.py to implement the 3/8 
integration rule and see how precise you can get?

HANDS-ON SESSION
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Z 2h

0
f(x+ ⌘)d⌘ ⇡ h

3
f(x) +

4h

3
f(x+ h) +

h

3
f(x+ 2h)Simpson [order 2]:

Z 3h

0
f(x+ ⌘)d⌘ ⇡ 3h

8
f(x) +

9h

8
f(x+ h) +

9h

8
f(x+ 2h) +

3h

8
f(x+ 3h)

3/8 [order 3]:



■ Practice 2:  
The integration of cosine function is sine; let’s modify the  
l202-example-06.py [integration with the quad() function] 
code to calculate the integration of a simple cosine and see how 
precise the calculation you can get, i.e.:  
 
 
 
 
 
by integrating f(x) over the intervals of  [0,!], [0,100!], [0,1000!], 
[0,100.5!], [0,1000.5!]. Is it always very precise?

HANDS-ON SESSION
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def f(x):
    return math.cos(x)
def fint(x):
    return math.sin(x)


