INTRODUCTION TO NUMERICAL ANALYSIS 220190

1

Lecture 2-2: Numerical Differential & Integration

Kai-Feng Chen National Taiwan University

ANALYTICAL VERSUS NUMERICAL

A GENERAL RULE:

- \blacksquare If you know the exact form, it's always better to do the calculus analytically unless it's not really doable.
- Although we could do the calculation numerically without a problem, but the precision is always a big issue.
- \blacksquare In this lecture, we will discuss the derivatives & integration for a black box function $f(x)$.

 $f(x) =$

ANALYTICAL VERSUS NUMERICAL

ON THE OTHER HAND:

- Even if you can do your derivatives or integrations analytically, it is still very useful to do the same thing in a numerical way as a very good cross check (ie. debug).
- \blacksquare Suppose, you have >50 different functions to be implement in your code, and you are calculating their derivatives analytically, even you have already calculated everything by yourself, but it does not guarantee you have no typo in your code!

Numerical calculus will give you a quick and easy check first!

NUMERICAL DERIVATIVES

 \blacksquare Suppose, you have a function $f(x)$, and now you want to compute $f'(x)$, it's pretty easy, right?

By definition, for
$$
h \to o
$$
 $f'(x) \approx \frac{f(x+h) - f(x)}{h}$

- In principle we could insert a small **h**, maybe as small as possible under the conversion of the numerical calculations. But *THIS IS NOT TRUE* for numerical derivatives.
- \blacksquare So, let's try such a simple function that we could actually do the exact calculations easily:

$$
f(x) = x^{2} + \exp(x) + \log(x) + \sin(x)
$$

$$
f'(x) = 2x + \exp(x) + \frac{1}{x} + \cos(x)
$$

LET'S GIVE IT A QUICK TRY!

import math

```
def f(x): 
    return x**2+matherh(exp(x)+matherh-log(x)+matherh,sin(x)def fp(x):
```

```
return 2.**x+mathlscxp(x)+1./x+mathlscos(x)
```

```
x, h = 0.5, 1E-2 \Leftarrow Starting from h = 1E-2
fp\_exact = fp(x)
```

```
while h>1E-15: 
    f p_numberic = (f(x+h) - f(x))/hprint('h = %e' % h)print('Exact = %.16f,' % f p\_exact, end=' ' )print('Numeric = \%.16f,' \% fp_numeric, end=' ')
    print('diff = %.16f' % abs(fp_numberic-fp_exact))h /= 10. \Leftarrow retry with smaller h!
```
l202-example-01.py

A QUICK TRY...?

■ Output:

Exact = 5.5263038325905010

OK, WHAT'S THE PROBLEM?

■ For a small **h**, let's perform the Taylor expansions:

$$
f(x+h) \approx f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \dots
$$

This is what we are calculating:
$$
\frac{f(x+h)-f(x)}{h} \approx f'(x) + \left|\frac{h}{2}f''(x)\right| + \frac{h^2}{6}f'''(x) + ...
$$

In principle, we have an approximation error of **O(h)**, for such calculations. But there is another round-off error, close related to the machine precisions:

$$
f(x+h) \approx f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \dots + \boxed{\epsilon_m}
$$

THE PROBLEM?

■ So, if we account for the numerical derivatives:

$$
f'_{\text{numerical}}(x) = \frac{f(x+h) - f(x)}{h} \approx f'(x) + \left[\frac{h}{2}f''(x) + \frac{h^2}{6}f'''(x) + \dots\right] + O\left(\frac{\epsilon_m}{h}\right)
$$

The total error $\thicksim O(h) + O(\epsilon)$ For a double precision number: $\epsilon_m \approx O(10^{-15}) - O(10^{-16})$ The total error will saturation at: $h \approx O(\sqrt{\epsilon_m}) \approx O(10^{-8})$ $\sqrt{\epsilon_m}$ *h* \overline{a}

This simply limit the precision of numerical derivatives, and it cannot be better then 10^{-8} , unless...

THE TRICK IS
\nACTUALLY VERY SIMPLE...
\n
$$
f(x + \frac{h}{2}) \approx f(x) + \frac{h}{2}f'(x) + \frac{h^2}{8}f''(x) + \frac{h^3}{48}f'''(x) + ...
$$
\n
$$
f(x - \frac{h}{2}) \approx f(x) - \frac{h}{2}f'(x) + \frac{h^2}{8}f''(x) - \frac{h^3}{48}f'''(x) + ...
$$
\n
$$
f'_{\text{numerical}}(x) \approx \frac{f(x + \frac{h}{2}) - f(x - \frac{h}{2})}{h} \approx f'(x) + \left[\frac{h^2}{24}f'''(x) + O(h^4)...\right] + O\left(\frac{\epsilon_m}{h}\right)
$$
\nThe total error ~ $O(h^2) + O\left(\frac{\epsilon_m}{h}\right) \approx O(h^2) + \left(\frac{10^{-16}}{h}\right)$
\nThe total error will saturation at $O(10^{-10})$ if $h \approx O(\epsilon_m^{1/3}) \approx O(10^{-5})$

This is the **"central difference"** method.

A QUICK TRY AGAIN!

```
import math 
def f(x): 
    return x**2+matherh(exp(x)+matherh-log(x)+matherh,sin(x)def fp(x): 
    return 2.**x+mathercth.exp(x)+1./x+mathercth.cos(x)x, h = 0.5, 1E-2fp\_exact = fp(x)while h>1E-15: 
f_{\text{p\_numeric}} = (f(x+h/2) - f(x-h/2)) / h \Leftarrow U_{\text{pdate here}}print('h = %e' %h)
    print('Exact = %.16f,' % f p\_exact, end=' ' )print('Numeric = %.16f, ' % f<sub>p</sub>-numeric, end=' ' )print('diff = %.16f' % abs(fp_numberic-fp exact))h /= 10.
                                                           l202-example-01a.py
```
A QUICK TRY AGAIN! (II)

■ Output:

Exact = 5.5263038325905010

A FURTHER IMPROVEMENT

 $f(x + \frac{h}{2}) - f(x - \frac{h}{2})$

h

■ Let's repeat the trick of **"cancellation"**:

$$
f(x + \frac{h}{4}) \approx f(x) + \frac{h}{4}f'(x) + \frac{h^2}{32}f''(x) + \frac{h^3}{384}f'''(x) + \dots
$$

$$
f(x - \frac{h}{4}) \approx f(x) - \frac{h}{4}f'(x) + \frac{h^2}{32}f''(x) - \frac{h^3}{384}f'''(x) + \dots
$$

$$
\frac{f(x + \frac{h}{4}) - f(x - \frac{h}{4})}{h} \approx \frac{1}{2}f'(x) + \frac{h^2}{192}f'''(x) + O(h^4)...
$$

 $(x) + \frac{h^2}{24}$

 $\approx f'$

Simply repeat the same trick to remove the h2 term.

 $\frac{n}{24} f'''(x) + O(h^4) ...$

A FURTHER IMPROVEMENT (II)

■ Then

$$
8\left[\frac{f(x+\frac{h}{4})-f(x-\frac{h}{4})}{h}\right] - \left[\frac{f(x+\frac{h}{2})-f(x-\frac{h}{2})}{h}\right] \approx 3f'(x) + \left[O(h^4)...\right] + O\left(\frac{\epsilon_m}{h}\right)
$$

 $f'_{\rm numerical}(x) \approx$

$$
\frac{8f(x+\frac{h}{4}) - 8f(x-\frac{h}{4}) - f(x+\frac{h}{2}) + f(x-\frac{h}{2})}{3h} + [O(h^4)...] + O\left(\frac{\epsilon_m}{h}\right)
$$

Take this term and neglect the rest

The total error
$$
\sim O(h^4) + O\left(\frac{\epsilon_m}{h}\right) \approx O(h^4) + \left(\frac{10^{-16}}{h}\right)
$$

The total error will saturation at $\mathbf{O}(10^{-13})$ if $\quad h \approx O(\epsilon_m^{1/5}) \approx O(10^{-3})$

JUST CHANGE A LINE...

```
import math
```

```
def f(x): 
    return x**2+matherh(exp(x)+matherh-log(x)+matherh,sin(x)def fp(x): 
    return 2.**x+mathlscxp(x)+1./x+mathlscos(x)x, h = 0.5, 1E-2fp\_exact = fp(x)while h>1E-15: 
 fp_numeric = \ 
 ⇙ Update here (note: a backslash "\" can wrap a python line)(8.*f(x+h/4.)+f(x-h/2.)-8.*f(x-h/4.)-f(x+h/2.))/(h*3.)print('h = %e' % h)
    print('Exact = %.16f,' % f p\_exact, end=' ' )print('Numeric = %.16f, ' % f<sub>p</sub>-numeric, end=' ' )print('diff = \%.16f' \% abs(fp numeric-fp exact))
    h / = 10.
```
JUST CHANGE A LINE...(II)

■ Output:

Exact = 5.5263038325905010

GETTING START WITH NUMPY & SCIPY

FROM THE OFFICIAL WEBSITE:

- **NumPy's array type augments the Python language with an** efficient data structure useful for numerical work, e.g., manipulating matrices. NumPy also provides basic numerical routines.
- **SciPy** contains additional routines needed in scientific work: for example, routines for computing integrals numerically, solving differential equations, optimization, etc.

In short:

 $NumPy = extended array + some routines$ **SciPy** = scientific tools based on NumPy

TYPICAL WORK FLOW

Working on your own research topic (TH/EXP)

Need numerical analysis for resolving some numerical problems

Write your code with

standard math module

You can think NumPy/SciPy are nothing more than a bigger math module. Don't think they are something very fancy!

Adding if not enough...

NumPy/SciPy/etc.

Other solutions: Google other package/ write your own algorithm / Use a different language / etc... still not enough...

Problem solved!

NUMERICAL DERIVATIVES IN SCIPY

■ Just google — and you'll find it's just a simple function:

LET'S GIVE IT A TRY

```
import math 
import scipy.misc as misc 
 ⇐ import scipy.misc module
def f(x): 
    return x**2+matherh_{ex}(x)+matherh_{ex}log(x)+matherh_{ex}sin(x)def fp(x): 
    return 2.*x+mathext{with}.exp(x)+1./x+mathext{with}.cos(x)x, h = 0.5, 1E-2fp\_exact = fp(x)while h>1E-15: 
f_{\text{p\_numeric}} = \text{misc\_derivative}(f, x, h) \Leftarrow just call it
    print('h = %e' % h)print('Exact = <math>\% .16f, ' \% f'p\_exact, end=' ')</math>print('Numeric = %.16f, ' % f<sub>p</sub>-numeric, end=' ' )print('diff = %.16f' % abs(fp_numberic-fp_exact))h /= 10.
```
LET'S GIVE IT A TRY (II)

■ This gives us the best precision of **O(10⁻¹⁰)** when **h**~10⁻⁶.

Exact = 5.5263038325905010

Very similar situation found!

GO TO HIGHER ORDER

■ This gives us the best precision of **O(10–11~10–12)** when **h~10–4**. Not a dramatically improvement...

```
x, h = 0.5, 1E-2fp\_exact = fp(x)while h>1E-15:
    fp\_numeric = miss.derivative(f, x, h, order=5)print('h = %e' % h)
                                                         \sqrt{\ } update here
                                                         l202-example-02a.py (partial)
```


COMMENTS

- You may already observed during our tests above, in the numeral derivatives, it is important to minimize the total error rather than the approximation error only:
	- Reducing the spacing **h** to a very small number is not a good idea in principle; cancellation of higher order terms are more effective.
	- **In any case the numeral derivative cannot be very precise.**
	- \Box Some algorithms can reduce the spacing according to the estimated approximation error. This is called **"Adaptive Stepping"**, e.g.

$$
h' = h \cdot \left(\frac{\epsilon_R}{2\epsilon_T}\right)^{\frac{1}{3}}
$$

 $\overline{\textbf{3}}$ ϵ_R : rounding error

 ϵ_T : approximation error

Updated Initial
stepping stepping

 \Rightarrow *for your own further study.*

INTERMISSION

- You have learned that the **central difference method** cancels the term up to *f''*, and the improved higher order method cancels the term up to *f'''*. You may try the code (**l202-xample-01a.py** and **l202-example-01b.py**) and calculate the numerical derivative for a polynomial up to x^2 and x^3 . Can the calculation be 100% precise or not?
- For example you may try such a simple function:

$$
f(x) = 5x^3 + 4x^2 + 3x + 2
$$

$$
\rightarrow f'(x) = 15x^2 + 8x + 3
$$

NUMERICAL INTEGRATION

■ Starting from some **super basic** integration rules:

24

TRAPEZOIDAL RULE: IMPLEMENTATION

import math

```
def f(x): 
     return x - x*x^2 + x*x^3 - x*x^4 + \text{math.sin}(x*13.)/13.def fint(x): 
     return x**2/2. - x**3/3. + x**4/4. - x**5/5. -
math.cos(x*13.)/169.
fit\_exact = fit(1.2)-fit(0.)area, x, h = 0., 0 \cdot, 1E-3 \Leftarrow start with h = 10^{-3}f0 = f1 = f(x)while x<1.2-h*0.5:
     f0, f1 = f1, f(x+h)x == harea += f0+f1
area *= h/2.
print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
% (fint_exact,area,abs(fint_exact-area))) lateration and the later model of the later model of the later 
                                                   Exact: 0.1765358676046381, 
                                                   Numerical: 0.1765352854227494, 
                                                   diff: 0.0000005821818886
```
HOW ABOUT A SMALLER STEP SIZE?

- \blacksquare As expected, the precision cannot be improved by simply using a smaller **h**.
- It's very time consuming: smaller h, more operations, more computing time needed.

```
Exact = 0.1765358676046381
h = 1e-02, Numeric = 0.1764776451750985, diff = 0.0000582224295395
h = 1e-03, Numeric = 0.1765352854227494, diff = 0.0000005821818886
h = 1e-04, Numeric = 0.1765358617829089, diff = 0.0000000058217292h = 1e-05, Numeric = 0.1765358675475263, diff = 0.0000000000571118
h = 1e-06, Numeric = 0.1765358676034689, diff = 0.0000000000011692h = 1e-07, Numeric = 0.1765358677680409, diff = 0.0000000001634028h = 1e-08, Numeric = 0.1765358661586719, diff = 0.0000000014459662
```
ERROR ANALYSIS: APPROXIMATION ERROR

 $f(x+h) \approx f(x) + hf'$ $f(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \dots$ ■ Consider Taylor expansions for *f*(*x*):

Exact integration:

$$
\int_0^h f(x+\eta)d\eta \approx \left| hf(x) + \frac{h^2}{2}f'(x) \right| + \frac{h^3}{6}f''(x) + \frac{h^4}{24}f'''(x) + \dots
$$

Trapezoidal rule:

$$
\frac{h}{2}[f(x) + f(x+h)] \approx h f(x) + \frac{h^2}{2} f'(x) + \frac{h^3}{4} f''(x) + \frac{h^4}{12} f'''(x) + \dots
$$

Error per interval: $\delta \approx$ h^3 $\frac{1}{12} f''(x) + ...$

Approximation error: $\epsilon_{\rm approx} \approx O(h^3) \times$ *L h* \approx $O(h^2)$

ERROR ANALYSIS: TOTAL ERROR

■ If we believe the theory:

 $\epsilon_{\rm roundoff}\approx O($ $\sqrt{ }$ $N\epsilon_m$) *N* \propto *L* $\frac{2}{h}$ = total no. of operation steps.

The total error:

$$
\epsilon_{\text{total}} \approx O(\sqrt{N}\epsilon_m) + O(h^2) \approx O\left(\frac{\epsilon_m}{\sqrt{h}}\right) + O(h^2)
$$

For a double precision float point number, $\epsilon_m \approx O(10^{-15}) - O(10^{-16})$ The best precision will be of $O(10^{-12})$ when $h \approx O(\epsilon_m^{1/2.5}) \approx O(10^{-6})$

Well, this is just an order of magnitude guess, usually it's highly dependent on the algorithm and your exact coding. *(also, smaller h means much more computing time!)*

AN EASY IMPROVEMENT

- Another classical method: **Simpson's Rule**.
- Instead of liner interpolation, we could use a 2nd-order (parabola) interpolation along 3 points:

THE FORMULAE

■ Treat the function as a parabola between the interval $[-1,+1]$:

$$
f(x) \approx ax^2 + bx + c
$$

$$
\int_{-1}^{+1} f(x)dx = \left[\frac{a}{3}x^3 + \frac{b}{2}x^2 + cx\right]_{-1}^{+1} = \frac{2a}{3} + 2c
$$

$$
\begin{cases}\nf(+1) \approx a + b + c \\
f(0) \approx c \qquad \text{Solve } a, b, c: \int_{-1}^{+1} f(x) dx = \frac{f(-1)}{3} + \frac{4f(0)}{3} + \frac{f(+1)}{3} \\
f(-1) \approx a - b + c\n\end{cases}
$$

Simpson's rule:
$$
\int_0^{2h} f(x+\eta) d\eta \approx \frac{h}{3} f(x) + \frac{4h}{3} f(x+h) + \frac{h}{3} f(x+2h)
$$

Total integration:

$$
\int f(x)dx \approx \frac{h}{3}f_1 + \frac{4h}{3}f_2 + \frac{2h}{3}f_3 + \frac{4h}{3}f_4 + \frac{2h}{3}f_5 + \dots + \frac{4h}{3}f_{N-1} + \frac{h}{3}f_N
$$

SIMPSON'S RULE: IMPLEMENTATION

import math

```
def f(x): 
     return x - x*x^2 + x*x^3 - x*x^4 + \text{math.sin}(x*13.)/13.def fint(x): 
     return x**2/2. - x**3/3. + x**4/4. - x**5/5. -
math.cos(x*13.)/169.
fit\_exact = fit(1.2)-fit(0.)\overline{area, x, h} = 0, 0, 1E-3f0 = f1 = f2 = f(x)while x<1.2-h*0.5:
     f0, f1, f2 = f2, f(x+h), f(x+h*2).
     x \neq 2.
     area += f0+f1*4.+f2area *= h/3.
print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
% (fint_exact,area,abs(fint_exact-area))) lateration and the later model of the later model of the later 
                                                     Exact: 0.1765358676046381, 
                                                     Numerical: 0.1765358676063498, 
                                                     diff: 0.0000000000017117
```
SIMPSON'S RULE: ERROR ANALYSIS

■ Could we cancel the **O(h³)** and **O(h⁴)** term?

$$
f(x+h) \approx f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \dots
$$

$$
f(x+2h) \approx f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4h^3}{3}f'''(x) + \frac{2h^4}{3}f^{(4)}(x) + \dots
$$

$$
\frac{h}{3}f(x) + \frac{4h}{3}f(x+h) + \frac{h}{3}f(x+2h)
$$

$$
\approx \boxed{2hf(x) + 2h^2f'(x) + \frac{4h^3}{3}f''(x) + \frac{2h^4}{3}f'''(x)} + \frac{5h^5}{18}f^{(4)}(x) + \dots
$$

$$
\int_0^{2h} f(x+\eta)d\eta \approx \boxed{2hf(x) + 2h^2f'(x) + \frac{4h^3}{3}f''(x) + \frac{2h^4}{3}f'''(x)} + \frac{4h^5}{15}f^{(4)}(x) + \dots
$$

$$
\delta \approx \frac{h^5}{90} f^{(4)}(x) + \dots \qquad \qquad \epsilon_{\text{approx}} \approx O(h^5) \times \frac{L}{h} \approx O(h^4)
$$

SIMPSON'S RULE: ERROR ANALYSIS (II)

■ The total error is given by:

$$
\epsilon_{\text{total}} \approx O(\sqrt{N}\epsilon_m) + O(h^4) \approx O\left(\frac{\epsilon_m}{\sqrt{h}}\right) + O(h^4)
$$

The best precision could be of $\mathbf{O}(\mathsf{10^{-14}})$ when $h \approx O(\epsilon_m^{1/4.5}) \approx O(10^{-4})$

Is it true? Not too bad in principle...

Exact = 0.1765358676046381

h = 1e-02, Numeric = 0.1765358847654857, diff = 0.0000000171608476 $h = 1e-03$, Numeric = 0.1765358676063498 , diff = 0.0000000000017117 $h = 1e-04$, Numeric = 0.1765358676047102 , diff = 0.000000000000721 $h = 1e-05$, Numeric = 0.1765358676043926 , diff = 0.000000000002455 $h = 1e-06$, Numeric = 0.1765358676131805 , diff = 0.000000000085424 $h = 1e-07$, Numeric = 0.1765358676224454 , diff = 0.0000000000178073 **h = 1e-08, Numeric = 0.1765358675909871, diff = 0.0000000000136510**

COMMENTS

- Maybe you already realized the general rule:
	- \Box The approximate error of numerical integration heavily depends on the algorithm (*cancellation of higher order error*).
	- □ The round-off error and speed of calculation depend on the number of steps.
	- The best algorithm: **as less steps/points as possible, with as higher order as possible**.
	- **Adaptive stepping can be a solution.**
	- Many integration rules can be generalized as **sum of the weights times the function f(x) values**, ie.

$$
\int f(x)dx \approx \sum_{i=1}^{N} w_i \cdot f(x_i)
$$

<u>Ihe art is to find the best</u> approximation of Wi with smallest N!

INTERMISSION

- Those "fixed points" integration rules have several limitations such as you cannot integrate over singularities. Try to integrate over some functions with singularities and see what will you get?
- Consider a function of polynomials up to **x**³ but without knowing its exact form. How many points of $f(x_i)$ are required to calculate **its exact integration at least?**

THE TRICK?

- \blacksquare Consider a function of polynomials up to x^3 but without knowing its exact form. How many points of $f(x_i)$ are required to calculate **its exact integration at least?**
- Maybe you are thinking of **4 times** since one needs already 3 points to describe a full parabola (up to *x*2). But in fact we only need to calculate **TWICE**.

<i>Consider a function like: $f(x) = c_3x^3 + c_2x^2 + c_1x + c_0$

In fact you only need to calculate $f(x)$ twice to get an exact integration in $[-1, +1]$

$$
I = \int_{-1}^{+1} f(x)dx = \sum w_i f(x_i) = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})
$$

HOW IT COMES?

■ Assuming we can do it with two points, ie. 4 unknowns:

$$
I = \int_{-1}^{+1} f(x)dx = \sum w_i f(x_i) = \frac{w_1 f(x_1) + w_2 f(x_2)}{w_1 f(x_2)}
$$

\n
$$
f(x) = 1 \Rightarrow I = \int_{-1}^{+1} 1 dx = 2 = w_1 + w_2
$$

\nAnd this
\nintegration should $f(x) = x \Rightarrow I = \int_{-1}^{+1} x dx = 0 = w_1 x_1 + w_2 x_2$
\nvalid for any f(x)
\n
$$
f(x) = x^2 \Rightarrow I = \int_{-1}^{+1} x^2 dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2
$$

\n
$$
f(x) = x^3 \Rightarrow I = \int_{-1}^{+1} x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3
$$

 $w_1, w_2 = 1, x_1, x_2 = \pm$ 1 $\overline{\sqrt{3}}$ Solve 4 questions for 4 unknowns:

HOW ABOUT HIGHER ORDER SOLUTIONS?

In a similar way one consider the case of 3 points, which should be able to solve the exact integration up to *x***⁵**.

2 points

- \rightarrow 4 unknowns (x_i, w_i)
- \rightarrow solve up to x^0 , x^1 , x^2 , x^3

3 points

 \rightarrow 6 unknowns (x_i, w_i)

•
•
•
•

 \Rightarrow solve up to x^0 , x^1 , x^2 , x^3 , x^4 , x^5

HOW ABOUT HIGHER ORDER SOLUTIONS?

 $I =$ \int^{+1} -1 $f(x)dx = w_1f(x_1) + w_2f(x_2) + w_3f(x_3)$ $w_1 =$ $w_2 =$ $w_3 =$ $x_1 =$ $x_2 = 0$ $x_3 = +\sqrt{\frac{3}{5}}$ $\sqrt{2}$ \int $\overline{}$ $f(x) = 1 \Rightarrow I =$ \int^{+1} -1 $1dx = 2 = w_1 + w_2 + w_3$ $f(x) = x \Rightarrow I =$ \int^{+1} -1 $xdx = 0 = w_1x_1 + w_2x_2 + w_3x_3$ $f(x) = x^2 \Rightarrow I =$ \int^{+1} -1 $x^2dx =$ 2 3 $= w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2$ $f(x) = x^3 \Rightarrow I =$ \int^{+1} -1 $x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3 + w_3 x_3^3$ $f(x) = x^4 \Rightarrow I =$ \int^{+1} -1 $x^4dx =$ 2 5 $= w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4$ $f(x) = x^5 \Rightarrow I =$ \int^{+1} -1 $x^5 dx = 0 = w_1 x_1^5 + w_2 x_2^5 + w_3 x_3^5$ **6 unknowns**

Solve 6 questions for 6 unknowns.

5

9

8

9

5

9

 $\sqrt{3}$

5

5

GAUSSIAN QUADRATURE

■ In fact this is called Gaussian quadrature of 2 and 3 points. By choosing proper locations of *x* and the associated weights on *f***(***x***)**, one can minimize the needs of calculation and get the best estimation of a fixed 1D integration.

GAUSSIAN QUADRATURE (CONT.)

- For a simple integration problem we discussed above, the associated polynomials are Legendre polynomials $P_n(x)$, and the method is usually known as **Gauss-Legendre quadrature**.
- Given with n-points we get the exact integration up to x^{2n-1} power, the next term **x2n** is the approximation error.
- Several lower order points $(x_i$ are the roots of $P_n(x) = 0$

IF NOT WITHIN [–1,+1]?

■ In general case an integral over [a, b] must be transformed into an integral over **[–1,+1]** before applying the Gaussian quadrature rule. This change of interval can be carried out as following:

$$
\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{+1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) dx
$$

$$
\approx \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f\left(\frac{b-a}{2}x_{i} + \frac{a+b}{2}\right)
$$

Nothing special but a simple coordination transformation would work.

A QUICK IMPLEMENTATION

■ Let's implement an example calculation with 21 points:

```
fit\_exact = fit(1.2)-fit(0.)npoints = 21weights = [[0.1460811336496904, +0.0000000000000000], 
 . . . . . . 
             [0.0160172282577743, +0.9937521706203895]] 
area, min, max = 0., 0., 1.2for i in range(npoints): 
    x = ((max-min)*weights[i][1] + (max+min))/2.area += f(x)*weight[s[i][0]area \vcentcolon= (max-min)/2.print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
      % (fint exact,area,abs(fint_exact-area)))
                                                     l202-example-05.py (partial)
  Exact: 0.1765358676046381, 
  Numerical: 0.1765358676046379, 
  diff: 0.0000000000000002
                                      With almost full precision with only 
                                      21 points; Note the Simpson's rule 
                                      requires 10K operations!
                                             \sqrt{2} see the code for the full table
```
WHEN THE CODE BREAKS?

■ In order to see the "**break down" of the integration**, let's try to integrate over a **simple polynomial up to xn**:

$$
f(x) = 1 + x + x^2 + x^3 + \dots + x^n
$$

■ The corresponding **f(x)** and **fint(x)** are:

WHEN THE CODE BREAKS? (CONT.)

 \blacksquare In order to see the effect easier — implement a 5-point Gauss–Legendre quadrature instead of the 21-point version.

```
npoints = 5weights = [[0.5688888888888889, +0.0000000000000000], 
            [0.4786286704993665, -0.5384693101056831],<br>[0.4786286704993665, +0.5384693101056831],
                                   +0.5384693101056831],
[0.2369268850561891, -0.9061798459386640], [0.2369268850561891, +0.9061798459386640]] 
min, max = 0., 1.
for n in range(15): 
    fint_exact = fint(max, n)-fint(min, n)
    area = 0.<br>for i in range(npoints):
 for i in range(npoints): x = ((max-min)*weights[i][1] + (max+min))/2.
area += f(x,n) * weights[i][0]area *= (max-min)/2.
     print('Power: %2d, Exact: %.16f, Numerical: %.16f, diff: %.16f' \ 
           % (n, fint_exact,area,abs(fint_exact-area)))
                                   46 l202-example-05a.py (partial)
```
WHEN THE CODE BREAKS? (CONT.)

The integration does break after x^{2n} :

$$
f(x) = 1 + x + x^2 + x^3 + \dots + x^9 + x^{10} + \dots
$$

A 5-point integration rule can be exact up to here. Not the rest...

Remark: What will you get if you still do 21-point integration?

NUMERICAL INTEGRATION WITH SCIPY

 \blacksquare You'll find there are many different integration tools in SciPy:

SciPy v1.0.0 Reference Guide Scipy.org **Docs**

Integration and ODEs (scipy.integrate)

Integrating functions, given function object

quad(func, a, b[, args, full_output, ...]) dblquad(func, a, b, gfun, hfun[, args, ...]) tplquad(func, a, b, gfun, hfun, qfun, rfun) nquad(func, ranges[, args, opts, full_output]) fixed_quad(func, a, b[, args, n]) quadrature(func, a, b[, args, tol, rtol, ...]) romberg(function, a, b[, args, tol, rtol, ...]) quad_explain([output]) newton_cotes(rn[, equal]) IntegrationWarning

Compute a definite integral. Compute a double integral. Compute a triple (definite) integral. Integration over multiple variables.

The **quad** is a general integration tool with **QUADPACK**. *From the name you can already guess the algorithm!*

Compute a definite integral using fixed-order Gaussian quadrature. Compute a definite integral using fixed-tolerance Gaussian quadrature. Romberg integration of a callable function or method. Print extra information about integrate.quad() parameters and returns. Return weights and error coefficient for Newton-Cotes integration. Warning on issues during integration.

Integrating functions, given fixed samples

trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trapezoidal rule. cumtrapz(y[, x, dx, axis, initial]) Cumulatively integrate y(x) using the composite trapezoidal rule. Integrate y(x) using samples along the given axis and the composite Simpson's rule. simps(y[, x, dx, axis, even]) romb(y[, dx, axis, show]) Romberg integration using samples of a function.

<http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate>

INTEGRATION WITH QUAD() FUNCTION

```
import math 
import scipy.integrate as integrate 
def f(x):
    return x - x*x^2 + x*x^3 - x*x^4 + \text{math.sin}(x*13.)/13.def fint(x): 
    return x**2/2. - x**3/3. + x**4/4. - x**5/5. -
math.cos(x*13.)/169. 
fint exact = fint(1.2)-fint(0.quad,quaderr = integrate.quad(f,0.,1.2,)print('Exact: %.16f' % fint_exact) 
print('Numerical: %.16f+-%.16f, diff: %.16f' %)(quad,quaderr,abs(fint exact-quad)))
                                                          l202-example-06.py
```


FINAL REMARK

- It is very easy to use the **NumPy/SciPy** routines to do the numerical derivatives and integration: *just import the module, call the function, get your results!*
- However the limitation of these functions is not different from our homemade code: **don't use a too small stepping size!**
- You may find the integration is very precise and fast this is due to the algorithm in the QUADPACK (based on Gaussian quadrature and written in Fortran). You can check the online document for details.
- \blacksquare There are few other functions provided by SciPy library for solving the problems in different cases. You can again, dig out more by yourself!

HANDS-ON SESSION

■ **Practice 1:**

Integration rules with even higher orders can be constructed easily, for example, comparing Simpson's rule to 3/8 rule:

Simpson [order 2]:
$$
\int_0^{2h} f(x+\eta)d\eta \approx \frac{h}{3}f(x) + \frac{4h}{3}f(x+h) + \frac{h}{3}f(x+2h)
$$

\n3/8 [order 3]:
\n
$$
\int_0^{3h} f(x+\eta)d\eta \approx \frac{3h}{8}f(x) + \frac{9h}{8}f(x+h) + \frac{9h}{8}f(x+2h) + \frac{3h}{8}f(x+3h)
$$

Try to modify **l202-example-04.py** to implement the **3/8 integration rule** and see how precise you can get?

HANDS-ON SESSION

■ **Practice 2:**

The integration of cosine function is sine; let's modify the **l202-example-06.py** [integration with the quad() function] code to calculate the integration of a simple cosine and see how precise the calculation you can get, i.e.:

by integrating $f(x)$ over the intervals of $[0,\pi]$, $[0,100\pi]$, $[0,1000\pi]$, $[0,100.5\pi]$, $[0,1000.5\pi]$. Is it always very precise?