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ROOT FINDING

■ Root finding is one of classical algebra problems since your high 
school times...
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For a given function f(x), 

if f(x) = 0, what’s the x?



A CLASSICAL METHOD:
FIND THE ANSWER WITH YOUR EYES

■ I'm not talking about peeking at other person's answer sheet...
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A CLASSICAL METHOD:
FIND THE ANSWER WITH YOUR EYES
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x = (a, b)

y = ( f (a),  f (b) )

y = f (x)

First plotting the 
function

for f (a) < 0 <  f (b) 
[especially if f (a), f (b) → 0]

There may exist a root with x ∈ (a,b)

(Assessment: try to find an invalid example!)



LET DO SUCH A PRACTICE 
WITH YOUR COMPUTER
■ Suppose we know that there is an solution of f(x) = 0 for x ∈(a,b),  

how to find the best solution by your computer?

■ Surely there is an “almost” trivial algorithm: the Bisection method
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x = a

x = b

x = a

0 =
a+ b

2

Keep updating the boundaries 
with the middle point of a and b,

until reaching the limited precision.



LET’S GIVE IT A TRY!

■ Suppose that we are going to solve the following equation:
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f(x) = (x� 1) · (x� 2) · (x� 3) · (x� 4) · (x� 5) = 0

Surely we know that
there are 5 explicit 
solutions.

y = f (x)



A DEMO IMPLEMENTATION
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def f(x): 
    return (x-1.)*(x-2.)*(x-3.)*(x-4.)*(x-5.) 
   

a, b = 2.4, 3.4 
fa, fb = f(a), f(b) 
   

for step in range(50): 
    c = (a+b)*0.5 
    fc = f(c)  
   

    print('Step: %2d, root = %.16f, diff = %.16f' % (step,c,abs(c-3.))) 
   

    if abs(a-c)<1E-14: break 
     

    if fc*fa>0.: 
        a, fa = c, fc 
    else: 
        b, fb = c, fc l205-example-01.py

  ⇐ Limited precision = 10–14

  ⇐ Let’s do maximum 50 iterations

■ A simple implementation of the Bisection method:

  ⇐ Test point c – at the middle of a and b



Step:  0, root = 2.8999999999999999, diff = 0.1000000000000001
Step:  1, root = 3.1499999999999999, diff = 0.1499999999999999
Step:  2, root = 3.0249999999999999, diff = 0.0249999999999999
Step:  3, root = 2.9624999999999999, diff = 0.0375000000000001
Step:  4, root = 2.9937499999999999, diff = 0.0062500000000001
Step:  5, root = 3.0093749999999999, diff = 0.0093749999999999
... ...
Step: 10, root = 3.0000976562499999, diff = 0.0000976562499999
... ...
Step: 20, root = 2.9999999046325683, diff = 0.0000000953674317
... ...
Step: 30, root = 3.0000000000931322, diff = 0.0000000000931322
... ...
Step: 40, root = 2.9999999999999090, diff = 0.0000000000000910
... ...
Step: 44, root = 2.9999999999999942, diff = 0.0000000000000058
Step: 45, root = 3.0000000000000084, diff = 0.0000000000000084
Step: 46, root = 3.0000000000000013, diff = 0.0000000000000013

A DEMO IMPLEMENTATION 
(II)
■ Terminal output:
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HIGHER ORDER METHOD(S)

■ Although this bisection algorithm sounds not so smart, but it must 
success (if the function is well behaved).

■ For higher efficiency (speed), we could go for the algorithms with 
an idea of higher order mathematics, e.g. Brent's Method:
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Suppose we have three points: (x,y) = ( a,  fa ), ( b,  fb ), ( c,  fc )

Adopt Lagrange interpolation (=3 points parabola)

x =
(y � fa)(y � fb)c

(fc � fa)(fc � fb)
+

(y � fb)(y � fc)a

(fa � fb)(fa � fc)
+

(y � fc)(y � fa)b

(fb � fc)(fb � fa)

The best guess of root should be located at y = g(x) = 0



BRENT'S METHOD

■ Suppose x = b is the current best guess of root, the next  
 
best estimation is:
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Then, we could pick up the best three values as the 
new (a,b,c) for the next iteration.

( a,  fa )
( b,  fb )

( c,  fc )

×

×

×
×

d = b+
P

Q

P = S[T (R� T )(c� b)� (1�R)(b� a)]

Q = (T � 1)(R� 1)(S � 1)

R =
fb
fc

, S =
fb
fa

, T =
fa
fc

d = b+
P

Q



LET’S TRY IT!
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a, b, c = 2.4, 2.5, 3.4 
fa, fb, fc = f(a), f(b), f(c) 
  
for step in range(50): 
     
    R, S, T  = fb/fc, fb/fa, fa/fc 
    P  = S*(T*(R-T)*(c-b)-(1.-R)*(b-a)) 
    Q  = (T-1.)*(R-1.)*(S-1.) 
   
    d  = b + P/Q 
    fd = f(d) 
     
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.))) 
     
    if abs(b-d)<1E-14: break 
     
    if fa*fb>0.: 
        a, fa = b, fb 
        b, fb = d, fd 
    else: 
        c, fc = b, fb 
        b, fb = d, fd

  ⇐ Simply copy the equations here!

  ⇐ Now we need 3 points to host the search

  ⇐ Replace (a, b) with (b, d)

  ⇐ Replace (c, b) with (b, d)
l205-example-02.py (partial)



LET’S TRY IT! (II)

■ Terminal output is like this:  
 
 
 
 
 
 

■ Well, it does happen: it does NOT guarantee the next step will 
always gives a better guess of the root, especially if we 
approximate the function by a 2nd order parabola. 

■ Alternative fix: replace the next guess by Bisection method, if the 
guess is bad/poor.
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Step:  0, root = -5.2064627478620000, diff = 8.2064627478620000
Step:  1, root =  2.9693426221720163, diff = 0.0306573778279837
Step:  2, root =  3.0066798826104528, diff = 0.0066798826104528
Step:  3, root =  2.9998524472418411, diff = 0.0001475527581589
Step:  4, root =  3.0000000378298575, diff = 0.0000000378298575
Step:  5, root =  2.9999999999999534, diff = 0.0000000000000466
Step:  6, root =  3.0000000000000000, diff = 0.0000000000000000
Step:  7, root =  3.0000000000000000, diff = 0.0000000000000000



A FAIL-SAFE CODE
■ Simply fix the value of test point (d,fd) with 

Bisection method if the resulting values are bad:
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    d  = b + P/Q 
    fd = f(d) 
   
    if (d-a)*(d-c)>0. or abs(fd)>abs(fb): 
        if fa*fb>0.: d = (b+c)*0.5 
        else:        d = (a+b)*0.5 
        fd = f(d) 
   
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.))) 

Step:  0, root = 2.9500000000000002, diff = 0.0499999999999998
Step:  1, root = 3.0169811828014468, diff = 0.0169811828014468
Step:  2, root = 2.9993946939327074, diff = 0.0006053060672926
Step:  3, root = 3.0000006446632410, diff = 0.0000006446632410
Step:  4, root = 2.9999999999917120, diff = 0.0000000000082880
Step:  5, root = 3.0000000000000000, diff = 0.0000000000000000
Step:  6, root = 3.0000000000000000, diff = 0.0000000000000000

  ⇐ All good!

l205-example-02a.py (partial)



ALGORITHM WITH DERIVATIVE:
NEWTON'S METHOD 
(NEWTON-RAPHSON)

■ Well, where is the beloved method, which we have learned in 
calculus course?
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current best root 
is at x = b

×

×

f(x+ �) ⇡ f(x) + f

0(x)� +
f

00(x)

2
�

2 + ...

( b,  fb )

Take out the 
2nd order term

Next best root 
will be d = b� f(b)

f 0(b)



def fp(x): 
    return (x-2.)*(x-3.)*(x-4.)*(x-5.) + \ 
           (x-1.)*(x-3.)*(x-4.)*(x-5.) + \ 
           (x-1.)*(x-2.)*(x-4.)*(x-5.) + \ 
           (x-1.)*(x-2.)*(x-3.)*(x-5.) + \ 
           (x-1.)*(x-2.)*(x-3.)*(x-4.) 
   
a, b, c = 2.4, 2.5, 3.4 
fa, fb, fc = f(a), f(b), f(c) 
   
for step in range(50): 
   
    delta = -fb/fp(b)   
    d  = b + delta 
    fd = f(d) 
   
    if (d-a)*(d-c)>0. or abs(fd)>abs(fb): 
        if fa*fb>0.: d = (b+c)*0.5 
        else:        d = (a+b)*0.5 
        fd = f(d) 
   
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.))) 
    if abs(b-d)<1E-14: break 
   
    b, fb = d, fd

IMPLEMENTATION: 
NEWTON'S METHOD 
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  ⇐ Analytical solution 

  ⇐ Keep the protection as in the  
Bisection method

l205-example-03.py (partial)



(SUPER-)FAST 
CONVERGING!
■ Terminal output:  
 
 
 
 
 

■ Q: Why not to use the numerical derivatives?

■ A:  As we have discussed before, it's very hard to have precise  
     numerical solution for the derivatives. In this case the solution  

 will be limited by the best precision of the derivative calculation.  
 It's generally not a recommended way (but still “doable”).
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Step:  0, root = 2.9500000000000002, diff = 0.0499999999999998
Step:  1, root = 3.0003151394705090, diff = 0.0003151394705090
Step:  2, root = 2.9999999999217564, diff = 0.0000000000782436
Step:  3, root = 3.0000000000000000, diff = 0.0000000000000000
Step:  4, root = 3.0000000000000000, diff = 0.0000000000000000

  ⇑ Just 3–4 steps!



INTERMISSION

■ With Newton’s method:

▫ What will happen if you remove the failed safe protection (the 
block of using Bisection method)?
▫ Try to run the calculation with numerical derivative, how good 

is the solution?  
 
 
 

■ Try to find a not-working-so-well problem!
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def fp(x): 
    h = 1E-5 
    return (f(x+h/2.)-f(x-h/2.))/h 

  ⇐ You can try this by yourself!

l205-example-03a.py (partial)



SOME MORE 
PRACTICAL EXAMPLES?
■ Let's implement a function with Newton's method to calculate 

square-root and cubic-root. This is one of the places this method 
can do the work easily!

■ The usual square-root function is sqrt(), and we can only use the 
pow() function or the ** operator to calculate cubic-root.

■ If we are looking for the square-(cubic-) root of a real number R, it's 
equivalent to find the root of
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f(x) = x

2 �R or f(x) = x

3 �R

The corresponding first derivatives are

The implement the code should be very easy!

f

0
(x) = 2x or f

0
(x) = 3x

2



QUICK & 
SIMPLE  
CODE
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def squareroot(R): 
    fsq = lambda x:x*x-R 
    fsqp = lambda x:2.*x 
     
    a, b, c = 0., R*0.5, R 
    fa, fb, fc = fsq(a), fsq(b), fsq(c) 
    for step in range(50):  
        delta = -fb/fsqp(b) 
        d  = b + delta 
        fd = fsq(d) 
     
        if abs(b-d)<1E-14: return d 
        b, fb = d, fd 
     
def cubicroot(R): 
    fcb = lambda x:x*x*x-R 
    fcbp = lambda x:3.*x*x 
     
    a, b, c = 0., R*0.5, R 
    fa, fb, fc = fcb(a), fcb(b), fcb(c) 
    for step in range(50):  
        delta = -fb/fcbp(b) 
        d  = b + delta 
        fd = fcb(d) 
     
        if abs(b-d)<1E-14: return d 
        b, fb = d, fd

  ⇐ local functions

Basically the 
implementations are 

the same; the only 
difference are the local 
functions fsq() and 

fsqp().

l205-example-04.py (partial)



LET’S TRY THE FUNCTIONS!

■ This is almost a trivial task:
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R = 1234. 
   

print('root = %.16f, diff = %.16f' % \ 
    (squareroot(R),abs(R**0.5-squareroot(R)))) 
   

print('root = %.16f, diff = %.16f' % \ 
    (cubicroot(R),abs(R**(1./3.)-cubicroot(R)))) 
  

root = 35.1283361405005934, diff = 0.0000000000000000
root = 10.7260146688273235, diff = 0.0000000000000000

Surely this code is very slow if we compare to the standard 
operator, but this is a very good example that almost all the 

math functions can be implemented in a similar way!

l205-example-04.py (partial)



USE THE FUNCTIONS FROM 
SCIPY

21

■ Everything is under scipy.optimize:

You can see some
familiar names here!  

http://docs.scipy.org/doc/scipy/reference/optimize.html

http://docs.scipy.org/doc/scipy/reference/optimize.html


USING THE SUPER EASY 
SCIPY FUNCTIONS
■ Just import the scipy.optimize and call the corresponding method:
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import scipy.optimize as opt 
  

def squareroot(R): 
    fsq = lambda x:x*x-R 
    fsqp = lambda x:2.*x 
     

    return opt.newton(fsq,R*0.5,fsqp) 
  

R = 1234. 
    

print('root = %.16f, diff = %.16f' % \ 
    (squareroot(R),abs(R**0.5-squareroot(R)))) 

l205-example-05.py

root = 35.1283361405005934, diff = 0.0000000000000000

  ⇐ Just call it!



MINIMIZATION OR 
MAXIMIZATION
■ Method in calculus – find the zero first derivative: 
 
 

■ How about the numerical method?

■ Yep, you can probably already apply what we learned from the 
previous section, to find the root of f’(x) = 0 if we know the first 
derivative already.

■ If not, this is what we are going to discuss now.
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f

0(x) = 0 ! x =?

×
×

×



ONE DIMENSIONAL 
SEARCH IN A BRACKET
■ This method is very simple: if we have a bracket (a,b,c), and f(b) < 

f(a), f(c), and b is the current best minimum:

24

x = a

×

x = c

x = b
x = d ×

×

×

(a,b,d)
(b,d,c)

(a,b,c)
Keep updating the bracket by replacing 

(a,b,c) with (a,b,d) or (b,d,c) until a desired 
precision.

We always need to keep  
f(b) < f(a) and f(b) < f(c)  

to ensure we have at least a minimum in 
the interval.



1D SEARCH – THE STEPS 
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a

a

a’

b

b

b’

c

c
d

c’

G
o 

to
 t

he
 n

ex
t 

up
da

te

￭ Initial bracket (a,b,c)

￭ If |b-c|>|a-b|, find a new test point 
d in [b,c]

￭ If f(b) < f(d), keep b as the  
current best estimation of the 
minimum point.

￭ Update the bracket accordingly:  
c' = d

￭ Go to the next update



A QUICK IMPLEMENTATION
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def f(x): 
    return (x-0.5)*(x-0.5)*(x-10.)*(x-10.) 
   
FRAC = 0.38197 
a, c = 0.0, 2.0 
fa, fc = f(a), f(c) 
b = a+(c-a)*FRAC 
fb = f(b) 
   
for step in range(150): 
   
    if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC 
    else:                 d = b+(c-b)*FRAC 
    fd = f(d) 
   
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5))) 
    if abs(b-d)<1E-14: break 
   
    if fd<fb: 
        b, d = d, b 
        fb, fd = fd, fb 
  
    if (d-b)*(a-b)>0: a, fa = d, fd 
    else:             c, fc = d, fd

l205-example-06.py

  ⇐ A function with 2 obvious 
minimal points  ⇐ Magic number!

  ⇐ Insert a new testing point,  
between either (a,b) or (b,c)

  ⇐ exchange b and d, keep b as the best solution as always



THE RESULTS
■ Terminal output:
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Step:  0, root = 1.2360778381999999, diff = 0.7360778381999999
... ...

Step: 10, root = 0.4946110292293492, diff = 0.0053889707706508
... ...

Step: 20, root = 0.4999668808722842, diff = 0.0000331191277158
... ...

Step: 30, root = 0.4999995815191064, diff = 0.0000004184808936
... ...

Step: 40, root = 0.5000000029995387, diff = 0.0000000029995387
... ...

Step: 50, root = 0.4999999999885979, diff = 0.0000000000114021
... ...

Step: 60, root = 0.4999999999997671, diff = 0.0000000000002329
Step: 61, root = 0.4999999999999878, diff = 0.0000000000000122
Step: 62, root = 0.5000000000000400, diff = 0.0000000000000400
Step: 63, root = 0.4999999999999556, diff = 0.0000000000000444
Step: 64, root = 0.5000000000000078, diff = 0.0000000000000078
Step: 65, root = 0.5000000000000201, diff = 0.0000000000000201
Step: 66, root = 0.5000000000000001, diff = 0.0000000000000001



WHY 0.38197?

■ A funny number used in the decision of the position of d?  Why?

■ Let's look at the configuration:  
 

■ Every time, we could shrink the bracket  
from 1 to (w+z) or (1-w)

■ In order to avoid the worst case, let's  
simply force them to be the same:  

■ Usually it would be the optimal if we  
preserve the same “shrinking rate”: 
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w + z = 1� w

z

1� w
= w

a c

b d

w 1–w

z

Then
w =

3�
p
5

2
⇡ 0.38197

1



WHY 0.38197? (II)
■ Actually, this is nothing but the golden ratio:
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WHY 0.38197? (III)
■ The nominal golden section is derived from
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My comments: unfortunately I'm not able to prove this is the best ratio for a generic  
1D minimum finding; but it's not a bad number in principle. 

And 1� 1

�
⇡ 0.38197

So this minimum finding
method is called 

Golden Section Search.

� =
a+ b

a
=

a

b
⇡ 1.61803



PARABOLIC INTERPOLATION: 
BRENT'S METHOD 
■ As we has shown in the previous half of this lecture, the parabolic 

interpolation (the Brent's method) shows a good solution of 
efficiency for 1D root finding.

■ We are also able to do the same thing here:
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The minimum value of the function f(x) is located at

d = b� 1

2
· (b� a)2[fb � fc]� (b� c)2[fb � fa]

(b� a)[fb � fc]� (b� c)[fb � fa]

Current best solution
Updating term for next iteration

You may try to derive this formula by yourself! 

Suppose we have three points: (x,y) = ( a,  fa ), ( b,  fb ), ( c,  fc )



FRAC = 0.38197 
a, c = 0.0, 2.0 
fa, fc = f(a), f(c) 
b = a+(c-a)*FRAC 
fb = f(b) 
   
for step in range(150): 
    P = (b-a)*(b-a)*(fb-fc) - (b-c)*(b-c)*(fb-fa) 
    Q = (b-a)*(fb-fc) - (b-c)*(fb-fa) 
    d = b - 0.5*P/Q 
   
    if (d-a)*(d-c)>0.: 
        if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC 
        else:                 d = b+(c-b)*FRAC 
         
    fd = f(d)   
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5))) 
    if abs(b-d)<1E-14: break 
   
    if fd<fb: 
        b, d = d, b 
        fb, fd = fd, fb 
  
    if (d-b)*(a-b)>0: a, fa = d, fd 
    else:             c, fc = d, fd

EXAMPLE CODE
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  ⇐ The same initial bracket as the golden section search

  ⇐ Estimate d with the  
formula given above.

  ⇐ Fail-safe protection

  ⇐ keep b as the best solution as always

l205-example-07.py (partial)



THE OUTPUTS

■ Surely the converging speed is much faster than the  
simple golden section searches:
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Step:  0, root = 0.5645411768827963, diff = 0.0645411768827963
Step:  1, root = 0.5151073153720723, diff = 0.0151073153720723
Step:  2, root = 0.5038341068383387, diff = 0.0038341068383387
Step:  3, root = 0.5009203969723207, diff = 0.0009203969723207
Step:  4, root = 0.5002316050692824, diff = 0.0002316050692824
... ...

Step: 10, root = 0.5000000516190403, diff = 0.0000000516190403
... ...

Step: 20, root = 0.5000000000000426, diff = 0.0000000000000426
Step: 21, root = 0.5000000000000105, diff = 0.0000000000000105
Step: 22, root = 0.5000000000000026, diff = 0.0000000000000026

You may notice that, finding the minimum is more 
difficult than finding the root!



MINIMUM FINDING WITH 
DERIVATIVES
■ This is pretty tricky: if you know the exact form of the first 

derivative, then a simply root finding code can already give you 
the maximum and minimum points.

■ If we just want to apply the Newton's method, we need to know  
the exact form of second derivative. 
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Next best root is given by d = b� f(b)

f 0(b)

d = b� f 0(b)

f 00(b)
Next best minimum/maximum is given by



EXAMPLE CODE
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def fp(x): 
    return 2.*(x-0.5)*(x-10.)*(x-10.)+2.*(x-0.5)*(x-0.5)*(x-10.) 
def fpp(x): 
    return 2.*(x-10.)*(x-10.)+8.*(x-0.5)*(x-10.)+2.*(x-0.5)*(x-0.5) 
   
FRAC = 0.38197 
a, c = 0.0, 2.0 
fa, fc = f(a), f(c) 
b = a+(c-a)*FRAC 
fb = f(b) 
   
for step in range(150): 
    delta = -fp(b)/fpp(b) 
    d = b + delta 
   
    if (d-a)*(d-c)>0.: 
        if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC 
        else:                 d = b+(c-b)*FRAC 
         
    fd = f(d)   
    print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5))) 
    if abs(b-d)<1E-14: break 
   
    b = d

  ⇐ update b,d according to Newton’s method

  ⇐ Again, the same initial bracket!

  ⇐ Fail-safe protection

l205-example-08.py (partial)



THE PERFORMANCE
■ The converging speed is VERY GOOD. We need only~5 steps 

instead of 23 or 6x iterations. The second derivative is required!  
 
 
 
 

■ Alternatively, one can adopt Brent's method for root finding on 
first derivate: (Well, it's not too bad at all!)
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Step:  0, root = 0.4747183508530082, diff = 0.0252816491469918
Step:  1, root = 0.4998006350485492, diff = 0.0001993649514508
Step:  2, root = 0.4999999874497394, diff = 0.0000000125502606
Step:  3, root = 0.4999999999999999, diff = 0.0000000000000001
Step:  4, root = 0.5000000000000000, diff = 0.0000000000000000

Step:  0, root = 0.4358830239633310, diff = 0.0641169760366690
Step:  1, root = 0.5013516961302908, diff = 0.0013516961302908
Step:  2, root = 0.4999956151890250, diff = 0.0000043848109750
Step:  3, root = 0.5000000000658166, diff = 0.0000000000658166
Step:  4, root = 0.5000000000000000, diff = 0.0000000000000000
Step:  5, root = 0.5000000000000000, diff = 0.0000000000000000

l205-example-08.py (output)

l205-example-08a.py (output)



INTERMISSION

■ Try to use the SciPy implementation of Brent’s method,  
scipy.optimize.brentq() to solve the same problem in  
l205-example-02.py and see what you get?

■ The golden section search – what will happen if you do not use 
the “golden” ratio but a whatever number, such as 0.5? Is it better 
or worse in terms of converging speed?
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MULTIDIMENSIONAL 
MINIMIZATION (COMMENTS)

■ If we want to find the minimum point in multi-dimensional space, 
it's much harder than our those 1D examples given above.

■ Many numerical algorithms have been developed in order to find 
the minimum point for various problems.  
(or, the best algorithm could be question dependent. )

■ Some named methods: Downhill method, Conjugate gradient, 
Steepest Descent, Simplex method, Quasi-Newton method, etc. 

■ We will not discuss about how to write the code by yourself, 
instead, we are going to use the standard tools in SciPy directly!

38



BACK TO SCIPY

■ The generic minimizer scipy.optimize.minimize() is shown below:

39

Let’s see a super simple example for 
calling this tool!

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#


ONE LINE TO FIND THE 
MINIMUM
■ An example code for calling the default minimizer (“BFGS”= a 

quasi-Newton method by Broyden-Fletcher-Goldfarb-Shanno).

40

import numpy as np 
import scipy.optimize as opt 
  

def f(x): 
    return (x[0]-1.)**2+(x[1]-2.)**2+(x[2]-3.)**2 
  

x_init = np.array([0.5,0.5,0.5]) 
  

res = opt.minimize(f,x_init) 
  

if res.success: 
    print('The resulting vector:',res.x) l205-example-09.py

The resulting vector:  
[ 1.          1.99999991  3.00000009]

  ⇓ A 3D function with obvious minimal point of (1,2,3)

  ⇐ initial values

l205-example-09.py (output)



A PRACTICAL EXAMPLE:  
LEAST-SQUARE (χ2) FIT
■ The best results can be obtained by minimizing a χ2 value for  

N independent measurements:

41

�2 =
NX

i

(fi � µi)2

�2
i

fi: expected value of the model
μi: ith measurement

σi: uncertainty of ith measurement

fi = f(xi;↵,�, �, . . . )

Keeping updating those parameters 
(α,β,γ,...) until the best (smallest)  

χ2 value is reached.
σi

fi

μi



LET’S GET SOME REAL  
DATA POINTS
■ One can start with storing the data as numpy arrays and make a 

simple plot with error bar:
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import numpy as np 
import matplotlib.pyplot as plt 

xmin, xmax, xbinwidth = 100., 170., 2. 
vx = np.linspace(xmin+xbinwidth/2,xmax-xbinwidth/2,35) 
vy = np.array( 
[7,2,4,4,3,9,8,1,6,6,8,16,36,20,8,6,8,6,4,7, 
 4,10,5,6,1,4,3,4,4,6,2,6,9,5,8],dtype='float64') 
vyerr = vy**0.5     

plt.plot([xmin, xmax],[0.,0.],c='black',lw=2) 
plt.errorbar(vx, vy, vyerr, c='blue', fmt = 'o') 
plt.grid() 
plt.show() 

l205-example-10.py

  ⇐ x axis

  ⇐ y axis: simple of  
counting events in bin

  ⇐ assuming Poisson standard deviation



LET’S GET SOME REAL 
DATA POINTS (II)
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■ This is the output – nothing but 
the (in)famous Higgs boson.  

one of the  
events here



MODEL SETUP
■ In order to perform the fit, one needs to construct a model that can 

describe the data. Here we simple introduce a 2nd order 
polynomial for the background + a Gaussian signal peak. 
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def model(x, norm, mean, sigma, c0, c1, c2): 
     

    xp = (x-xmin)/(xmax-xmin) 
    polynomial = c0 + c1*xp + c2*xp**2 
     

    gaussian = norm*xbinwidth/(2.*np.pi)**0.5/sigma * \ 
               np.exp(-0.5*((x-mean)/sigma)**2) 
     

    return polynomial + gaussian 

f(x) = c0 + c1 · x+ c2 · x2

g(x) =

N ·�xp
2⇡�

exp


� (x� µ)

2

2�

2

�
∆x: bin width, required for  
      the normalization

l205-example-10a.py (partial)



FITTING CORE & PLOTTING
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def fcn(p):     
    expt = model(vx,p[0],p[1],p[2],p[3],p[4],p[5]) 
    delta = (vy-expt)/vyerr 
    return (delta**2).sum() 
     

p_init = np.array([70.,125.,2.,4.,0.,0.]) 
r = opt.minimize(fcn,p_init) 
   
if r.success: 
    print('N(Higgs)  = %.1f events' % r.x[0]) 
    print('M(Higgs)  = %.1f GeV' % r.x[1]) 
    print('chi^2/ndf = %.2f' % (fcn(r.x)/(len(vy)-len(r.x)))) 

partial l10-example-10a.py

�2 =
NX

i

(fi � µi)2

�2
i

Calculate χ2 value for a given parameter 
set, after skipping the single zero entry bin.

N(Higgs)  = 69.8 events
M(Higgs)  = 125.2 GeV
chi^2/ndf = 1.57

  ndf = N(data points)
  –N(parameters) 

                     

  ⇐ χ2 / number of degrees of freedom ~ 1 means a good fit!



FITTING CORE & PLOTTING 
(II)
■ Plotting – overlapping the 

fitting model on top of the 
data points. 

■ Generally you still have to 
judge/confirm the quality 
of fit by plotting.
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if r.success:    
    cx = np.linspace(xmin,xmax,500) 
    cy = model(cx,r.x[0],r.x[1],r.x[2],r.x[3],r.x[4],r.x[5])  
    cy_bkg = model(cx,0.,r.x[1],r.x[2],r.x[3],r.x[4],r.x[5])     
     

    plt.plot(cx, cy, c='red',lw=2) 
    plt.plot(cx, cy_bkg, c='red',lw=2,ls='--') 

    ⇑ background curve is obtained by 
      setting the Gaussian norm to be 0

l205-example-10a.py (partial)



ALTERNATIVE FITTING 
CODE
■ Actually in scipy, there is a dedicated least-square fitting package, 

named curve_fit(). It also provides an estimation of fitting errors.
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p_init = np.array([70.,125.,2.,4.,0.,0.]) 
rx,rcov = opt.curve_fit(model,vx,vy,p_init,vyerr) 
   

if np.any(rx != p_init): 
    print('N(Higgs) = %.1f +- %.1f events' % (rx[0],rcov[0,0]**0.5)) 
    print('M(Higgs) = %.1f +- %.1f GeV' % (rx[1],rcov[1,1]**0.5)) 
     

    cx = np.linspace(xmin,xmax,500) 
    cy = model(cx,rx[0],rx[1],rx[2],rx[3],rx[4],rx[5])  
    cy_bkg = model(cx,0.,rx[1],rx[2],rx[3],rx[4],rx[5])     

N(Higgs) = 18.7 +- 5.4 events
M(Higgs) = 126.3 +- 0.6 GeV

⇑ No needs of calculating x2 by ourself. 

   ⇑ square-root of the diagonal  
term is the uncertainty

l205-example-10b.py (partial)



COMMENTS

■ Surely such a simple χ2 fit is not 
very professional. The real fit to 
the Higgs mass peak is much 
more difficult than just few 
lines. 

■ But this is a very good 
demonstration in any case!

■ We will come back to this 
subject (statistical analysis, 
fitting, and modeling) again in a 
later lecture.
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This is the real plot!
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HANDS-ON SESSION

■ Practice 1:  
Using the root function routine (Newton’s method) in SciPy, 
implement your own arcsine and arccosine function. Please 
compare your own implementations and the standard routines for 
the following target values:  
 

sin–1(0.1), sin–1(0.5), sin–1(0.9), sin–1(1.0) and  
cos–1(0.1), cos–1(0.5), cos–1(0.9), cos–1(1.0)  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The trick: simply find the root of sin(x) – R = 0 and cos(x) – R = 0



HANDS-ON SESSION

■ Practice 2:  
Produce a fit to the following data points with 2nd / 3rd / 4th / 5th 
order polynomial, and decide which one gives you the best quality 
of fit, by judging the χ2 per number of degrees of freedom?
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xmin, xmax, xbinwidth = 0.,1.,0.05 
vx = np.linspace(0.,1.,21) 
vy = np.array( 
[ 0.981, 0.930, 0.900, 0.889, 0.978, 1.053, 1.000, 
  0.986, 1.144, 1.188, 1.309, 1.259, 1.348, 1.435, 
  1.427, 1.540, 1.426, 1.203, 0.843, 0.576, 0.060]) 
vyerr = np.array( 
[ 0.044, 0.042, 0.037, 0.037, 0.043, 0.046, 0.038, 
  0.045, 0.041, 0.041, 0.044, 0.043, 0.043, 0.041, 
  0.050, 0.055, 0.052, 0.074, 0.060, 0.068, 0.082]) 

l205-practice-02.py


