
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 2-5:  
Root finding & minimization

1

Kai-Feng Chen
National Taiwan University

2019

ROOT FINDING

■ Root finding is one of classical algebra problems since your high
school times...

2

For a given function f(x),

if f(x) = 0, what’s the x?

A CLASSICAL METHOD:
FIND THE ANSWER WITH YOUR EYES

■ I'm not talking about peeking at other person's answer sheet...

3

A CLASSICAL METHOD:
FIND THE ANSWER WITH YOUR EYES

4

x = (a, b)

y = (f (a), f (b))

y = f (x)

First plotting the
function

for f (a) < 0 < f (b)
[especially if f (a), f (b) → 0]

There may exist a root with x ∈ (a,b)

(Assessment: try to find an invalid example!)

LET DO SUCH A PRACTICE
WITH YOUR COMPUTER
■ Suppose we know that there is an solution of f(x) = 0 for x ∈(a,b),  

how to find the best solution by your computer?

■ Surely there is an “almost” trivial algorithm: the Bisection method

5

x = a

x = b

x = a

0 =
a+ b

2

Keep updating the boundaries
with the middle point of a and b,

until reaching the limited precision.

LET’S GIVE IT A TRY!

■ Suppose that we are going to solve the following equation:

6

f(x) = (x� 1) · (x� 2) · (x� 3) · (x� 4) · (x� 5) = 0

Surely we know that
there are 5 explicit
solutions.

y = f (x)

A DEMO IMPLEMENTATION

7

def f(x):
 return (x-1.)*(x-2.)*(x-3.)*(x-4.)*(x-5.)

a, b = 2.4, 3.4
fa, fb = f(a), f(b)

for step in range(50):
 c = (a+b)*0.5
 fc = f(c)

 print('Step: %2d, root = %.16f, diff = %.16f' % (step,c,abs(c-3.)))

 if abs(a-c)<1E-14: break

 if fc*fa>0.:
 a, fa = c, fc
 else:
 b, fb = c, fc l205-example-01.py

 ⇐ Limited precision = 10–14

 ⇐ Let’s do maximum 50 iterations

■ A simple implementation of the Bisection method:

 ⇐ Test point c – at the middle of a and b

Step: 0, root = 2.8999999999999999, diff = 0.1000000000000001
Step: 1, root = 3.1499999999999999, diff = 0.1499999999999999
Step: 2, root = 3.0249999999999999, diff = 0.0249999999999999
Step: 3, root = 2.9624999999999999, diff = 0.0375000000000001
Step: 4, root = 2.9937499999999999, diff = 0.0062500000000001
Step: 5, root = 3.0093749999999999, diff = 0.0093749999999999
... ...
Step: 10, root = 3.0000976562499999, diff = 0.0000976562499999
... ...
Step: 20, root = 2.9999999046325683, diff = 0.0000000953674317
... ...
Step: 30, root = 3.0000000000931322, diff = 0.0000000000931322
... ...
Step: 40, root = 2.9999999999999090, diff = 0.0000000000000910
... ...
Step: 44, root = 2.9999999999999942, diff = 0.0000000000000058
Step: 45, root = 3.0000000000000084, diff = 0.0000000000000084
Step: 46, root = 3.0000000000000013, diff = 0.0000000000000013

A DEMO IMPLEMENTATION
(II)
■ Terminal output:

8

HIGHER ORDER METHOD(S)

■ Although this bisection algorithm sounds not so smart, but it must
success (if the function is well behaved).

■ For higher efficiency (speed), we could go for the algorithms with
an idea of higher order mathematics, e.g. Brent's Method:

9

Suppose we have three points: (x,y) = (a, fa), (b, fb), (c, fc)

Adopt Lagrange interpolation (=3 points parabola)

x =
(y � fa)(y � fb)c

(fc � fa)(fc � fb)
+

(y � fb)(y � fc)a

(fa � fb)(fa � fc)
+

(y � fc)(y � fa)b

(fb � fc)(fb � fa)

The best guess of root should be located at y = g(x) = 0

BRENT'S METHOD

■ Suppose x = b is the current best guess of root, the next  
 
best estimation is:

10

Then, we could pick up the best three values as the
new (a,b,c) for the next iteration.

(a, fa)
(b, fb)

(c, fc)

×

×

×
×

d = b+
P

Q

P = S[T (R� T)(c� b)� (1�R)(b� a)]

Q = (T � 1)(R� 1)(S � 1)

R =
fb
fc

, S =
fb
fa

, T =
fa
fc

d = b+
P

Q

LET’S TRY IT!

11

a, b, c = 2.4, 2.5, 3.4
fa, fb, fc = f(a), f(b), f(c)

for step in range(50):

 R, S, T = fb/fc, fb/fa, fa/fc
 P = S*(T*(R-T)*(c-b)-(1.-R)*(b-a))
 Q = (T-1.)*(R-1.)*(S-1.)

 d = b + P/Q
 fd = f(d)

 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.)))

 if abs(b-d)<1E-14: break

 if fa*fb>0.:
 a, fa = b, fb
 b, fb = d, fd
 else:
 c, fc = b, fb
 b, fb = d, fd

 ⇐ Simply copy the equations here!

 ⇐ Now we need 3 points to host the search

 ⇐ Replace (a, b) with (b, d)

 ⇐ Replace (c, b) with (b, d)
l205-example-02.py (partial)

LET’S TRY IT! (II)

■ Terminal output is like this:  
 
 
 
 
 
 

■ Well, it does happen: it does NOT guarantee the next step will
always gives a better guess of the root, especially if we
approximate the function by a 2nd order parabola.

■ Alternative fix: replace the next guess by Bisection method, if the
guess is bad/poor.

12

Step: 0, root = -5.2064627478620000, diff = 8.2064627478620000
Step: 1, root = 2.9693426221720163, diff = 0.0306573778279837
Step: 2, root = 3.0066798826104528, diff = 0.0066798826104528
Step: 3, root = 2.9998524472418411, diff = 0.0001475527581589
Step: 4, root = 3.0000000378298575, diff = 0.0000000378298575
Step: 5, root = 2.9999999999999534, diff = 0.0000000000000466
Step: 6, root = 3.0000000000000000, diff = 0.0000000000000000
Step: 7, root = 3.0000000000000000, diff = 0.0000000000000000

A FAIL-SAFE CODE
■ Simply fix the value of test point (d,fd) with

Bisection method if the resulting values are bad:

13

 d = b + P/Q
 fd = f(d)

 if (d-a)*(d-c)>0. or abs(fd)>abs(fb):
 if fa*fb>0.: d = (b+c)*0.5
 else: d = (a+b)*0.5
 fd = f(d)

 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.)))

Step: 0, root = 2.9500000000000002, diff = 0.0499999999999998
Step: 1, root = 3.0169811828014468, diff = 0.0169811828014468
Step: 2, root = 2.9993946939327074, diff = 0.0006053060672926
Step: 3, root = 3.0000006446632410, diff = 0.0000006446632410
Step: 4, root = 2.9999999999917120, diff = 0.0000000000082880
Step: 5, root = 3.0000000000000000, diff = 0.0000000000000000
Step: 6, root = 3.0000000000000000, diff = 0.0000000000000000

 ⇐ All good!

l205-example-02a.py (partial)

ALGORITHM WITH DERIVATIVE:
NEWTON'S METHOD
(NEWTON-RAPHSON)

■ Well, where is the beloved method, which we have learned in
calculus course?

14

current best root
is at x = b

×

×

f(x+ �) ⇡ f(x) + f

0(x)� +
f

00(x)

2
�

2 + ...

(b, fb)

Take out the
2nd order term

Next best root
will be d = b� f(b)

f 0(b)

def fp(x):
 return (x-2.)*(x-3.)*(x-4.)*(x-5.) + \
 (x-1.)*(x-3.)*(x-4.)*(x-5.) + \
 (x-1.)*(x-2.)*(x-4.)*(x-5.) + \
 (x-1.)*(x-2.)*(x-3.)*(x-5.) + \
 (x-1.)*(x-2.)*(x-3.)*(x-4.)

a, b, c = 2.4, 2.5, 3.4
fa, fb, fc = f(a), f(b), f(c)

for step in range(50):

 delta = -fb/fp(b)
 d = b + delta
 fd = f(d)

 if (d-a)*(d-c)>0. or abs(fd)>abs(fb):
 if fa*fb>0.: d = (b+c)*0.5
 else: d = (a+b)*0.5
 fd = f(d)

 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.)))
 if abs(b-d)<1E-14: break

 b, fb = d, fd

IMPLEMENTATION: 
NEWTON'S METHOD

15

 ⇐ Analytical solution

 ⇐ Keep the protection as in the  
Bisection method

l205-example-03.py (partial)

(SUPER-)FAST
CONVERGING!
■ Terminal output:  
 
 
 
 
 

■ Q: Why not to use the numerical derivatives?

■ A: As we have discussed before, it's very hard to have precise  
 numerical solution for the derivatives. In this case the solution  

 will be limited by the best precision of the derivative calculation.  
 It's generally not a recommended way (but still “doable”).

16

Step: 0, root = 2.9500000000000002, diff = 0.0499999999999998
Step: 1, root = 3.0003151394705090, diff = 0.0003151394705090
Step: 2, root = 2.9999999999217564, diff = 0.0000000000782436
Step: 3, root = 3.0000000000000000, diff = 0.0000000000000000
Step: 4, root = 3.0000000000000000, diff = 0.0000000000000000

 ⇑ Just 3–4 steps!

INTERMISSION

■ With Newton’s method:

▫ What will happen if you remove the failed safe protection (the
block of using Bisection method)?
▫ Try to run the calculation with numerical derivative, how good

is the solution?  
 
 
 

■ Try to find a not-working-so-well problem!

17

def fp(x):
 h = 1E-5
 return (f(x+h/2.)-f(x-h/2.))/h

 ⇐ You can try this by yourself!

l205-example-03a.py (partial)

SOME MORE
PRACTICAL EXAMPLES?
■ Let's implement a function with Newton's method to calculate

square-root and cubic-root. This is one of the places this method
can do the work easily!

■ The usual square-root function is sqrt(), and we can only use the
pow() function or the ** operator to calculate cubic-root.

■ If we are looking for the square-(cubic-) root of a real number R, it's
equivalent to find the root of

18

f(x) = x

2 �R or f(x) = x

3 �R

The corresponding first derivatives are

The implement the code should be very easy!

f

0
(x) = 2x or f

0
(x) = 3x

2

QUICK &
SIMPLE
CODE

19

def squareroot(R):
 fsq = lambda x:x*x-R
 fsqp = lambda x:2.*x

 a, b, c = 0., R*0.5, R
 fa, fb, fc = fsq(a), fsq(b), fsq(c)
 for step in range(50):
 delta = -fb/fsqp(b)
 d = b + delta
 fd = fsq(d)

 if abs(b-d)<1E-14: return d
 b, fb = d, fd

def cubicroot(R):
 fcb = lambda x:x*x*x-R
 fcbp = lambda x:3.*x*x

 a, b, c = 0., R*0.5, R
 fa, fb, fc = fcb(a), fcb(b), fcb(c)
 for step in range(50):
 delta = -fb/fcbp(b)
 d = b + delta
 fd = fcb(d)

 if abs(b-d)<1E-14: return d
 b, fb = d, fd

 ⇐ local functions

Basically the
implementations are

the same; the only
difference are the local
functions fsq() and

fsqp().

l205-example-04.py (partial)

LET’S TRY THE FUNCTIONS!

■ This is almost a trivial task:

20

R = 1234.

print('root = %.16f, diff = %.16f' % \
 (squareroot(R),abs(R**0.5-squareroot(R))))

print('root = %.16f, diff = %.16f' % \
 (cubicroot(R),abs(R**(1./3.)-cubicroot(R))))

root = 35.1283361405005934, diff = 0.0000000000000000
root = 10.7260146688273235, diff = 0.0000000000000000

Surely this code is very slow if we compare to the standard
operator, but this is a very good example that almost all the

math functions can be implemented in a similar way!

l205-example-04.py (partial)

USE THE FUNCTIONS FROM
SCIPY

21

■ Everything is under scipy.optimize:

You can see some
familiar names here!  

http://docs.scipy.org/doc/scipy/reference/optimize.html

http://docs.scipy.org/doc/scipy/reference/optimize.html

USING THE SUPER EASY
SCIPY FUNCTIONS
■ Just import the scipy.optimize and call the corresponding method:

22

import scipy.optimize as opt

def squareroot(R):
 fsq = lambda x:x*x-R
 fsqp = lambda x:2.*x

 return opt.newton(fsq,R*0.5,fsqp)

R = 1234.

print('root = %.16f, diff = %.16f' % \
 (squareroot(R),abs(R**0.5-squareroot(R))))

l205-example-05.py

root = 35.1283361405005934, diff = 0.0000000000000000

 ⇐ Just call it!

MINIMIZATION OR
MAXIMIZATION
■ Method in calculus – find the zero first derivative: 
 

■ How about the numerical method?

■ Yep, you can probably already apply what we learned from the
previous section, to find the root of f’(x) = 0 if we know the first
derivative already.

■ If not, this is what we are going to discuss now.

23

f

0(x) = 0 ! x =?

×
×

×

ONE DIMENSIONAL
SEARCH IN A BRACKET
■ This method is very simple: if we have a bracket (a,b,c), and f(b) <

f(a), f(c), and b is the current best minimum:

24

x = a

×

x = c

x = b
x = d ×

×

×

(a,b,d)
(b,d,c)

(a,b,c)
Keep updating the bracket by replacing

(a,b,c) with (a,b,d) or (b,d,c) until a desired
precision.

We always need to keep  
f(b) < f(a) and f(b) < f(c)  

to ensure we have at least a minimum in
the interval.

1D SEARCH – THE STEPS

25

a

a

a’

b

b

b’

c

c
d

c’

G
o

to
 t

he
 n

ex
t

up
da

te

￭ Initial bracket (a,b,c)

￭ If |b-c|>|a-b|, find a new test point
d in [b,c]

￭ If f(b) < f(d), keep b as the  
current best estimation of the
minimum point.

￭ Update the bracket accordingly:  
c' = d

￭ Go to the next update

A QUICK IMPLEMENTATION

26

def f(x):
 return (x-0.5)*(x-0.5)*(x-10.)*(x-10.)

FRAC = 0.38197
a, c = 0.0, 2.0
fa, fc = f(a), f(c)
b = a+(c-a)*FRAC
fb = f(b)

for step in range(150):

 if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC
 else: d = b+(c-b)*FRAC
 fd = f(d)

 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5)))
 if abs(b-d)<1E-14: break

 if fd<fb:
 b, d = d, b
 fb, fd = fd, fb

 if (d-b)*(a-b)>0: a, fa = d, fd
 else: c, fc = d, fd

l205-example-06.py

 ⇐ A function with 2 obvious
minimal points ⇐ Magic number!

 ⇐ Insert a new testing point,  
between either (a,b) or (b,c)

 ⇐ exchange b and d, keep b as the best solution as always

THE RESULTS
■ Terminal output:

27

Step: 0, root = 1.2360778381999999, diff = 0.7360778381999999
... ...

Step: 10, root = 0.4946110292293492, diff = 0.0053889707706508
... ...

Step: 20, root = 0.4999668808722842, diff = 0.0000331191277158
... ...

Step: 30, root = 0.4999995815191064, diff = 0.0000004184808936
... ...

Step: 40, root = 0.5000000029995387, diff = 0.0000000029995387
... ...

Step: 50, root = 0.4999999999885979, diff = 0.0000000000114021
... ...

Step: 60, root = 0.4999999999997671, diff = 0.0000000000002329
Step: 61, root = 0.4999999999999878, diff = 0.0000000000000122
Step: 62, root = 0.5000000000000400, diff = 0.0000000000000400
Step: 63, root = 0.4999999999999556, diff = 0.0000000000000444
Step: 64, root = 0.5000000000000078, diff = 0.0000000000000078
Step: 65, root = 0.5000000000000201, diff = 0.0000000000000201
Step: 66, root = 0.5000000000000001, diff = 0.0000000000000001

WHY 0.38197?

■ A funny number used in the decision of the position of d? Why?

■ Let's look at the configuration:  

■ Every time, we could shrink the bracket  
from 1 to (w+z) or (1-w)

■ In order to avoid the worst case, let's  
simply force them to be the same:  

■ Usually it would be the optimal if we  
preserve the same “shrinking rate”:

28

w + z = 1� w

z

1� w
= w

a c

b d

w 1–w

z

Then
w =

3�
p
5

2
⇡ 0.38197

1

WHY 0.38197? (II)
■ Actually, this is nothing but the golden ratio:

29

WHY 0.38197? (III)
■ The nominal golden section is derived from

30

My comments: unfortunately I'm not able to prove this is the best ratio for a generic  
1D minimum finding; but it's not a bad number in principle.

And 1� 1

�
⇡ 0.38197

So this minimum finding
method is called

Golden Section Search.

� =
a+ b

a
=

a

b
⇡ 1.61803

PARABOLIC INTERPOLATION:
BRENT'S METHOD
■ As we has shown in the previous half of this lecture, the parabolic

interpolation (the Brent's method) shows a good solution of
efficiency for 1D root finding.

■ We are also able to do the same thing here:

31

The minimum value of the function f(x) is located at

d = b� 1

2
· (b� a)2[fb � fc]� (b� c)2[fb � fa]

(b� a)[fb � fc]� (b� c)[fb � fa]

Current best solution
Updating term for next iteration

You may try to derive this formula by yourself!

Suppose we have three points: (x,y) = (a, fa), (b, fb), (c, fc)

FRAC = 0.38197
a, c = 0.0, 2.0
fa, fc = f(a), f(c)
b = a+(c-a)*FRAC
fb = f(b)

for step in range(150):
 P = (b-a)*(b-a)*(fb-fc) - (b-c)*(b-c)*(fb-fa)
 Q = (b-a)*(fb-fc) - (b-c)*(fb-fa)
 d = b - 0.5*P/Q

 if (d-a)*(d-c)>0.:
 if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC
 else: d = b+(c-b)*FRAC

 fd = f(d)
 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5)))
 if abs(b-d)<1E-14: break

 if fd<fb:
 b, d = d, b
 fb, fd = fd, fb

 if (d-b)*(a-b)>0: a, fa = d, fd
 else: c, fc = d, fd

EXAMPLE CODE

32

 ⇐ The same initial bracket as the golden section search

 ⇐ Estimate d with the  
formula given above.

 ⇐ Fail-safe protection

 ⇐ keep b as the best solution as always

l205-example-07.py (partial)

THE OUTPUTS

■ Surely the converging speed is much faster than the  
simple golden section searches:

33

Step: 0, root = 0.5645411768827963, diff = 0.0645411768827963
Step: 1, root = 0.5151073153720723, diff = 0.0151073153720723
Step: 2, root = 0.5038341068383387, diff = 0.0038341068383387
Step: 3, root = 0.5009203969723207, diff = 0.0009203969723207
Step: 4, root = 0.5002316050692824, diff = 0.0002316050692824
... ...

Step: 10, root = 0.5000000516190403, diff = 0.0000000516190403
... ...

Step: 20, root = 0.5000000000000426, diff = 0.0000000000000426
Step: 21, root = 0.5000000000000105, diff = 0.0000000000000105
Step: 22, root = 0.5000000000000026, diff = 0.0000000000000026

You may notice that, finding the minimum is more
difficult than finding the root!

MINIMUM FINDING WITH
DERIVATIVES
■ This is pretty tricky: if you know the exact form of the first

derivative, then a simply root finding code can already give you
the maximum and minimum points.

■ If we just want to apply the Newton's method, we need to know  
the exact form of second derivative.

34

Next best root is given by d = b� f(b)

f 0(b)

d = b� f 0(b)

f 00(b)
Next best minimum/maximum is given by

EXAMPLE CODE

35

def fp(x):
 return 2.*(x-0.5)*(x-10.)*(x-10.)+2.*(x-0.5)*(x-0.5)*(x-10.)
def fpp(x):
 return 2.*(x-10.)*(x-10.)+8.*(x-0.5)*(x-10.)+2.*(x-0.5)*(x-0.5)

FRAC = 0.38197
a, c = 0.0, 2.0
fa, fc = f(a), f(c)
b = a+(c-a)*FRAC
fb = f(b)

for step in range(150):
 delta = -fp(b)/fpp(b)
 d = b + delta

 if (d-a)*(d-c)>0.:
 if abs(a-b)>abs(c-b): d = b+(a-b)*FRAC
 else: d = b+(c-b)*FRAC

 fd = f(d)
 print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5)))
 if abs(b-d)<1E-14: break

 b = d

 ⇐ update b,d according to Newton’s method

 ⇐ Again, the same initial bracket!

 ⇐ Fail-safe protection

l205-example-08.py (partial)

THE PERFORMANCE
■ The converging speed is VERY GOOD. We need only~5 steps

instead of 23 or 6x iterations. The second derivative is required!  
 
 
 
 

■ Alternatively, one can adopt Brent's method for root finding on
first derivate: (Well, it's not too bad at all!)

36

Step: 0, root = 0.4747183508530082, diff = 0.0252816491469918
Step: 1, root = 0.4998006350485492, diff = 0.0001993649514508
Step: 2, root = 0.4999999874497394, diff = 0.0000000125502606
Step: 3, root = 0.4999999999999999, diff = 0.0000000000000001
Step: 4, root = 0.5000000000000000, diff = 0.0000000000000000

Step: 0, root = 0.4358830239633310, diff = 0.0641169760366690
Step: 1, root = 0.5013516961302908, diff = 0.0013516961302908
Step: 2, root = 0.4999956151890250, diff = 0.0000043848109750
Step: 3, root = 0.5000000000658166, diff = 0.0000000000658166
Step: 4, root = 0.5000000000000000, diff = 0.0000000000000000
Step: 5, root = 0.5000000000000000, diff = 0.0000000000000000

l205-example-08.py (output)

l205-example-08a.py (output)

INTERMISSION

■ Try to use the SciPy implementation of Brent’s method,
scipy.optimize.brentq() to solve the same problem in  
l205-example-02.py and see what you get?

■ The golden section search – what will happen if you do not use
the “golden” ratio but a whatever number, such as 0.5? Is it better
or worse in terms of converging speed?

37

MULTIDIMENSIONAL
MINIMIZATION (COMMENTS)

■ If we want to find the minimum point in multi-dimensional space,
it's much harder than our those 1D examples given above.

■ Many numerical algorithms have been developed in order to find
the minimum point for various problems.  
(or, the best algorithm could be question dependent.)

■ Some named methods: Downhill method, Conjugate gradient,
Steepest Descent, Simplex method, Quasi-Newton method, etc.

■ We will not discuss about how to write the code by yourself,
instead, we are going to use the standard tools in SciPy directly!

38

BACK TO SCIPY

■ The generic minimizer scipy.optimize.minimize() is shown below:

39

Let’s see a super simple example for
calling this tool!

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#

ONE LINE TO FIND THE
MINIMUM
■ An example code for calling the default minimizer (“BFGS”= a

quasi-Newton method by Broyden-Fletcher-Goldfarb-Shanno).

40

import numpy as np
import scipy.optimize as opt

def f(x):
 return (x[0]-1.)**2+(x[1]-2.)**2+(x[2]-3.)**2

x_init = np.array([0.5,0.5,0.5])

res = opt.minimize(f,x_init)

if res.success:
 print('The resulting vector:',res.x) l205-example-09.py

The resulting vector:  
[1. 1.99999991 3.00000009]

 ⇓ A 3D function with obvious minimal point of (1,2,3)

 ⇐ initial values

l205-example-09.py (output)

A PRACTICAL EXAMPLE:
LEAST-SQUARE (χ2) FIT
■ The best results can be obtained by minimizing a χ2 value for  

N independent measurements:

41

�2 =
NX

i

(fi � µi)2

�2
i

fi: expected value of the model
μi: ith measurement

σi: uncertainty of ith measurement

fi = f(xi;↵,�, �, . . .)

Keeping updating those parameters
(α,β,γ,...) until the best (smallest)  

χ2 value is reached.
σi

fi

μi

LET’S GET SOME REAL
DATA POINTS
■ One can start with storing the data as numpy arrays and make a

simple plot with error bar:

42

import numpy as np
import matplotlib.pyplot as plt

xmin, xmax, xbinwidth = 100., 170., 2.
vx = np.linspace(xmin+xbinwidth/2,xmax-xbinwidth/2,35)
vy = np.array(
[7,2,4,4,3,9,8,1,6,6,8,16,36,20,8,6,8,6,4,7,
 4,10,5,6,1,4,3,4,4,6,2,6,9,5,8],dtype='float64')
vyerr = vy**0.5

plt.plot([xmin, xmax],[0.,0.],c='black',lw=2)
plt.errorbar(vx, vy, vyerr, c='blue', fmt = 'o')
plt.grid()
plt.show()

l205-example-10.py

 ⇐ x axis

 ⇐ y axis: simple of  
counting events in bin

 ⇐ assuming Poisson standard deviation

LET’S GET SOME REAL
DATA POINTS (II)

43

■ This is the output – nothing but
the (in)famous Higgs boson.

one of the  
events here

MODEL SETUP
■ In order to perform the fit, one needs to construct a model that can

describe the data. Here we simple introduce a 2nd order
polynomial for the background + a Gaussian signal peak.

44

def model(x, norm, mean, sigma, c0, c1, c2):

 xp = (x-xmin)/(xmax-xmin)
 polynomial = c0 + c1*xp + c2*xp**2

 gaussian = norm*xbinwidth/(2.*np.pi)**0.5/sigma * \
 np.exp(-0.5*((x-mean)/sigma)**2)

 return polynomial + gaussian

f(x) = c0 + c1 · x+ c2 · x2

g(x) =

N ·�xp
2⇡�

exp

� (x� µ)

2

2�

2

�
∆x: bin width, required for  
 the normalization

l205-example-10a.py (partial)

FITTING CORE & PLOTTING

45

def fcn(p):
 expt = model(vx,p[0],p[1],p[2],p[3],p[4],p[5])
 delta = (vy-expt)/vyerr
 return (delta**2).sum()

p_init = np.array([70.,125.,2.,4.,0.,0.])
r = opt.minimize(fcn,p_init)

if r.success:
 print('N(Higgs) = %.1f events' % r.x[0])
 print('M(Higgs) = %.1f GeV' % r.x[1])
 print('chi^2/ndf = %.2f' % (fcn(r.x)/(len(vy)-len(r.x))))

partial l10-example-10a.py

�2 =
NX

i

(fi � µi)2

�2
i

Calculate χ2 value for a given parameter
set, after skipping the single zero entry bin.

N(Higgs) = 69.8 events
M(Higgs) = 125.2 GeV
chi^2/ndf = 1.57

 ndf = N(data points)
 –N(parameters)

 ⇐ χ2 / number of degrees of freedom ~ 1 means a good fit!

FITTING CORE & PLOTTING
(II)
■ Plotting – overlapping the

fitting model on top of the
data points.

■ Generally you still have to
judge/confirm the quality
of fit by plotting.

46

if r.success:
 cx = np.linspace(xmin,xmax,500)
 cy = model(cx,r.x[0],r.x[1],r.x[2],r.x[3],r.x[4],r.x[5])
 cy_bkg = model(cx,0.,r.x[1],r.x[2],r.x[3],r.x[4],r.x[5])

 plt.plot(cx, cy, c='red',lw=2)
 plt.plot(cx, cy_bkg, c='red',lw=2,ls='--')

 ⇑ background curve is obtained by
 setting the Gaussian norm to be 0

l205-example-10a.py (partial)

ALTERNATIVE FITTING
CODE
■ Actually in scipy, there is a dedicated least-square fitting package,

named curve_fit(). It also provides an estimation of fitting errors.

47

p_init = np.array([70.,125.,2.,4.,0.,0.])
rx,rcov = opt.curve_fit(model,vx,vy,p_init,vyerr)

if np.any(rx != p_init):
 print('N(Higgs) = %.1f +- %.1f events' % (rx[0],rcov[0,0]**0.5))
 print('M(Higgs) = %.1f +- %.1f GeV' % (rx[1],rcov[1,1]**0.5))

 cx = np.linspace(xmin,xmax,500)
 cy = model(cx,rx[0],rx[1],rx[2],rx[3],rx[4],rx[5])
 cy_bkg = model(cx,0.,rx[1],rx[2],rx[3],rx[4],rx[5])

N(Higgs) = 18.7 +- 5.4 events
M(Higgs) = 126.3 +- 0.6 GeV

⇑ No needs of calculating x2 by ourself.

 ⇑ square-root of the diagonal  
term is the uncertainty

l205-example-10b.py (partial)

COMMENTS

■ Surely such a simple χ2 fit is not
very professional. The real fit to
the Higgs mass peak is much
more difficult than just few
lines.

■ But this is a very good
demonstration in any case!

■ We will come back to this
subject (statistical analysis,
fitting, and modeling) again in a
later lecture.

48

This is the real plot!

 (GeV)l4m
70 80 90 100 110 120 130 140 150 160 170

Ev
en

ts
 /

2
G

eV
0

10

20

30

40

50

60

70
 (13 TeV)-135.9 fbCMS

Data
 H(125)

*γZZ, Z→q q
*γZZ, Z→ gg

 Z+X

HANDS-ON SESSION

■ Practice 1:  
Using the root function routine (Newton’s method) in SciPy,
implement your own arcsine and arccosine function. Please
compare your own implementations and the standard routines for
the following target values:  
 

sin–1(0.1), sin–1(0.5), sin–1(0.9), sin–1(1.0) and
cos–1(0.1), cos–1(0.5), cos–1(0.9), cos–1(1.0)  

 

49

The trick: simply find the root of sin(x) – R = 0 and cos(x) – R = 0

HANDS-ON SESSION

■ Practice 2:  
Produce a fit to the following data points with 2nd / 3rd / 4th / 5th
order polynomial, and decide which one gives you the best quality
of fit, by judging the χ2 per number of degrees of freedom?

50

xmin, xmax, xbinwidth = 0.,1.,0.05
vx = np.linspace(0.,1.,21)
vy = np.array(
[0.981, 0.930, 0.900, 0.889, 0.978, 1.053, 1.000,
 0.986, 1.144, 1.188, 1.309, 1.259, 1.348, 1.435,
 1.427, 1.540, 1.426, 1.203, 0.843, 0.576, 0.060])
vyerr = np.array(
[0.044, 0.042, 0.037, 0.037, 0.043, 0.046, 0.038,
 0.045, 0.041, 0.041, 0.044, 0.043, 0.043, 0.041,
 0.050, 0.055, 0.052, 0.074, 0.060, 0.068, 0.082])

l205-practice-02.py

