DD ,
INTRODUCTION TO /|

NUMERICAL ANALYSIS | \

Lecture 2-7: \ \
Random numbers

Kal-Feng Chen
National Taiwan University

OLD-FASHIONED
RANDOM NUMBERS

Well, this is still very useful
in some special situation...

But this old tech random
number generator cannot
generate too many digits, and
it may not be fair enough.

random numbers using a
random table at high school?
This actually shows two main
ideas of pseudo random

1) You need a seed to start

Have you generate some
2) recursive operation

numbers —

THOD

Temoo, roaeoe0 TN O NOM~NS ™ Lo N- —NTM™
MmMoOeND reOOOOM MO0 eOoOov ONOVO® WO~ ®™
-Oowow Ne®~O QOoOOoOMmMNM e O~ m ~O0veo e o~V -

29 30 31 32

N NN oo NONOO ~rTONNN O~

D M

~reNOMmMO CMewON MDD - VOO~ e o~ Lwvoene

aN®mOo™ o~~~ 3N RMO= DL ™MmM~0 ~oo0o0oO©

DO ND oMo~ SN N~-O Luoox® C~0On~nw VOOV -~

25 26 27 28

- N-um aoONGO an-~a0n -0-o6 NONN- OO -0 -

Qewvuvd CODe-Mm oMo en ~rOeO™ DO~ O ~fONOO
Neoe~-0O 9 ~oDewvo -0V Oowm ~NOSN™NO ROV Oo -0 -®
O~N®0w o~ONO oMo 0 DOONN~ e~rNT~ HDe~0O

212223 24

MNDOD- TNOeO ~-O~Me DN O®O ~AReO® NOMMOw D

MmMOo®®ON -~~~ oMo on ~-heO® Ll B ecetTHMmMd
M=o cCMNEOM Mmoo~ a~r0O0Mm™ MO0 - ND=-~20O
O~ dOuNOD O~ m O e® NN~ DD -

171819 20

rNOD O N o~ TOSLeYm NSO - ™ -~0Mme -~ -0

OO - MAMOND VeI NT FATAOE MITDOMm NNNOD
TeOM - T rNMOw DN - - ceOoOr~rO~ DO 2O

mMOoLem -~ o® @~ O~ moooem Mo me N NSOV O N

13141816

- en oSO~ NSO ™M NNy NNDO® NOoWVwO ™

N ma rowew -aaonN TOoOLoe TOoOM~® N>
¢ -~0DeT® N0~ et~ NOoOND MO Oo~ emMOoOwVve
NNMSNG MM NOe MH-—-eRo0 owewvww PNMeS *eeYT—~—MNM™

oM ND e~ 0 SN e-0 “-rMO® e NDO LN DO

VD~ reOOOM ANA~OD ~AOeOO SO0 ™ ONODOD
NN OO N- ©OMe~O~ e e-- MONMN- Orer—e

DO T-Do0 oheNDO SN NY S~ > OMmaoewv

6678

NN Ow DUR L Sov-am ~OheewN cToNnee @NO~N®

THOOoOWVO Cvwaowvow N RO~ ~NO2TOO L
Lo e S ND O NS~ oM e OIS N~N~- L R

Cwvw™muvw TOVOO- M OeN - MO0 ®N oovmoe~ aOdNODO

1234

OMme=m~ TOMLTO Che~®© ORNAMND~ Me~—0~ OANO e

24
25
26
28
29
30

NI DR DO -

AN OLD-FASHION
RANDOM TABLE

Let’s do a similar job with

your computer!

A (MORE) MODERN
APPLICATION

Simulation of a
not-yet-observed particle
named Z’ decaying into
high momentum quarks.

“TRUE”VERSUS “PSEUDO" £/
GENERATORS |

Quote from Wikipedia:

“There are two principal methods used to generate random
numbers. One measures some physical phenomenon that is
expected to be random and then compensates for possible biases in
the measurement process. The other uses computational
algorithms that can produce long sequences of apparently random
results, which are in fact completely determined by a shorter initial
value, known as a seed or key. The latter type are often called
pseudo-random number generators.”

Carefully chosen pseudo-random number generators can be
used In many applications instead of true random numbers!

HARDWARE RANDOM
NUMBERS GENERATORS

®m A hardware random number generator can generates random
numbers from a physical process, rather than a computer program,
e.g. such devices can generate statistically random "noise" signals,
such as thermal noise, the photoelectric effect, etc.

Such a device is usually very
useful for cryptographic
work; for most of our
scientific works (no security
issue!) the pseudo random
number generators are
already good enough.

IN COMPUTING:

A CLASSICAL ALGORITHM

W A classical, commonly used everywhere, but it's actually a bad algorithm:
Linear Congruential Generator (LCG) —

R — [a R+ C] mod M R: current value (Seed)

la,c: scaling constants
L1 M: the module number

R’: next value

L1 Period: O(<M) for some good a and ¢

For some certain “good” values of a
close-to (pseudo) random numbers

and ¢, we could produce
oy computers easily.

However a “bad” selection of a,c val

7

ues will give a terrible result!

JUSTTRY IT OUT

class rnd:
def __init (self, s = 1234):
self.seed = s

def gen(self):
self.seed = (32533521*xself.seed + 2424) % 100

return self.seed

r = rnd()
for i in range(30):
print(r.gen(), end=" ") 1207-example-01.py

First few numbers
38, 22, 86, 30, 54, 58, 42, 6, 50, 74, 78, 62, 26, 70, 94, 98,

82, 46, 90, 14, 18, 2, 66, 10, 34, 38, 22, 86, 30, 54, ...

Started to repeat the same numbers;
[\ the actual period is smaller than the value of M (=100 here).
—— P

8

SELECTING
"GOOD" COEFFICIENTS

® Actually it’s a kind of ART to find good coefficients:

For a = 9289, ¢ =4, M = 100:

30, 74, 90, 14, 50, 54, 10, 94, 70, 34, 30, 74, 90, 14,
50, 54, 10, 94, 70, 34, 30, 74, 90, 14, 50, 54, 10, 94,
70, 34, ...

For a = 928983621, ¢ = 1286825, M = 100:

39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 4,
9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74,
79, 84, ...

For a = 77777, ¢ = 99999, M = 100:

17, 8, 15, 54, 57, 88, 75, 74, 97, 68, 35, 94, 37, 48,
95, 14, 77, 28, 55, 34, 17, 8, 15, 54, 57, 88, 75, 74,
97, 68, ...

=

SELECTING

“GOOD” COEFFICIENTS (Il)

m Some widely used selection of constants (source: Wikipedia), you

can see this type of generator is actually used everywhere!

Source
Numerical Recipes
Borland C/C++

glibc (used by Gco)l4

ANSI C: Watcom, Digital Mars,
CodeWarrior, IBM VisualAge C/C++

Borland Delphi, Virtual Pascal
Microsoft Visual/Quick C/C++

Apple CarbonlLib

MMIX by Donald Knuth

VAX's MTH$RANDOM, ! old versions
of glibc

Random class in Java API

output bits of seed in
rand() | Random(L)

bits 30..16 in rand(), 30..0
in lrand()

bits 30..0
bits 30..16

bits 63..32 of (seed * L)
bits 30..16

see Park-Miller RNG

bits 48...17

m a C
232 11664525 1013904223
232 122695477 1
232 11103515245 12345
232 11103515245 12345
232 1134775813 1
232 214013 2531011
231

16807 0
=
2% 6364136223846793005 1442695040888963407
232 69069 1
2% 125214903917 11
10

A WELL-KNOWN
BAD SELECTION

A routine, RANDU, use the selection of a=65549, c=0, M=231.
This was widely used at many places during 1960s by IBM.

Quotations:
...its very name RANDU 1s enough to bring dismay into the eyes and
stomachs of many computer scientists!

—Donald Knuth
One of us recalls producing a “random” plot with only 11 planes, and
being told by his computer center’s programming consultant that he had
misused the random number generator: “We quarantee that each number
1s random individually, but we don’t guarantee that more than one of
them 1s random.”

—W. H. Press et al.

First few numbers (seed = 1):
65539, 393225, 1769499, 7077969, 26542323, 95552217, ...

AWELL-KNOWN
BAD SELECTION (I

® The period length of RANDU is 536,870,901 if seed =1
(it's already a large number, isn't it?)

m It can generate an uniform distribution between (0,1).

® The real problem: if one do the math carefully, the following relation

can be obtained:

Rito =6R;11 — 9R;

m If one draw R; versus R;:1 versus
Ri+2 in a 3D plot, one can observe
a funny correlation:

[\ 12
— P

ONE GOOD WORKING EXAMPLE:
PARK-MILLER RNG

Use a=16807,c=0, M = 2311,

The period can reach 2,147,483,645 if seed = 1234
(it's almost full 231-1!)

class rnd:
def __init_ (self, s = 1234):
self.seed = s

def gen(self):
self.seed = (16807xself.seed) % (2%x31-1)

return self.seed " 1207-example-0la.py (partial)

First few numbers

20739838, 682106452, 895431078, 2092213417, 933663541, 420124958,
113937770, 1544170913, 540660796, 882687915, 518753929,
2061161530, 883124953, 1421600654, 2086618903, ...

DISTRIBUTION AS
A HISTOGRAM

DISTRIBUTION AS
A HISTOGRAM (II)

m How is a histogram made? Lets consider an age distribution as
following:

\
|

14

12

10

Entries 57

Mean 27.85

llIIIIIIIIIIIYIIIII[IIIIIIIII

This is a usual way to show the “probability of happening”

|5

in a specific “interval’.

PLOTTING THE y
DISTRIBUTION '

The LCG generators should produce an uniform distribution of "/
random numbers in [0, M—1] (or [1, M-1]) Making a plot is the
most straightforward way to verify this.

Let’s add a new method in our class that can “mimic” the regular

random() function in the random module, which should return a
float point number between 0 and 1.

class rnd:
def __init_ (self, s = 1234):
self.seed = s

def gen(self):
self.seed = (16807xself.seed) % (2%x31-1)
return self.seed

def random(self): || Just normalized by the value of M
return float(self.gen())/(2**31—%)/

/‘\ ‘ 6
— ;/)

I207-examp|e-0 | b.P)’ (partial)

PLOTTING THE
DISTRIBUTION (I

m Simply do some statistical
accounting with histograms —

2000 -

1750 A

which should be uniformly 1500
distributed between 0 and 1. 1250
import numpy as np 500 {

import matplotlib.pyplot as plt 2501

r = rnd()

data = np.zeros(100000)
for i in range(len(data)):
datali] = r.random()

plt.hist(data, bins=50, range=(0.,1.), color='y"')

plt.show() " 1207-example-01b.py (partial)

INTERMISSION —y

® You may try some what different parameters in the LCG
generators, ie., different a, ¢, and M. See if you are able to find a
good set of parameters (by chance)?

m As asimple practice — making a 2D scatter plot and set both x an
y are uniformly distributed random numbers. See if they are really
uniformly distributed in 2D plane?

-:::_ < Something like this!

|18

BITWISE OPERATIONS

0101 (=5) >>> n
u OR: OR 0011 (=3) >>> n
= 0111(=7) 7
0101 (=5) >> n =5 & 3
= AND: AND 0011 (=3) >>> n
= 0001 (=1) 1
0101 (=5) >>n =5 "3
= XOR: XOR 0011 (=3) >>> n
= 0110 (=6) 6
®m LEFT-SHIFT: 010111 (=23) << 1 >>> 23 << 1
= 101110 (=46) 46
® RIGHT-SHIFT: 010111 (=23) > 1 >>> 23 >> 1
= 001011 (=11) 11

[\ Remark: bitwise operators are different from logic operators!
19
TN P

HEXADECIMAL/BINARY
REPRESENTATION

Any number starting from “0x” (zero-x) is represented in
hexadecimal. For example:

0x01 = 1

0x05 = 5

O0xO0a = 10

0xO0b = 11

0x0f = 15

Ox1lf = 31

Oxff = 255

Oxffff = 2161 = 65535
Oxffffffff = 2321 = 4294967295

Sometimes 1t Is very useful to use hexadecimal representations,
especially to align a number along the brtwise operations.

Z\\ | 29
— y

HEXADECIMAL/BINARY
REPRESENTATION (I

m Similarly any numbers starting from “0b” (zero-b) are in binary
format. For example:

O0bO1 =1

0b00001 =1

Obl0 = 2

Obll = 3

0b1010 = 10

Obl1l11 = 15
Obl11111111 = 255
0b100000000 = 1<<8 = 256
0b1000000000000 = 1<<12 = 4096

In python those representations can be converted by the built-in
functions hex() or bin().

l\ ‘ 2!
—y y

/.
GENERATOR WITH BITWISE OPERATION:~
XORSHIFT

m The algorithm is also simple: XOR + SHIFT operation x 3 times: '

T 4z zor (x> a1) al, a, asz : bit shifts
select good constants!
x4z xor (x> as) The only missing number is zero...

W Some good selection of a1, az, and a3 :

For example:
initial : o = 1234
21 35 4

20 11 T xxor (x>>21): x=1234
17 31 3 r < x zor (x << 35): x=42399917147346
T x zor (x >>4) : x =40651865457823

| 11 29 14
D

JUSTTRY IT OUT s/

class rnd:
def __init_ (self, s = 1234):
self.seed = s

def gen(self):

self.seed = self.seed ~ (self.seed >> 21)
self.seed = self.seed ~ (self.seed << 35)
self.seed = self.seed ™ (self.seed >> 4)
return (self.seed & Oxffffffff) < output lower 32 bits
r = rnd()
for i in range(30):
print(. gen() , end="") / 1207-example-02.py

First few numbers (w/ seed = 1234)
1183, 288731222, 1003807570, 2737978148, 560314590, 860181832,
2874940191, 481057057, 4263710680, 1133242283, 547512940, ...

[\ 23
— P

MULTIPLY WITH CARRY —
MWC METHOD

m For updating a 64-bit unsigned integer:
High 32 bits Low 32 bits

take | 32 bit
(x & OXFEEEEFEF) *a o oner its
and scale it by a constant a

shift higher 32 bits
x >> 32 to lower part

W Some good selection of a:

_ Add them (high, low 32 bits) together to

4294957665 oet the next teration!
294963023 Period |d be of O[(232 2)/2
1162943475 eriod could be of O[(2%4a - 2)/2]

Z\ 3947008974
o o o 24
—— P

A QUICK IMPLEMENTATION .

'

class rnd:
def __init (self, s = 1234):
self.seed = s

def gen(self):

self.seed = \
(self.seed & Oxffffffff)*x4294957665 + (self.seed>>32)
return (self.seed & Oxffffffff) < output lower 32 bits as we|l!

r = rnd()
for 1 in range(30):
print(r.gen(), end="' ")

/ 1207-example-03.py

First few numbers (w/ seed = 1234)
4283082642, 2791954211, 1467339856, 1284198655, 2855902741,

1055460788, 3900636741, 2101943962, 2259196020, 2089392165, ...

[\ 2>
— P

AN EASY WAY TO

m Those algorithms we have introduced have a limit of
period < 264 (~1.8x107).

m It will not be too good if you want to produce really huge amount
random of numbers.

® The idea is simple: combine different generators.

Stronger if you
combine?

COMBINATION:
XORSHIFT + MWC

i

period of O(9 x 1037)..

class rnd:

def init (self, s1 = 1234, s2 = 5678):
self.s1l = sl
self.s2 = s2

def gen(self):
self.sl = self.s1l ™ (self.sl >> 17)
self.sl = self.s1l ™ (self.sl << 31)
self.sl = self.sl ™ (self.sl >> 8)
self.s2 = (self.s2 & Oxffffffff)*x4294957665 +

(self.s2>>32)

return ((self.sl © self.s2) & Oxffffffff)

Combining generators with XOR |} " 1207-example-04.py (partial) |

First few numbers (w/ seed = 1234, 5678)
2512230328, 3081706301, 1968151581, 3266289562, 2076928125,
1738967221, 2657722299, 1153926827, 738420122, 2921085993, ...

%‘\ ‘ 27
—y y

WITH 10%8...

A generator with a very large period — Mersenne Twister:
[t was developed in 1997 by Makoto Matsumoto (A7~ H.) and

Takuji Nishimura (

LU

VAT =

). The webpage (you can download

the source code, which is written in C):
http:/ /www.math.sci.hiroshima-u.ac.jp/~m-mat/MT /emt.html

It is claimed to be fast, with a period of 2199371 (~106001),

This may not be the generator with the longest period in the
world, but it's a famous one. Most important — it’s already
included in the python random module as well as NumPy!

You can simply use the generator coming

from python libraries or NumPy.

28

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

INTERMISSION

m If you are not so familiar with the bit-wise operations as well as
hexadecimal representation, it is a good timing to practice a little
bit more. For example:
37 (0b0100101) | 73 (0b1001001) = °?
37 (0b0100101) & 73 (0b1001001) = ?
37 (0b0100101) © 73 (0bl1001001) = ?
® You can always use bulit-in bin() function to verify the calculations
above!

GENERATING NONUNI
DISTRIBUTIONS

® In many practical cases we need to
generate the random numbers
according to a desired distribution.
You have already well experienced
these functionalities? 1

Let's discuss how to convert
those flat random numbers
to a different shape!

[\ 30
—— P

THE STARTING POINT:
UNIFORM RANDOM DISTRIBUTIONAS

The small piece of code below will produce an uniform random
distribution as we did in 112-example-01b.py, but based on the
random number generator from NumPy.

This is the starting point of all the |
discussions below!

00000
11111

00000

import numpy as np
import matplotlib.pyplot as plt

data = np.random.rand(100000) 0 o

plt.hist(data, bins=50, range=(0.,1.), color='y")
plt.show()

31

ACCUMULATE RANDOM
DISTRIBUTIONS =

® Uniformly random distribution: random.rand ():

®m How to generate any non-uniform distribution, such as a Gaussian?

GENERATION OF 4
DISTRIBUTIONSAS =

m The basic idea is to produce any non-uniform distributions based’

NON-UNIFORM

on the uniform one, as far as the function form is glven/can\be

calculated!

Uniform source
random.rand ()

00000

00000

Gaussian

B (x —)
f(ﬂj) T eXp |: 20_2
Exponential

f(z) = exp (—f)

T

GENERATION OF 4
NON-UNIFORM DISTRIBUTIONS A

m Suppose you already have a defined function f(x), all positive in |
the range of [0,1]. For example a simple function like:

JORE

m The first step is to draw the target function and observe its shape.

I y=fx)=x I y=fx)=x
This is what you
- expected to get!
> X » X
0 1 0 1

Z\ 34
p .

GENERATION OF A
NON-UNIFORM DISTRIBUTIONS A

m Based on an input of uniformly distributed random numbers, now
we want to convert the distribution to follow the given function.

m Probably 90% of the people will start with such a naive code by
just inserting the random variables into the function?

import numpy as np
import matplotlib.pyplot as plt

def f(x):
return X

X = np.random.rand(100000)
data = f(x) < Simply inject x into f(x)?

This is
definitely
incorrect...

plt.hist(data, bins=50, range=(0.,1.), color='y"')
plt.show()

[\ 3
— P

" 1207-example-05.py (partial)

GEN

-RAT

NON-UN

A R
DISTRIBUTIONS &

m Actually the given function, y=f(x), only gives the weights as a

FORM

function of x; it does not produce a random distribution by s\impiy

inserting a random distribution along x.
A

36

Since y = 1(x) = X, the output
distribution is just a replica of the
input distribution x.

SO WHAT SHOULD WE DO:

The most simple
“Hit-or-Miss” method
(Von Neumann rejection)

is actually quite similar to
spay cinnamon powder on
your cappuccino...

THE HIT-OR-MISS METHOD ™ £

m This is one of the most simplest algorithms, it's quite inefficient, '
but still very useful! The trick is simply
Instead of 1D — generate the random numbers uniformly in 2D:

REJECT
Generate
x =rand()
y =rand()

if y < f(x): accept x

A - - ACCEPT
- >

A QUICK IMPLEMENTATION"7.

L

400

350 ~

m All we need to do is generating 3001
x and y uniformly and only keep =
the values of x if y<f(x).

200 -
150 -

100 -

50 A

import numpy as np 0

import matplotlib.pyplot as plt o0 a2z a4 o5 0B

def f(x):
return X — X*%2 + Xx*k3 — Xx*k*4 + np.sin(xx13.)/13.

X = np.random.rand(20000)
y = np.random.rand(20000)*0.45 < This is since we know the maximum
data = x[y<f(x)] value of the function is below 0.45

plt.hist(data, bins=50, range=(0.,1.), color='y"')

plt.show()
/ 1207-example-06.py

39

1.0

A QUICK IMPLEMENTA] \QN/‘
(1) A

m If we have no knowledge of the function maximum, what
could we do?

= Just use random number to scan/guess the maximum

value, i.e. “importance sampling”. ,
Remember we still assume we

have no knowledge about the
exact function form!

def f(x):
return x — Xx*%x2 + Xx**3 — Xx*x4 + np.sin(xx*13.)/13.
f _max = f(np.random.rand(1000)).max()*1.1
X = np.random. rand(20000) " Using 1000 trials to get the
y = np.random.rand(20000)*f_max maximum value + 10% protegtion!

data = x[y<f(x)]

plt.hist(data, bins=50, range=(0.,1.), color='y"')
plt.show()

A
\ /

each event, i.e. the probability that the event should be accepted or not.

® One can apply an “unweighting” procedure to get the desired
random distribution.

® This is in particular useful for generating random numbers with a
very complicated multi-dimensional function.

def f(x):
return X — Xx*%2 + x**k3 — Xx*k*4 + np.sin(xx13.)/13.

2[(3 ;andom- rand(20000) < The pair of x,w are called “weighted events”.
X

y = np.random.rand(20000) < unweighting: accept x or not according to y
data = x[y<w/w.max()]

=3
i1l

/ I207-example-06b.py (partial)

T'S NOT QUITE EFFICIENT, 47
RIGHT? A

m We already know that the (pseudo) random numbers are basically |
limited: limited period & limited computing time.

® In principle one could use a much more efficient way to generate
the random distributions: Inverse Transform Method.

m Consider a 3-bin function:

f(x,)

Generate re[0,] uniformly:

' fla) = x1 else
8 TS o)+ fe) + i) T
X . f(z1) + f(22) o el
TS T + fwa) + Sl T2
oo J@)F flee) + flzs)
X, X, Xj s f(xl) B f(an) Bl f(ilfg) t i

[\ 42
— P

TS NOT QUITE EFFICIENT, _#

RIGHT? (11 —= ,
m For a multi-bin case: / \ |
X1 X X3 N o X;
] Y

Generate re[0,1] uniformly, and
e " n inverse transform back to x by

flx) + flx2) + oo + f(Tm—1) flxe) + flo2) + .o + f(Tm—1) + f(Tm)

if <r<

> J(xs) B > fxy)

| then take x = xn
A ' 3
D

WITH EXPLICIT
MATHEMATICS

m Take the continuous limit:

flo) + fl@z) + oo+ f@m1) _ - flxy) + f(z2) + .o + f@m—1) + f(Tm)

! Z f(ﬂfz) =7 Z f(xz) then x = L
Lm Ty, +0
lf fa, f(flf/)dﬁlf < r < fa f(aj/)d.flf then U
b — b — 4m
fa f(z")dx’ fa F(x')da’
- o ffbm f(:z:")dw — rthenz =, Given re!:O,I] and s?lve the
fa f(ib”)dflf’ equation to obtain x.
W (z) = f;c f(x')dx _. Find the invert function of W(x)
f; f(z)dx' W(x) = x=W 1)

l\ ‘ i
— y

A STRAIGHTFORWARD
EXAMPLE =

For example:

f(z) = exp(~2); [a,b] = [0, 1] # /Ox eXP(—SEI)dx’ =1-— expﬁ—a?)f |

[y exp(—x')dr’ 1 — exp(—x)
Wiz) = fol exp(—x2')dx’ 1 —exp(-1)

-
=W (r) = —log (1 = = E) Generate re[0,1] then convert to x.

350

300 A

250 1

r = np.random.rand(10000) 200-
data = -np.log(l.-r+r/np.exp(1.)) .
plt.hist(...) 100
\ " 1207-example-07.py (partial)

0 .
0.0 0.2 0.4 0.6 0.8 1.0
L ————— R
: 45

EXTENDED TO INFINI-Y?

® This method also works with infinite bounds! e.g.

f(z) = exp(—=x); [a,b] = [0, o]
::!ﬁfexp(—aﬁﬁtﬂ

Wix = =1—exp(—2x
=W (r)= —log(l —r) Generate re[0,1] then convert to x.
r = np.random.rand(10000) 1000
data = -np.log(1l.-r) 5001
plt.hist(...) 200-
1207-example-07a.py (partial) -

B y
— P

GENERATING A GAUSSIAN—7/.

Instead of the simple hit-or-mass method, let’s practice the inverse
transformation with the Gaussian function form:

1 —(z — p)?
2T0 202

1

G(z;p,0) = exp {

For y=0,0 =1 — G(x) =

= / / Gl(2)Gy)dady — / / % exp (_5’32; y2> dady = / % exp (?) rdedr

—T2 R ¢ o
_[2: {—exp <T>:| X [—:| fOI‘R:OO,(I):Q’]T — I2:
0

assign random assign random
number r| number r

(1)

=G - 2

D2

P
T — =19 — O =27y
27

Change the variables back to x,y:

r = Rcos® = +/—2log(1 — r1) cos(27mrs) r = +/—2log(r1) cos(2mry)
or
y = Rsin® = \/—2log(1 — ry) sin(27ry) y = v/—2log(r) sin(27rs)

Since it does not matter if we
generate ry or |-rj

= .
— -/)

GENERATING A GAUSSIAN &7

(

)

m See how straightforward the
generation is!

® Both x & y can be used (no
waste of random numbers)

rl
r2

X
y

n Lt.
o Lt.

nLt.
0 Lt.

nlt.

np.random.rand(10000)
np.random.rand(10000)

800 -

700 A

600 -

500 A

400 A

300 A

200 A

100 A

0

800 A

700 A

600 -

500 A

400 A

300 A

200 A

100 ~

-4

-2

0

2 4

(-2.%np.log(rl))*x0.5%np.cos(2.*np.pikxr2)
(-=2.%np.log(rl))**0.5%np.sin(2.*np.pixkr2)

subplot(1,2,1)

hist(x, bins=50, range=(-5.,+5.), color='y")

subplot(1,2,2)

hist(y, bins=50, range=(-5.,+5.), color='c')

show ()

49

" 1207-example-08.py (partial)

ALTERNATIVELY...

700 A

By simply adding multiple uniform
random numbers you can also
approximate a Gaussian distribution.

600 -
500 A

400

This is just a demonstration of
central limit theorem in fact!

300 A

200 A

= np.random.rand(10000) 100
+= np.random. rand(10000)
+= np.random. rand(10000)
+= np.random. rand(10000) ”
()
()

+= np.random.rand(10000
+= np.random.rand(10000

R D D R

plt.hist(r, bins=50, range=(0.,+6.), color='y")
plt.show()

#‘\ ‘ >0
— ;/)

" 1207-example-08a.py (partial)

COMMENTS g/

There are actually many different methods to generate Gaussian
distributions. The one we introduced is just one of the “classical”
methods widely used in various places.

Besides Gaussian, there are many generators for special functions
implemented in numpy . random module. It would be useful to go
through them once and use them when needed.

On the other hand, now you should have the capability to produce
any random distribution as you wish. This is extremely useful for
various studies, such as Monte Carlo studies or statistical tests.

More to be discussed

- In the later lecture!

51

APPLICATION:

MONTE CA

LO INTEGRATION &

Usually it is very difficult to do a numerical integration over high-
dimensions. e.g. by cutting one dimensional space to 1000 steps,

for 10 dimensions

— it will just take 100010 (=1030) operations!

This is the place for the Monte Carlo integration to cut in.

The math is actually trivial (integration by mean value):

I:/abf(x)dx:(b—

) () o R D)
1 N

ot m) (f@) = ()’

1=1

One only needs to use random numbers to calculate the
mean value among the desired space.

52

A DEMO APPLICATION

Let’s take a “simple” function of 6 dimensions:

f(a,b,c,d, e, f) =sin(a) + sin(2b) 4 sin(3c) + cos(d) 4 cos(2e) + cos(3 f)

/_/////fabcdef)dadbdcdddedf—‘?

Well, we do know the exact integration
faft = of this example function:

_ os(@]! - {cosé%)}: {Cosé?)c)rJr[Sin(o mee)]l : {Sing%f)}:

0 0

But generally it will be very difficult for more complicated
functions (e.g. real 6 dimensional function with cross terms!)

/‘\ ‘ >3
— ;/)

A DEMO APPLICATION (i)~

'

m A quick implementation can be prepared easily:

def func(a, b, c, d, e, f): < the 6D function
return np.sin(a)+np.sin(b*2.)+np.sin(c*3.)+np.cos(d)
+np.cos(ex2.)+np.cos(fx3.)

def intfunc(a, b, ¢, d, e, f): < the exactintegration
return —-np.cos(a)-np.cos(bx2.)/2.-np.cos(c*x3.)/3.+np.sin(d)
+np.sin(ex2.)/2.+np.sin(fx3.)/3.

intf_exact = intfunc(1.,1.,1.,1.,1.,1.)-intfunc(0.,0.,0.,0.,0.,0.)
print("Exact = %+.5f" % intf_exact)

nsamples = 1000000 # 1 million trials

v = np.random.rand(nsamples,6)

val = func(vI[:,01,vI[:,2]1,vI[:,2]1,vI:,31,vI[:,4],vI:,5]) (f) & o
intf_rand = val.sum() / nsamples

intf_rand _err = (((valxx2).sum()/nsamples—-intf_rand*x2)/(nsamples—1))*x0.5

print ('"Random
print(" (diff

%+.6T +— %.6f" % (intf_rand,intf_rand_err))
%+.6f)" % (intf_rand-intf_exact))

/ I207-examp|e-09.py (partial)

54
— P

A DEMO APPLICATION (i~

4

sep = np.linspace(0.025,0.975,20)
va,vb,vc,vd,ve,vf = np.meshgrid(sep,sep,sep,sep,sep,sep)
intf_boxes = func(va,vb,vc,vd,ve,vf).sum() * 0.05%%6

print("Boxes
print(" (diff

%+.6f" % intf_boxes)
%+.6T)" % (intf_boxes-intf _exact))
/ 1207-example-09.py (partial)

As a comparison, lets also doa |Exact = +3.17426
simple “boxes” numerical Random = +3.175567 +- 0.000964
integration. If we take 20 slices (diff = +0.001305)
per dimension, the total required |Boxeés = +3.175548
number of function call is (diff = +0.001287)

6 — |
20° = 64,000,000 times. MC integration is actually easier and

quicker in the case of high-
dimensional integration!

55

HANDS-ON SESSION

m Practice 01:
Generate the random distribution of >10k events for the following
step function for x in the range [0,9]:

fl(x)=1if0<x <1
=211l <ax <2

N
T

=91t 8<x <9

HANDS-ON SESSION

m Practice 02:
Generate the random distribution of >10k events for the following
model of a second order polynomial plus a Gaussian function,
which was used in our fitting example:

N)2
f(x) = exp {_(w 1) } -az® + bx + ¢
210 20
Where x is in the range of [101, 182].) ﬁ

The other parameters are
N=19, y=126,6=2,
a =-0.0002, b =0.05, c=-1.5

