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OLD-FASHIONED 
RANDOM NUMBERS
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Well, this is still very useful 
in some special situation...  

But this old tech random 
number generator cannot 
generate too many digits, and 
it may not be fair enough.



AN OLD-FASHIONED METHOD:
RANDOM TABLE
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Have you generate some 
random numbers using a 
random table at high school? 

This actually shows two main 
ideas of pseudo random 
numbers –
1) You need a seed to start
2) recursive operation

Let’s do a similar job with 
your computer!



A (MORE) MODERN 
APPLICATION 
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Simulation of a  
not-yet-observed particle 
named Z’ decaying into 
high momentum quarks.



“TRUE” VERSUS “PSEUDO” 
GENERATORS
■ Quote from Wikipedia:  

“There are two principal methods used to generate random 
numbers. One measures some physical phenomenon that is 
expected to be random and then compensates for possible biases in 
the measurement process. The other uses computational 
algorithms that can produce long sequences of apparently random 
results, which are in fact completely determined by a shorter initial 
value, known as a seed or key. The latter type are often called 
pseudo-random number generators.”
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Carefully chosen pseudo-random number generators can be 
used in many applications instead of true random numbers!



HARDWARE RANDOM 
NUMBERS GENERATORS
■ A hardware random number generator can generates random 

numbers from a physical process, rather than a computer program, 
e.g. such devices can generate statistically random "noise" signals, 
such as thermal noise, the photoelectric effect, etc.
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Such a device is usually very 
useful for cryptographic 
work; for most of our 

scientific works (no security 
issue!) the pseudo random 

number generators are 
already good enough.



IN COMPUTING: 
A CLASSICAL ALGORITHM
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￭ A classical, commonly used everywhere, but it's actually a bad algorithm: 
Linear Congruential Generator (LCG) –

□ a,c: scaling constants
□M: the module number
□Period: O(<M) for some good a and c

R: current value (Seed)
R’: next value

R0
= [a ·R+ c] mod M

For some certain “good” values of a and c, we could produce 
close-to (pseudo) random numbers by computers easily.
 

However a “bad” selection of a,c values will give a terrible result!



JUST TRY IT OUT
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class rnd: 
    def __init__(self, s = 1234): 
        self.seed = s 
         

    def gen(self): 
        self.seed = (32533521*self.seed + 2424) % 100 
        return self.seed 
         

r = rnd() 
for i in range(30): 
    print(r.gen(), end=' ') l207-example-01.py

First few numbers
38, 22, 86, 30, 54, 58, 42, 6, 50, 74, 78, 62, 26, 70, 94, 98, 
82, 46, 90, 14, 18, 2, 66, 10, 34, 38, 22, 86, 30, 54, ...

Started to repeat the same numbers;  
the actual period is smaller than the value of M (=100 here).



SELECTING  
“GOOD” COEFFICIENTS
■ Actually it’s a kind of ART to find good coefficients:
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For a = 9289, c = 4, M = 100:
30, 74, 90, 14, 50, 54, 10, 94, 70, 34, 30, 74, 90, 14, 
50, 54, 10, 94, 70, 34, 30, 74, 90, 14, 50, 54, 10, 94, 
70, 34, ...

For a = 928983621, c = 1286825, M = 100:
39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 4, 
9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 
79, 84, ...

For a = 77777, c = 99999, M = 100:
17, 8, 15, 54, 57, 88, 75, 74, 97, 68, 35, 94, 37, 48, 
95, 14, 77, 28, 55, 34, 17, 8, 15, 54, 57, 88, 75, 74, 
97, 68, ...



SELECTING  
“GOOD” COEFFICIENTS (II)
■ Some widely used selection of constants (source: Wikipedia), you 

can see this type of generator is actually used everywhere!
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A WELL-KNOWN  
BAD SELECTION
■ A routine, RANDU, use the selection of a=65549, c=0, M=231. 

■ This was widely used at many places during 1960s by IBM. 

■ Quotations:  
…its very name RANDU is enough to bring dismay into the eyes and 
stomachs of many computer scientists!  
    —Donald Knuth  
One of us recalls producing a “random” plot with only 11 planes, and 
being told by his computer center's programming consultant that he had 
misused the random number generator:  “We guarantee that each number 
is random individually, but we don't guarantee that more than one of 
them is random.”  
    —W. H. Press et al.

■ First few numbers (seed = 1):  
65539, 393225, 1769499, 7077969, 26542323, 95552217, ...
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A WELL-KNOWN  
BAD SELECTION (II)
■ The period length of RANDU is 536,870,901 if seed = 1  

(it's already a large number, isn't it?)

■ It can generate an uniform distribution between (0,1).

■ The real problem: if one do the math carefully, the following relation 
can be obtained:  
 
 

■ If one draw Ri versus Ri+1 versus  
Ri+2 in a 3D plot, one can observe  
a funny correlation:
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Ri+2 = 6Ri+1 � 9Ri



ONE GOOD WORKING EXAMPLE:
PARK-MILLER RNG
■ Use a = 16807, c = 0, M = 231–1. 

■ The period can reach 2,147,483,645 if seed = 1234  
(it's almost full 231–1!)
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class rnd: 
    def __init__(self, s = 1234): 
        self.seed = s 
         

    def gen(self): 
        self.seed = (16807*self.seed) % (2**31-1) 
        return self.seed

First few numbers
20739838, 682106452, 895431078, 2092213417, 933663541, 420124958, 
113937770, 1544170913, 540660796, 882687915, 518753929, 
2061161530, 883124953, 1421600654, 2086618903, ...

l207-example-01a.py (partial)



DISTRIBUTION AS 
A HISTOGRAM
■ Histogram is just occurrence counting, i.e. how often they appear; 

For example: {1,3,2,6,2,3,4,3,4,3,5}

14



DISTRIBUTION AS 
A HISTOGRAM (II)
■ How is a histogram made? Lets consider an age distribution as 

following:
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This is a usual way to show the “probability of happening”  
in a specific “interval”.



PLOTTING THE 
DISTRIBUTION
■ The LCG generators should produce an uniform distribution of 

random numbers in [0, M–1] (or [1, M–1]) Making a plot is the 
most straightforward way to verify this. 

■ Let’s add a new method in our class that can “mimic” the regular 
random() function in the random module, which should return a 
float point number between 0 and 1. 
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class rnd: 
    def __init__(self, s = 1234): 
        self.seed = s 
         

    def gen(self): 
        self.seed = (16807*self.seed) % (2**31-1) 
        return self.seed 
         

    def random(self): 
        return float(self.gen())/(2**31-1)

  ⇓ Just normalized by the value of M

l207-example-01b.py (partial)



PLOTTING THE 
DISTRIBUTION (II)
■ Simply do some statistical 

accounting with histograms –– 
which should be uniformly 
distributed between 0 and 1.
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import numpy as np 
import matplotlib.pyplot as plt 
  

r = rnd()      
  

data = np.zeros(100000)         
for i in range(len(data)): 
    data[i] = r.random() 
  

plt.hist(data, bins=50, range=(0.,1.), color='y') 
plt.show() l207-example-01b.py (partial)



INTERMISSION

■ You may try some what different parameters in the LCG 
generators, ie., different a, c, and M. See if you are able to find a 
good set of parameters (by chance)?

■ As a simple practice –– making a 2D scatter plot and set both x an 
y are uniformly distributed random numbers. See if they are really 
uniformly distributed in 2D plane?
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  ⇐ Something like this!



BITWISE OPERATIONS
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>>> n = 5 | 3
>>> n
7

 0101(=5)
OR  0011(=3)
=  0111(=7)

>>> n = 5 & 3
>>> n
1

    0101 (=5)
AND 0011 (=3)
=   0001 (=1)

>>> n = 5 ^ 3
>>> n
6

    0101 (=5)
XOR 0011 (=3)
=   0110 (=6)

>>> 23 << 1
46

010111 (=23) << 1
= 101110 (=46)

>>> 23 >> 1
11

010111 (=23) >> 1
= 001011 (=11)

■ OR:

■ AND:

■ XOR:

■ LEFT-SHIFT:

■ RIGHT-SHIFT:

Remark: bitwise operators are different from logic operators!  



HEXADECIMAL/BINARY 
REPRESENTATION
■ Any number starting from “0x” (zero-x) is represented in 

hexadecimal. For example:
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 0x01       = 1
 0x05       = 5
 0x0a       = 10
 0x0b       = 11
 0x0f       = 15
 0x1f       = 31
 0xff       = 255
 0xffff     = 216-1 = 65535 
 0xffffffff = 232-1 = 4294967295

Sometimes it is very useful to use hexadecimal representations, 
especially to align a number along the bitwise operations.



HEXADECIMAL/BINARY 
REPRESENTATION (II)
■ Similarly any numbers starting from “0b” (zero-b) are in binary 

format. For example:
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 0b01            = 1
 0b00001         = 1
 0b10            = 2
 0b11            = 3
 0b1010          = 10
 0b1111          = 15
 0b11111111      = 255
 0b100000000     = 1<<8 = 256
 0b1000000000000 = 1<<12 = 4096

In python those representations can be converted by the built-in 
functions hex() or bin().



GENERATOR WITH BITWISE OPERATION: 
XORSHIFT
■ The algorithm is also simple: XOR + SHIFT operation × 3 times: 
 
 
 
 

■ Some good selection of a1, a2, and a3 :
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a1 a2 a3
21 35 4
20 41 5
17 31 8
11 29 14

a1, a2, a3 : bit shifts
Period could be of O(232, 64 – 1) if we 

select good constants!
The only missing number is zero...

x x xor (x� a1)

x x xor (x⌧ a2)

x x xor (x� a3)

For example:  
initial : x = 1234

x x xor (x >> 21) : x = 1234

x x xor (x << 35) : x = 42399917147346

x x xor (x >> 4) : x = 40651865457823

...



JUST TRY IT OUT
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class rnd: 
    def __init__(self, s = 1234): 
        self.seed = s 
  

    def gen(self): 
        self.seed = self.seed ^ (self.seed >> 21) 
        self.seed = self.seed ^ (self.seed << 35) 
        self.seed = self.seed ^ (self.seed >>  4) 
        return (self.seed & 0xffffffff) 
  

r = rnd() 
for i in range(30): 
    print(r.gen(), end=' ') l207-example-02.py

First few numbers (w/ seed = 1234)
1183, 288731222, 1003807570, 2737978148, 560314590, 860181832, 
2874940191, 481057057, 4263710680, 1133242283, 547512940, ...

  ⇐ output lower 32 bits



MULTIPLY WITH CARRY –
MWC METHOD
■ For updating a 64-bit unsigned integer:  

■ Some good selection of a:
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Low 32 bits  High 32 bits  

(x & 0xffffffff)*a  

x >> 32  

take lower 32 bits
and scale it by a constant a 

shift higher 32 bits
to lower part  

a
4294957665
4294963023
4162943475
3947008974

...

Add them (high, low 32 bits) together to 
get the next iteration! 

 

Period could be of O[(232 a – 2)/2] 



A QUICK IMPLEMENTATION
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class rnd: 
    def __init__(self, s = 1234): 
        self.seed = s 
  

    def gen(self): 
        self.seed = \ 
(self.seed & 0xffffffff)*4294957665 + (self.seed>>32) 
        return (self.seed & 0xffffffff) 
  

r = rnd() 
for i in range(30): 
    print(r.gen(), end=' ')

l207-example-03.py

First few numbers (w/ seed = 1234)
4283082642, 2791954211, 1467339856, 1284198655, 2855902741, 
1055460788, 3900636741, 2101943962, 2259196020, 2089392165, ...

  ⇐ output lower 32 bits as well!



AN EASY WAY TO 
IMPROVE YOUR GENERATOR
■ Those algorithms we have introduced have a limit of  

period < 264 (~1.8×1019). 

■ It will not be too good if you want to produce really huge amount 
random of numbers.

■ The idea is simple: combine different generators.
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Stronger if you 
combine?  



COMBINATION:  
XORSHIFT + MWC
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class rnd: 
    def __init__(self, s1 = 1234, s2 = 5678): 
        self.s1 = s1 
        self.s2 = s2 
  

    def gen(self):         
        self.s1 = self.s1 ^ (self.s1 >> 17) 
        self.s1 = self.s1 ^ (self.s1 << 31) 
        self.s1 = self.s1 ^ (self.s1 >>  8) 
        self.s2 = (self.s2 & 0xffffffff)*4294957665 +    
                  (self.s2>>32) 
        return ((self.s1 ^ self.s2) & 0xffffffff) 

First few numbers (w/ seed = 1234, 5678)
2512230328, 3081706301, 1968151581, 3266289562, 2076928125, 
1738967221, 2657722299, 1153926827, 738420122, 2921085993, ...

Combining generators with XOR ⇑

We support to have a 
period of O(9 x 1037)...

l207-example-04.py (partial)



IF YOU ARE NOT SATISFIED 
WITH 1038...
■ A generator with a very large period – Mersenne Twister:

□ It was developed in 1997 by Makoto Matsumoto (松本真) and 
Takuji Nishimura (西村拓⼠士). The webpage (you can download 
the source code, which is written in C):  
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

□ It is claimed to be fast, with a period of 219937–1 (~106001).

□ This may not be the generator with the longest period in the 
world, but it's a famous one. Most important –– it’s already 
included in the python random module as well as NumPy!

28

You can simply use the generator coming 
from python libraries or NumPy.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html


INTERMISSION

■ If you are not so familiar with the bit-wise operations as well as 
hexadecimal representation, it is a good timing to practice a little 
bit more. For example:  
37 (0b0100101) | 73 (0b1001001) = ?  
37 (0b0100101) & 73 (0b1001001) = ?  
37 (0b0100101) ^ 73 (0b1001001) = ?

■ You can always use bulit-in bin() function to verify the calculations 
above!
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GENERATING NONUNIFORM 
DISTRIBUTIONS

■ In many practical cases we need to 
generate the random numbers 
according to a desired distribution. 
You have already well experienced 
these functionalities?
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Let’s discuss how to convert 
those flat random numbers 

to a different shape!



THE STARTING POINT: 
UNIFORM RANDOM DISTRIBUTION

■ The small piece of code below will produce an uniform random 
distribution as we did in l12-example-01b.py, but based on the 
random number generator from NumPy.  

■ This is the starting point of all the  
discussions below!
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import numpy as np 
import matplotlib.pyplot as plt 
   
data = np.random.rand(100000) 
   
plt.hist(data, bins=50, range=(0.,1.), color='y') 
plt.show()



ACCUMULATE RANDOM 
DISTRIBUTIONS

32

■ Uniformly random distribution: random.rand():

■ How to generate any non-uniform distribution, such as a Gaussian?



GENERATION OF 
NON-UNIFORM DISTRIBUTIONS 
■ The basic idea is to produce any non-uniform distributions based 

on the uniform one, as far as the function form is given/can be 
calculated!
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random.rand()
f(x) = exp


� (x� µ)

2

2�

2

�

f(x) = exp

⇣
�x

⌧

⌘

Gaussian  

Exponential  

Uniform source  



GENERATION OF 
NON-UNIFORM DISTRIBUTIONS  (II)

■ Suppose you already have a defined function f(x), all positive in 
the range of [0,1].  For example a simple function like:  
 

■ The first step is to draw the target function and observe its shape.
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f(x) = x

y = f(x) = x

x
0 1

y = f(x) = x

x
0 1

This is what you 
expected to get?



GENERATION OF 
NON-UNIFORM DISTRIBUTIONS  (III)

■ Based on an input of uniformly distributed random numbers, now 
we want to convert the distribution to follow the given function. 

■ Probably 90% of the people will start with such a naive code by 
just inserting the random variables into the function?
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import numpy as np 
import matplotlib.pyplot as plt 
     

def f(x): 
    return x 
     

x = np.random.rand(100000) 
data = f(x) 

plt.hist(data, bins=50, range=(0.,1.), color='y') 
plt.show()

✘This is 
definitely 
incorrect...

  ⇐ Simply inject x into f(x)?

l207-example-05.py (partial)



GENERATION OF 
NON-UNIFORM DISTRIBUTIONS 
■ Actually the given function, y=f(x), only gives the weights as a 

function of x; it does not produce a random distribution by simply 
inserting a random distribution along x. 
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y = f(x) = x

x

Since y = f(x) = x, the output 
distribution is just a replica of the 

input distribution x. x

xx

data✘



SO WHAT SHOULD WE DO?

37

The most simple  
“Hit-or-Miss” method 
(Von Neumann rejection)  
is actually quite similar to 
spay cinnamon powder on 
your cappuccino...



THE HIT-OR-MISS METHOD

■ This is one of the most simplest algorithms, it's quite inefficient, 
but still very useful! The trick is simply  
Instead of 1D –– generate the random numbers uniformly in 2D:
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Generate
x = rand()
y = rand()
if y < f(x): accept x

REJECT

ACCEPT



A QUICK IMPLEMENTATION
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import numpy as np 
import matplotlib.pyplot as plt 
  

def f(x): 
    return x - x**2 + x**3 - x**4 + np.sin(x*13.)/13. 
  

x = np.random.rand(20000) 
y = np.random.rand(20000)*0.45 
data = x[y<f(x)] 
  

plt.hist(data, bins=50, range=(0.,1.), color='y') 
plt.show()

l207-example-06.py

■ All we need to do is generating  
x and y uniformly and only keep  
the values of x if y<f(x).

  ⇐ This is since we know the maximum  
value of the function is below 0.45



A QUICK IMPLEMENTATION  
(II)
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def f(x): 
    return x - x**2 + x**3 - x**4 + np.sin(x*13.)/13. 
   

f_max = f(np.random.rand(1000)).max()*1.1 
   

x = np.random.rand(20000) 
y = np.random.rand(20000)*f_max 
data = x[y<f(x)] 
   

plt.hist(data, bins=50, range=(0.,1.), color='y') 
plt.show()

■ If we have no knowledge of the function maximum, what 
could we do? 
➡ Just use random number to scan/guess the maximum 

value, i.e. “importance sampling”.

  ⇑ Using 1000 trials to get the  
maximum value + 10% protection!

l207-example-06a.py (partial)

Remember we still assume we 
have no knowledge about the 

exact function form!



YOU CAN ALSO DO THIS
■ The value given by the function f(x) is actually the the “weight” of 

each event, i.e. the probability that the event should be accepted or not. 

■ One can apply an “unweighting” procedure to get the desired 
random distribution. 

■ This is in particular useful for generating random numbers with a 
very complicated multi-dimensional function.
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def f(x): 
    return x - x**2 + x**3 - x**4 + np.sin(x*13.)/13. 
   

x = np.random.rand(20000) 
w = f(x) 
   

y = np.random.rand(20000) 
data = x[y<w/w.max()]

  ⇐ The pair of x,w are called “weighted events”.

  ⇐ unweighting: accept x or not according to y

l207-example-06b.py (partial)



IT’S NOT QUITE EFFICIENT, 
RIGHT?
■ We already know that the (pseudo) random numbers are basically 

limited: limited period & limited computing time.

■ In principle one could use a much more efficient way to generate 
the random distributions: Inverse Transform Method.

■ Consider a 3-bin function: 
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Generate r∈[0,1] uniformly:

if r <

f(x1)

f(x1) + f(x2) + f(x3)
then x = x1 else

if r <

f(x1) + f(x2)

f(x1) + f(x2) + f(x3)
then x = x2 else

if r <

f(x1) + f(x2) + f(x3)

f(x1) + f(x2) + f(x3)
then x = x3



IT’S NOT QUITE EFFICIENT, 
RIGHT? (II)
■ For a multi-bin case:
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if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

Generate r∈[0,1] uniformly,  and 
inverse transform back to x by

then take x =  xm

f(x3)P
f(xi)

r



WITH EXPLICIT 
MATHEMATICS
■ Take the continuous limit:
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if
f(x1) + f(x2) + ...+ f(xm�1)P

f(xi)
 r <

f(x1) + f(x2) + ...+ f(xm�1) + f(xm)P
f(xi)

then x = xm

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
 r <

R
xm+�

a

f(x0)dx
R
b

a

f(x0)dx0
then x = x

m

if

R
xm

a

f(x0)dx
R
b

a

f(x0)dx0
= r then x = x

m

Given r∈[0,1] and solve the 
equation to obtain x.

W (x) ! x = W

�1(r)

Find the invert function of W(x)
W (x) =

R
x

a

f(x0)dx0

R
b

a

f(x0)dx0
= r



A STRAIGHTFORWARD 
EXAMPLE
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For example: Z
x

0
exp(�x

0
)dx

0
= 1� exp(�x)

f(x) = exp(�x); [a, b] = [0, 1]

W (x) =

R
x

0 exp(�x

0
)dx

0
R 1
0 exp(�x

0
)dx

0
=

1� exp(�x)

1� exp(�1)

x = W

�1
(r) = � log

⇣
1� r +

r

e

⌘
Generate r∈[0,1] then convert to x.

r = np.random.rand(10000) 
data = -np.log(1.-r+r/np.exp(1.)) 
   

plt.hist(...)
l207-example-07.py (partial)



EXTENDED TO INFINITY?
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Generate r∈[0,1] then convert to x.

r = np.random.rand(10000) 
data = -np.log(1.-r) 
   

plt.hist(...)
l207-example-07a.py (partial)

■ This method also works with infinite bounds! e.g. 

f(x) = exp(�x); [a, b] = [0,1]

x = W

�1
(r) = � log(1� r)

W (x) =

R
x

0 exp(�x

0
)dx

0
R1
0 exp(�x

0
)dx

0 = 1� exp(�x)



GENERATING A GAUSSIAN
■ Instead of the simple hit-or-mass method, let’s practice the inverse 

transformation with the Gaussian function form:

47

G(x;µ,�) =

1p
2⇡�

exp


�(x� µ)

2

2�

2

�

For µ = 0,� = 1 ! G(x) =

1p
2⇡

exp


�(x)

2

2

�

I

2
=

ZZ
G(x)G(y)dxdy =

ZZ
1

2⇡

exp

✓
�x

2
+ y

2

2

◆
dxdy =

ZZ
1

2⇡

exp

✓
�r

2

2

◆
rd�dr

I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

for R = 1,� = 2⇡ ! I2 = 1

assign random  
number r1

assign random  
number r2



GENERATING A GAUSSIAN 
(II)

■ Change the variables back to x,y:
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I2 =


� exp

✓
�r2

2

◆�R

0

⇥

�

2⇡

��

0

1� exp

✓
�R2

2

◆
= r1 ! R =

p
�2 log(1� r1)

�

2⇡
= r2 ! � = 2⇡r2

x = R cos� =

p
�2 log(1� r1) cos(2⇡r2)

y = R sin� =

p
�2 log(1� r1) sin(2⇡r2)

x =

p
�2 log(r1) cos(2⇡r2)

y =

p
�2 log(r1) sin(2⇡r2)

or

Since it does not matter if we 
generate r1 or 1-r1



r1 = np.random.rand(10000) 
r2 = np.random.rand(10000) 
x = (-2.*np.log(r1))**0.5*np.cos(2.*np.pi*r2) 
y = (-2.*np.log(r1))**0.5*np.sin(2.*np.pi*r2) 
  

plt.subplot(1,2,1) 
plt.hist(x, bins=50, range=(-5.,+5.), color='y') 
  

plt.subplot(1,2,2) 
plt.hist(y, bins=50, range=(-5.,+5.), color='c') 
  

plt.show()

GENERATING A GAUSSIAN 
(III)
■ See how straightforward the 

generation is!

■ Both x & y can be used (no 
waste of random numbers)
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x y

l207-example-08.py (partial)



r = np.random.rand(10000) 
r += np.random.rand(10000) 
r += np.random.rand(10000) 
r += np.random.rand(10000) 
r += np.random.rand(10000) 
r += np.random.rand(10000) 

plt.hist(r, bins=50, range=(0.,+6.), color='y') 
plt.show()

ALTERNATIVELY…

■ By simply adding multiple uniform 
random numbers you can also 
approximate a Gaussian distribution.

■ This is just a demonstration of  
central limit theorem in fact!
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l207-example-08a.py (partial)



COMMENTS

■ There are actually many different methods to generate Gaussian 
distributions. The one we introduced is just one of the “classical” 
methods widely used in various places. 

■ Besides Gaussian, there are many generators for special functions 
implemented in numpy.random module. It would be useful to go 
through them once and use them when needed. 

■ On the other hand, now you should have the capability to produce 
any random distribution as you wish. This is extremely useful for 
various studies, such as Monte Carlo studies or statistical tests.
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More to be discussed  
in the later lecture!



APPLICATION:  
MONTE CARLO INTEGRATION
■ Usually it is very difficult to do a numerical integration over high-

dimensions. e.g. by cutting one dimensional space to 1000 steps, 
for 10 dimensions –– it will just take 100010 (=1030) operations!

■ This is the place for the Monte Carlo integration to cut in.

■ The math is actually trivial (integration by mean value):
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I =

Z b

a
f(x)dx = (b� a) · hfi ! hfi ⇡ 1

N

NX

i=1

f(xi)

One only needs to use random numbers to calculate the 
mean value among the desired space.

�

2 ⇡ 1

N � 1

NX

i=1

(f(xi)� hfi)2
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A DEMO APPLICATION

■ Let’s take a “simple” function of 6 dimensions:
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I =

Z 1

0

Z 1

0

Z 1

0

Z 1

0

Z 1

0

Z 1

0
f(a, b, c, d, e, f)da db dc dd de df =?

Z
fd⌦ =

� [cos(a)]10 �

cos(2b)

2

�1

0

�

cos(3c)

3

�1

0

+ [sin(d)]10 +


sin(2e)

2

�1

0

+


sin(3f)

3

�1

0

But generally it will be very difficult for more complicated 
functions (e.g. real 6 dimensional function with cross terms!)

f(a, b, c, d, e, f) = sin(a) + sin(2b) + sin(3c) + cos(d) + cos(2e) + cos(3f)

Well, we do know the exact integration 
of this example function:



A DEMO APPLICATION (II)
■ A quick implementation can be prepared easily:
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def func(a, b, c, d, e, f): 
    return np.sin(a)+np.sin(b*2.)+np.sin(c*3.)+np.cos(d)
+np.cos(e*2.)+np.cos(f*3.) 
   
def intfunc(a, b, c, d, e, f): 
    return -np.cos(a)-np.cos(b*2.)/2.-np.cos(c*3.)/3.+np.sin(d)
+np.sin(e*2.)/2.+np.sin(f*3.)/3. 
   
intf_exact = intfunc(1.,1.,1.,1.,1.,1.)-intfunc(0.,0.,0.,0.,0.,0.) 
print("Exact  = %+.5f" % intf_exact) 
   
nsamples = 1000000 # 1 million trials 
v = np.random.rand(nsamples,6) 
val = func(v[:,0],v[:,1],v[:,2],v[:,3],v[:,4],v[:,5]) 
intf_rand = val.sum() / nsamples 
intf_rand_err = (((val**2).sum()/nsamples-intf_rand**2)/(nsamples-1))**0.5 
   
print("Random = %+.6f +- %.6f" % (intf_rand,intf_rand_err)) 
print(" (diff = %+.6f)" % (intf_rand-intf_exact))

l207-example-09.py (partial)

  ⇐ the 6D function

  ⇐ the exact integration

hfi & �
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A DEMO APPLICATION (III)
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sep = np.linspace(0.025,0.975,20) 
va,vb,vc,vd,ve,vf = np.meshgrid(sep,sep,sep,sep,sep,sep) 
intf_boxes = func(va,vb,vc,vd,ve,vf).sum() * 0.05**6 
   
print("Boxes  = %+.6f" % intf_boxes) 
print(" (diff = %+.6f)" % (intf_boxes-intf_exact))

l207-example-09.py (partial)

As a comparison, let’s also do a 
simple “boxes” numerical 

integration. If we take 20 slices 
per dimension, the total required 

number of function call is  
206 = 64,000,000 times.

Exact  = +3.17426 
Random = +3.175567 +- 0.000964 
 (diff = +0.001305) 
Boxes  = +3.175548 
 (diff = +0.001287)

MC integration is actually easier and 
quicker in the case of high-

dimensional integration! 



HANDS-ON SESSION

■ Practice 01:  
Generate the random distribution of >10k events for the following 
step function for x in the range [0,9]:
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f(x) = 1 if 0 < x  1

= 2 if 1 < x  2

· · ·
= 9 if 8 < x  9



HANDS-ON SESSION

■ Practice 02:  
Generate the random distribution of >10k events for the following 
model of a second order polynomial plus a Gaussian function, 
which was used in our fitting example:
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f(x) =

Np
2⇡�

exp


� (x� µ)

2

2�

�
+ ax

2
+ bx+ c

Where x is in the range of [101, 182].  
The other parameters are
N = 19, μ = 126, σ = 2,  
a = –0.0002, b = 0.05, c = –1.5


