
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 3-1:  
Brief on machine learning

1

Kai-Feng Chen
National Taiwan University

2019

ALL THOSE FANCY IDEAS…
■ During past few years there were many very fancy names and

ideas floating around:

□Machine Learning (ML)

□Neural Network (NN)

□Deep learning (DL)

□Artificial Intelligence (AI)

■ But what is what actually?

2

3

■ Since an early flush of optimism in 1950s, smaller subsets of artificial
intelligence – first machine learning, then deep learning, a subset of
machine learning – have created ever larger disruptions.
■ And the neural network: a computing system or algorithm inspired

by the biological neural networks, and is widely used in ML or DL
applications.

4

And those terms became more and more apparent after
AlphaGo beat human players…

LET’S START WITH  
MACHINE LEARNING…
■ Quote from Wikipedia: “Machine learning is a field of computer

science that gives computer systems the ability to learn (i.e.
progressively improve performance on a specific task) with data,
without being explicitly programmed.”

■ So the key idea is to let your program to “learn from data”: 
Based on a set of data, your program can learn/train from it, and
deploy your program to predict the properties of unknown data.
□ If each sample is more than a single input number: a multi-

dimensional entry, it is said to have multiple attributes.
□ Used to perform studies across multiple dimensions while

taking into account the effects of all variables on the responses
of interest.

5

Multivariate analysis (MVA)

ML TRAINING & TESTING
■ Typical ML operation steps with independent data samples: 

Training ⇒ Testing (⇒ Validation) ⇒ Deployment

6

Learning
Phase

Deployment
Phase

Training
sample:
algorithm  
internal

parameters
(weights) tuning

Testing
sample:
unbiased

performance
measurement

Unknown data:
apply to real applications!

Validation
sample:
algorithm
selection /  

hyperparameter
turning

Not always necessary
but it is nice to have!

Training loop

PROBLEM SETTINGS IN
CATEGORIES
■ Supervised learning –– the data comes with additional features

that we want to predict, as a “teacher” The common problems can
be:
□ Classification: want to separate the data into the targeting

classes based on the input attributes.
□ Regression: want to enforce the output to match of one or more

continuous variables.

■ Unsupervised learning –– no expected output features given to
the learning algorithm, leaving it to work on its own to develop
the structures in the input attributes.
□ Clustering: want to divid the data into groups. The groups are

not known beforehand (unlike the case for classification).

7

INITIAL EXAMPLE:  
BINARY CLASSIFICATION
■ Binary classification is to classify the elements of a given set into

two groups. Can be implemented as a supervised learning in the
context of ML problems.

■ For example, separating cats and dogs:

8

INITIAL EXAMPLE:  
BINARY CLASSIFICATION (II)
■ Well, one should not jump too far as an initial step. We should start

with something much, much simpler and can be handled easily.

■ Let’s practice this classical problem by separating hand-writing
zeros and ones!

9

MNIST DATABASE
■ The previous 0 and 1 images are collected from the famous  

MNIST (Modified National Institute of Standards and Technology)
database.

■ It is a database of handwritten digits that is commonly used for
training various image processing systems, including ML. The
data contains 60,000 training images and 10,000 testing images.
Each image has been normalized to 28×28 pixels.

■ The best performing convolutional  
neural network can recognize those  
testing images up to an error rate as  
low as 0.21%.

10

We will use these images thought out
these 3 lectures about ML!

LOADING THE DATA

11

import numpy as np

mnist = np.load('mnist.npz')
x_train = mnist['x_train']
y_train = mnist['y_train']

print('x shape:', x_train.shape)
print('y shape:', y_train.shape)

print('1st sample in x:', x_train[0])
print('1st sample in y:', y_train[0])

l301-example-01.py

x shape: (60000, 28, 28)
y shape: (60000,)
1st sample in x:  
[[0 0]
.
 [0 0 0 0 0 0 0 0 0 0 0 0 3 18 18 18 126 136 175 26 166 255 247 127 0 0 0 0]
.
1st sample in y: 5

■ You can obtain the mnist.npz file from CEIBA or the lecture web:

 ⇐ Just use the NumPy tool to read the data in!

 ⇐ Get the training data

 ⇐ The training data has 60K of 28×28 images

 ⇐ 1 byte per pixel

 ⇐ The first one is ‘5’

x: input images
y: true digits

SHOW ME A DIGIT

■ Let’s plot a given digit as an image!

■ And indeed it’s a 28×28 image!

12

import numpy as np
import matplotlib.pyplot as plt

mnist = np.load('mnist.npz')
x_train = mnist['x_train']
y_train = mnist['y_train']

fig = plt.figure(figsize=(6,6), dpi=80)
plt.imshow(x_train[0], cmap='Greys')
plt.show()

l301-example-01a.py

Yes, it’s a 5!

SHOW ME A DIGIT (CONT.)

■ Now let’s focus on 0 and 1 only to simplify the situation:

13

import numpy as np
import matplotlib.pyplot as plt

mnist = np.load('mnist.npz')
x_train = mnist['x_train']
y_train = mnist['y_train']
zero_and_one = x_train[y_train<=1]

fig = plt.figure(figsize=(6,9), dpi=80)
for i in range(6):
 plt.subplot(3,2,i+1)
 plt.imshow(zero_and_one[i],
cmap='Greys')
plt.show()

l301-example-01b.py

⇓ Pick up 0 & 1

■ Remember each hand-writing digit consists of an image of
28×28=784 pixels, and each pixel is a number between 0 and 255.

■ The target is to write a program to process these 784 inputs and
identify the true digit. Taking the whole 784 numbers is not a
straightforward task in general!

■ The most straightforward way to do this is to find some features,
which can be used in the subsequent  
classification task.
- Specifically selected variable describes  

the signature of the input data.
- The input dimensions can be  

dramatically reduced.
- This step is usually called the  

feature extraction.
14

28 pixels

28 pixels

PREPARING THE INPUTS?

0.086 0.088

0.054 0.058

PREPARING THE INPUTS? (II)
■ As an example, how about if we calculate the average pixel density

and compare them? At least this value might be quite different for
the written 0 and 1, since one uses more ink to write 0’s!

■ To be simplified, let’s also convert the data to a float point number
and normalize them to be within [0,1]:

15

0.156 0.177

0.183 0.186

PREPARING THE INPUTS? (III)
■ Maybe we can do it easier, by just

calculating the average of the
centered 6×8 pixels, since there is
obviously a “hole” for the 0’s?

16

0.493 0.593

0.402 0.412

0.125 0.260

0.515 0.371

average
here!

PREPARING THE INPUTS? (IV)

17

mnist = np.load('mnist.npz')
x_train = mnist['x_train']
y_train = mnist['y_train']

sample0 = x_train[y_train==0]/255.
sample1 = x_train[y_train==1]/255.

all_mean0 = sample0.mean(axis=(1,2))
all_mean1 = sample1.mean(axis=(1,2))

center_mean0 = sample0[:,10:18,11:17].mean(axis=(1,2))
center_mean1 = sample1[:,10:18,11:17].mean(axis=(1,2))

fig = plt.figure(figsize=(12,5), dpi=80)

plt.subplot(1,2,1)
plt.hist(all_mean0, bins=50, color='y')
plt.hist(all_mean1, bins=50, color='g', alpha=0.5)

plt.subplot(1,2,2)
plt.hist(center_mean0, bins=50, color='y')
plt.hist(center_mean1, bins=50, color='g', alpha=0.5)

plt.show()

l301-example-02.py

■ Example code to compare the distributions:

 ⇐ Extract those “0” and “1” images

 ⇐ Average along x and y axes, keep the  
image index (axis 0)

 ⇐ Only average the  
centered 6x8 pixels

PREPARING THE INPUTS? (V)
■ Now we can extract these two features out of each image, and they

actually distributed differently for 0 and 1:

18

Full Average Center Average

Handwriting  
true zeros

Handwriting  
true ones

Can we already separate  
the digits by looking at these

distributions?

SEPARATION BETWEEN  
0 AND 1
■ In principle we can already start to separate the images by looking

at the resulting distribution, e.g.:

19

Full Average

“identify”
as “zero”

“identify”
as “one”

Overlapped area: either
true 1 being

misidentified as 0 or
true 0 being

misidentified as 1

□ If a threshold of 0.11 is set: 
93.0% of the “ones” are selected; 
94.5% of the “zeros” are rejected. 
(or 5.5% of the zeros are
misidentified)

□ If a threshold of 0.16 is set: 
99.8% of the “ones” are selected; 
61.2% of the “zeros” are rejected. 
(or 38.8% of the zeros are
misidentified)

The actual performance depends
on your selected threshold.

BENCHMARK THE
PERFORMANCE
■ Let’s reformulate the problem as selecting ones (as signal), and

rejecting zeros (as background).

■ There is generally no perfect case with 100% efficiency and 0%
background contamination. In most of the cases we are dealing
with a relatively high signal efficiency but with some background
remaining in the end.

■ The question is that how could we provide an proper way to
benchmark the performance of your variable (and the subsequent
ML tools).

■ For binary classification, a good way to represent this feature is the
ROC curve (receiver operating characteristic curve). Or you can
rank your algorithm simply based on the chance of getting a
wrong result!

20

BENCHMARK THE
PERFORMANCE (II)
■ Let’s produce such a ROC curve

based on the distribution of full
averaged pixel densities:

21

all_mean0 = sample0.mean(axis=(1,2))
all_mean1 = sample1.mean(axis=(1,2))

thresholds = np.linspace(0.0,0.4,200)

roc_y = np.array([(all_mean1<th).sum()/
len(all_mean1) for th in thresholds])
roc_x = np.array([(all_mean0<th).sum()/
len(all_mean0) for th in thresholds])

fig = plt.figure(figsize=(6,6), dpi=80)
plt.plot(roc_x, roc_y, lw=3)
plt.plot([0,0],[1,1], ls='--')
plt.grid()
plt.show()

l301-example-02a.py (partial)

Si
gn

al
 e

ffi
ci

en
cy

Background contamination

ROC AND AUC
■ The ROC curve illustrates the diagnostic ability of a binary

classifier system as its discrimination threshold is varied.

■ When the curve is "banding" away from the diagonal line, it
indicates a superior performance; while the ideal curve is yield a
point in the upper left corner.

■ The performance can be also represented by the AUC (area under
the curve), which can vary from 0.5 (as an uninformative
classifier), up to 1.0 (ideal classifier).

22

diagonal curve
= random choice

Ideal
curve

Better!

0 0

AUC could be a way
to show the power
of the classifier!
(But this is application-
dependent!)

Which���������	
�������������������� one���������	
�������������������� is���������	
�������������������� more���������	
��������������������
powerful?

1

ROC AND AUC (II)

23

roc1_y = np.array([(all_mean1<th).sum()/ 
len(all_mean1) for th in np.linspace(0.0,0.4,200)])
roc1_x = np.array([(all_mean0<th).sum()/ 
len(all_mean0) for th in np.linspace(0.0,0.4,200)])

roc2_y = np.array([(center_mean1>th).sum()/
len(center_mean1) for th in np.linspace(-0.01,1.,200)])
roc2_x = np.array([(center_mean0>th).sum()/
len(center_mean0) for th in np.linspace(-0.01,1.,200)])

auc1, auc2 = 0., 0.
for i in range(200-1):
 h = abs(roc1_x[i+1]-roc1_x[i])
 auc1 += h*(roc1_y[i+1]+roc1_y[i])*0.5
 h = abs(roc2_x[i+1]-roc2_x[i])
 auc2 += h*(roc2_y[i+1]+roc2_y[i])*0.5

print('AUC(avg of all pixels): ',auc1)
print('AUC(avg of centered pixels): ‘,auc2)

l301-example-02b.py (partial)

centered  
pixels

all
pixels

■ Let’s compare the performance of the
two feature variables in hand!

AUC(avg of all pixels):
0.983529281369
AUC(avg of centered pixels):
0.938543404323

⇓ simple trapezoidal rule

INTO MACHINE LEARNING!?
■ In fact we have not touched any machine learning algorithm yet!

But there is nothing to surprise since preparing data is an
important task for ML studies.

■ Now let’s practice the easiest/simplest algorithm: Linear
discriminant analysis (LDA), or even simpler,  
the Fisher’s discriminant, by combining the multiple features into
one variable:

24

x1

x2

x3

F = w1x1 + w2x2 + w3x3 + w4x4 + · · ·

S
F

Calculate the weights (wi) to maximize the separation S.

FISHER’S DISCRIMINANT
■ Fisher's linear discriminant is a method used in statistics, pattern

recognition and machine learning to find a linear combination of
features that characterizes or separates two or more classes of
objects or events.
■ Consider a set of observables:
■ For 2 different event classes, the mean and covariance of the

observables are:  
 

■ The separation S is given by  
 

■ The optimal weights can be determined by maximizing the S:

25

�!
x = (x1, x2, x3, · · ·)

�!µ 0,
�!µ 1,⌃0,⌃1

�!
µ = h�!x i ⌃ = h(�!x ��!

µ) · (�!x ��!
µ)T i

S =
(�!w ·�!µ 1 ��!w ·�!µ 0)2
�!w T⌃1

�!w +�!w T⌃0
�!w

�!w / (⌃0 + ⌃1)
�1(�!µ 1 ��!µ 0)

FISHER’S DISCRIMINANT (II)
■ So all we need to do is to calculate the mean and the  

covariance of the input features, and NumPy has the  
functionality to do it quickly!

26

sample0 = x_train[y_train==0]/255.
sample1 = x_train[y_train==1]/255.

var0 = np.vstack([sample0.mean(axis=(1,2)),sample0[:,
10:18,11:17].mean(axis=(1,2))])
var1 = np.vstack([sample1.mean(axis=(1,2)),sample1[:,
10:18,11:17].mean(axis=(1,2))])

mu0 = var0.mean(axis=1)
mu1 = var1.mean(axis=1)
cov0 = np.cov(var0)
cov1 = np.cov(var1)

weight = np.dot(linalg.inv(cov1+cov0),mu1-mu0)
norm = np.sqrt((weight**2).sum())
weight /= norm

print('Resulting weights =',weight)

l301-example-03.py (partial)

merge the arrays for the two features,
 ⇓ in the shape of (2, N)

 ⇐ mean values, in shape of (2,)

 ⇐ covariance matrix, in shape of (2, 2)

 ⇐ weight calculation

FISHER’S DISCRIMINANT (III)
■ This is what we get:  
 
 
Then the transformed discriminant will be  
 
 

■ And…just plot it!

27

out0 = (var0.T*weight).sum(axis=1)
out1 = (var1.T*weight).sum(axis=1)

fig = plt.figure(figsize=(6,6), dpi=80)
plt.hist(out0, bins=50, color='y')
plt.hist(out1, bins=50, color='g', alpha=0.5)
plt.show()

l301-example-03a.py (partial)

Resulting weights = [-0.97661612 0.2149906]

F = –0.9766 × (full average)  
 +0.2150 × (centered average)

Separation is  
obviously better!

zeros

ones

WHAT DOES IT MEAN?
■ It actually makes a projection along a given axis in 2D,  

and it will maximize the separation power:

28

True
zeros

True
ones

projection!

Full Average

C
en

te
r A

ve
ra

ge

Fisher Disc.

It also gives a
nearly perfect ROC!

l301-example-03b.py

COMMENT: PERFORMANCE
■ You may find the result looks quite good and everything seems to

be too easy! But this is simply due to the fact that separation of
handwriting 0 and 1 is very easy by itself.

■ In such a simplified problem we have reached a failure rate of
~0.7% (by setting the threshold at –0.011). But remember the best
algorithm can reach 0.21%, and with all 10 digits in the
consideration!

■ Here are a couple of failed cases:  
 
 
 

■ Obviously one has to improve the algorithm further…

29

COMMENT: FEATURES
■ You may claim, this is due to the fact that we have only include

two features/variables! One should invent much more stuff and
included them in the classification!

■ Yes indeed it would work much better if we can, improve the
features, and include more variables in the study. Including full
768 pixels directly can be also an option (we will do that latter in
our neural network example), or with some ML technique to find the
features directly (will be discussed in our convolutional network
example).

■ However, human designed features have a strong benefit: we
know what we are doing exactly, although it may not reach its
maximum power. In such a situation one can control the
systematics (if it is a worry in your study) much better.

30

COMMENT: WHAT
MACHINE REALLY LEARNED?
■ The program we have prepared took only seconds to calculate and

give us two weights in the end. What machine actually learned in
this example?

■ Remember the spirit of ML is that we do not tune the algorithm
directly; let the algorithm to tune itself from data. So indeed our
discriminant has “learned” its two parameters from the input
data.

■ If we go for a much more complicated algorithm in the following
lecture, there will be much more parameters to tune and you may
sense the “learning” part more. A deep neural network can easily
take days or even weeks to train.

31

COMMENT:  
TRAINING AND TESTING
■ At the beginning of this lecture, we have said that the typical ML

cycle involves training, testing, and maybe another step of
validation. And these tasks should be carried out with statistically
independent samples.

■ Indeed this should be carried out properly –– as we have estimate
the two weights from the training samples, the performance of the
discriminant should be determined from the independent testing
samples rather than the same training data to avoid bias.

■ We will strictly execute these steps from now on. In particular
when we move to a more complex algorithm, which will generate
a more significant bias by comparing the performance in training
and in testing data.

32

INTERMISSION

■ As we just stated, separating 0 and 1 is probably the easiest case.
Some other cases it may not be so straightforward. For example,
comparing  
3 and 8:  
 
 
 

■ By comparing the average pixel density for these two digits, does
it provide some separation power?

■ If not, can you think of some simple feature to separate  
them?

33

USING THE SCIKIT-LEARN
TOOL
■ Surely it is more efficient to use some existing tool other than the

home made code!
■ Here comes the Scikit-learn, which is a machine learning library

with Python.It features various classification, regression and
clustering algorithms including support vector machines, random
forests, gradient boosting, and is designed to interoperate with
NumPy and SciPy.

34

http://scikit-learn.org/

http://scikit-learn.org/

import numpy as np
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

mnist = np.load('mnist.npz')
x_train = mnist['x_train'][mnist['y_train']<=1]/255.
y_train = mnist['y_train'][mnist['y_train']<=1]
x_test = mnist['x_test'][mnist['y_test']<=1]/255.
y_test = mnist['y_test'][mnist['y_test']<=1]

x_train = np.array([[img.mean(),img[10:18,11:17].mean()]  
for img in x_train])
x_test = np.array([[img.mean(),img[10:18,11:17].mean()]  
for img in x_test])

clf = LinearDiscriminantAnalysis()
f_train = clf.fit_transform(x_train, y_train)

s_train = clf.score(x_train, y_train)
s_test = clf.score(x_test, y_test)
print('Performance (training):', s_train)
print('Performance (testing):', s_test)

LDA WITH SCIKIT-LEARN
■ Let’s repeat the simple 2D LDA study with scikit-learn tool:

35

l301-example-04.py (partial)

 ⇐ Prepare both training  
and testing data

 ⇐ Evaluate the performance for  
training and testing data

 ⇓ import LDA from scikit-learn

 ⇐ “training”

■ The output scores shows a good consistency between training and
testing data. 
 
 

■ And the transformed distribution  
is pretty much the same as the  
previous Fisher’s discriminant:

fig = plt.figure(figsize=(6,6), dpi=80)
plt.hist(f_train[y_train==0], bins=50, color='y')
plt.hist(f_train[y_train==1], bins=50, color='g', alpha=0.5)
plt.show()

LDA WITH SCIKIT-LEARN

36

l301-example-04.py (partial)

Performance (training): 0.982945124358
Performance (testing): 0.986761229314

zeros

ones

■ Another very common way of using LDA is to reduce the input
dimensions. LDA transforms the input dimensions with linear
combination of input features.

■ In the following example we take the full 784 pixels from 3
different digits as input and transform them into two dimensions.

DIMENSION REDUCTION
WITH LDA

37

import numpy as np
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

mnist = np.load('mnist.npz')
x_train = mnist['x_train'][mnist['y_train']>=7]/255.
y_train = mnist['y_train'][mnist['y_train']>=7]

x_train = np.array([img.reshape((784,)) for img in x_train[:3000]])
y_train = y_train[:3000]

l301-example-04b.py (partial)

 ⇐ take out 7/8/9 
three digits

 ⇑ flatten the inputs 
as 1D array ⇑ take the first  

3000 samples

■ Now each of the digits
can be described by two
variables, and you can
see they are quite
“distinguishable”!

DIMENSION REDUCTION
WITH LDA (II)

38

clf = LinearDiscriminantAnalysis(n_components=2)
f_train = clf.fit_transform(x_train, y_train)

fig = plt.figure(figsize=(6,6), dpi=80)
for i in range(7,10):
 plt.scatter(f_train[:,0][y_train==i], f_train[:,1][y_train==i],
 s=50, marker='$'+str(i)+'$', alpha=0.5)
plt.show()

l301-example-04b.py (partial)

True “7”

True “9”

True “8”

■ The LDA is separating the distributions by maximizing the
distance between the classes with their mean and covariance in the
consideration, as a group-wise effort.

■ But since we are discussing about “classification” here, why we
cannot just find a border line between the groups? One can even
consider a non-linear border, right?

COME BACK TO THE
ORIGINAL PROBLEM…

39

■ Support vector machines (SVM) are supervised learning models
commonly used for classification and regression analysis.

■ A data point can be viewed as a p-dimensional vector, and one
wants to separate the points with a (p–1)-dimensional hyperplane.
There are multiple hyperplanes that might classify the data; one
reasonable choice is the hyperplane that represents the largest
separation, or margin, between the  
given two classes.

■ That is, in the SVM, the categories/  
classes are divided by a clear gap  
which is as wide as possible.

■ So usually it works good for the  
cases that are difficult to separate!

HERE COMES THE  
SUPPORT VECTOR MACHINE

40

not working working but  
not optimal

best with  
wider gap!

■ Consider a training data set of n points (vectors):  
 
 
We want to find the “maximum-margin  
hyperplane” to separate the groups of  
y=+1 and –1.

■ A hyperplane can be expressed as  
 
 
where w is the normal vector to the  
hyperplane, and the parameter b/|w|  
determines the offset of the  
hyperplane from the origin.

LINEAR SVM

41

(�!x 1, y1), ..., (
�!
x n, yn) where yi = ±1

�!
w ·�!x � b = 0

■ If the training data is linearly separable, we can select two
parallel hyperplanes with maximal distance/region
between them (maximal “margin”).

■ These hyperplanes can be described  
by the following equations:  
 

■ We have to prevent data points  
from falling into the margin, thus the  
following constraints apply:

LINEAR SVM WITH  
HARD MARGIN

42

�!
w ·�!x � b = ±1

�!
w ·�!x i � b � +1, if yi = +1
�!
w ·�!x i � b �1, if yi = �1

■ The constraints imply each data point must lie on the
correct side of the margin. One can put this together to
formulate an optimization problem: 
 
 
 
 

■ A consequence of this geometric  
description is that the max-margin  
hyperplane is completely determined  
by those data points which lie nearest  
to it ⇒ support vectors.

LINEAR SVM WITH  
HARD MARGIN (II)

43

yi(
�!
w ·�!x i � b) � 1

for all 1 ≤ i ≤ n

Minimize subject to1

2
|w|2

■ SVM can be extend to the cases where the  
data are not fully linearly separable. In order  
to deal with such a situation, one can  
introduce “slack variables” (ξ):  
 
 

■ Surely we want the error term to be as small as possible, hence one
can add an additional cost to the target function to be minimized:

SOFT MARGIN

44

�!
w ·�!x i � b � +1� ⇠i, if yi = +1
�!
w ·�!x i � b �1 + ⇠i, if yi = �1

for all 1 ≤ i ≤ n and ξ ≥ 0

Minimize subject to
1

2
|w|2 + C

X

i

⇠i

yi(
�!
w ·�!x i � b) + ⇠i � 1

The regularization
parameter C is a balance

between the error term and
the margin space.

ξ

■ In this lecture we will not spend time to explain how to really solve
or optimize the SVM. Instead we will use scikit-learn package
directly to demonstrate how to use it.

■ Let’s deploy our handwriting ones versus  
zeros example again:

USING SVM WITH  
SCIKIT-LEARN

45

import numpy as np
from sklearn import svm

.

clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)
s_test = clf.score(x_test, y_test)
print('Performance (training):', s_train)
print('Performance (testing):', s_test)

l301-example-05.py (partial)

Performance (training):
0.992577970786
Performance (testing):
0.994799054374

 ⇐ initial a SVM w/ linear kernel

 ⇐ just import it!

 ⇐ data preparation part is the same

Slightly better results?

take C = 1 for now

■ Let’s demonstrate the separation power of
SVM directly with a “border” between the
data points:

USING SVM WITH  
SCIKIT-LEARN (II)

46

clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(x_train, y_train)

fig = plt.figure(figsize=(6,6), dpi=80)

xv, yv = np.meshgrid(np.linspace(0.,0.45,100),
np.linspace(-0.05,1.05,100))
zv = clf.predict(np.c_[xv.ravel(), yv.ravel()])
plt.contourf(xv, yv, zv.reshape(xv.shape),  
alpha=.3, cmap='Blues')

plt.scatter(x_train[:,0][y_train==0], x_train[:,1]
[y_train==0], c = 'y', s=5, alpha=0.8)
plt.scatter(x_train[:,0][y_train==1], x_train[:,1]
[y_train==1], c = 'g', s=5, alpha=0.8)
plt.show()

l301-example-05a.py (partial)

⇑ use contour to show the borders!

■ If we also draw a border line based on our previous LDA
study, it would look like this (and sufficiently different from
the situation for SVM?):

LINEAR SVM VERSUS LDA

47

Remember: LDA tends to make the average distribution away
from each other, while SVM concerns more about the difficult

data points near boundaries (as the supporting vectors!).

LDA SVM

■ Before moving toward the next topic, let’s try to inject all of the
pixels directly into linear SVM and see how good we can separate
all of the handwriting digits at once.

■ Remark: a full, seriously tuned SVM can reach a superior
performance with an error rate <1.5% on MNIST data. But it may
take days to run/tune the code. Here we are going to give you a
simple setting, which shows you how to get a “starting point”.

BEFORE MOVING AHEAD…

48

mnist = np.load('mnist.npz')
x_train = mnist['x_train'][:10000]/255.
y_train = mnist['y_train'][:10000]
x_test = mnist['x_test']/255.
y_test = mnist['y_test']

x_train = np.array([img.reshape((784,)) for img in x_train])
x_test = np.array([img.reshape((784,)) for img in x_test])

l301-example-06.py (partial)

⇐ take only 10K images to
 speed up the training

 ⇑ flatten the inputs 
as 1D array

⇐ input all 10 digits as 10 classes

A FULL DIGITS SEPARATION  
WITH SVM

49

clf = svm.SVC(kernel='linear', verbose=True)
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)
s_test = clf.score(x_test, y_test)
print('Performance (training):', s_train)
print('Performance (testing):', s_test)

p_test = clf.predict(x_test)

fig = plt.figure(figsize=(10,10), dpi=80)
for i in range(100):
 plt.subplot(10,10,i+1)
 plt.axis('off')
 plt.imshow(mnist['x_test'][i], cmap='Greys')
 c='Green'
 if y_test[i]!=p_test[i]: c='Red'
 plt.text(0.,0.,'$%d\\to%d$' %
(y_test[i],p_test[i]),color=c,fontsize=15)
plt.show()

l301-example-06.py (partial)

⇐ this training will take a while!

an error rate ⇑
of ~8.3%, still room for  
improvement!

optimization finished,  
#iter = 2864
obj = -10.419231, rho =
1.347649
nSV = 133, nBSV = 0
Total nSV = 2630
Performance (training): 0.9969
Performance (testing): 0.917

⇑ show the first 100 digits

⇐ mark as red if
 there is mis-tag.

A FULL DIGITS SEPARATION  
WITH SVM (II)

50

■ Only several
misidentifications found
in the first 100 digits!

■ You may find the training
accuracy of 99.7% and
testing accuracy of 91.7%;
such situation is a typical
overfitting/overtraining.

■ We will discuss more
about such symptom in
the next lectures.

■ Can we quickly improve our tool with a non-linear
method, for example, non-linear SVM?  
(Sounds more powerful at least!)

■ The idea is to transform the data with a kernel trick,  
and allows the algorithm to fit the margin  
hyperplane in a transformed feature space. The
classifier finds a hyperplane in the transformed  
space, the plane can be be nonlinear in the  
original space. Some common kernels:
- Polynomial  

- Gaussian / Radial basis function (RBF)

HOW ABOUT  
NONLINEAR KERNEL?

51

x) �(x)

k(

�!
x i,

�!
x j) = exp(��|�!x i ��!

x j |2)

k(�!x i,
�!
x j) = (��!x i ·�!x j + ⌘)d

A TOTALLY NONLINEAR
CASE
■ One can easy generate some data which

is obviously NOT linear separable at all,
for example, two doughnuts?

52

y_train = np.random.randint(0,2,5000)
rho = np.abs(np.random.randn(5000)/4.+1.+y_train)
phi = np.random.rand(5000)*np.pi*2.
x_train = np.c_[rho*np.cos(phi),rho*np.sin(phi)]

fig = plt.figure(figsize=(6,6), dpi=80)
plt.scatter(x_train[:,0][y_train==0], x_train[:,1]
[y_train==0], c = 'y', s=5, alpha=0.8)
plt.scatter(x_train[:,0][y_train==1], x_train[:,1]
[y_train==1], c = 'g', s=5, alpha=0.8)
plt.show() l302-example-07.py (partial)

y_train=0

y_train=1

NEARLY RANDOM
SEPARATION?
■ If you in any case inject this “two

doughnuts” data into linear SVM, it
will just give you a nearly random
separation:

53

clf = svm.SVC(kernel='linear', C=1.)
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)
print('Performance (training):', s_train)

.

xv, yv =
np.meshgrid(np.linspace(-3.,3.,100),np.linspace(-3.,3.,100))
zv = clf.predict(np.c_[xv.ravel(), yv.ravel()])
plt.contourf(xv, yv, zv.reshape(xv.shape), alpha=.3,
cmap='Blues')

l302-example-07a.py (partial)

Performance (training):
0.562

LET’S JUST SWITCH IT  
WITHIN THE CODE..?
■ Let’s try the RBF/Gaussian kernel

and see how it works?
■ Now you can see it can do a very nice

job by introducing a nonlinear
boundary!

54

clf = svm.SVC(kernel='rbf', C=1.)
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)
print('Performance (training):', s_train)

l302-example-07b.py (partial)

Performance (training):
0.9754

Let’s test this with our previous problem:  
Separating handwriting digits!

NONLINEAR SVM +  
DIGITS SEPARATION?

55

clf = svm.SVC(kernel='rbf')
clf.fit(x_train, y_train)

l301-example-06.py (modified)

optimization finished, #iter = 411
obj = -315.265385, rho = -0.578260
nSV = 481, nBSV = 430
Total nSV = 5197
Performance (training): 0.9295
Performance (testing): 0.9213

optimization finished, #iter = 958
obj = -1757.941589, rho = 0.880989
nSV = 1889, nBSV = 1887
Total nSV = 9970
Performance (training): 0.1648
Performance (testing): 0.1595

clf = svm.SVC(kernel='poly')
clf.fit(x_train, y_train)

l301-example-06.py (modified)

■ Well, it improves only a little bit with the RBF kernel (~0.4%), but
totally failed with polynomial kernel, why?

■ This is because we still need to tune the parameters for those non-
linear kernels, otherwise it will not show its power.

■ We will continue to discuss this in our lecture next week.

56

We will continue our discussions for  
nonlinear methods next week!

HANDS-ON SESSION

■ Practice data:  
There is a data of 2 features from 3 classes, stored in the
l301practice.npz file (can be downloaded from CEIBA or the
lecture web). The following piece of code can be used to load it:  
 
 
 
 
 
 
The x_train, y_train contains 12000 samples, and x_test,
y_test contains 6000 samples.

57

import numpy as np

data = np.load('l301practice.npz')
x_train = data['x_train']
y_train = data['y_train']
x_test = data['x_test']
y_test = data['y_test']

HANDS-ON SESSION

■ Practice 01a:  
In the x_train data there are 2
different input variables (as 2
features). Please use the scatter
plot to draw them, and
separating for the 3 input classes
based on the value stored in
y_train. You may get a similar
plot like this, if you take l301-
example-04b.py as a template:

58

HANDS-ON SESSION

■ Practice 02b:  
Take the practice data and inject them into a SVM. See how good can
you separate the 3 classes with the linear kernel? Please estimate the
accuracy for both training and testing data.

59

Performance (training):
0.xxxxx
Performance (testing):
0.yyyyy

You can visualize the
separation as well!

HANDS-ON SESSION

■ Practice 02:  
Take the l301-example-04.py as a template code, apply the
following modifications:
- Instead of separation handwriting 0 and 1, let’s separate 8 and 9.
- Instead of putting in only two features, inject all 784 pixels into

LDA. See how good we can separate them?

60

Performance (training):
0.xxxxx
Performance (testing):
0.yyyyy

