import numpy as np import matplotlib.pyplot as plt mnist = np.load('mnist.npz') x_train = mnist['x_train'][:10000]/255. y_train = np.array([np.eye(10)[n] for n in mnist['y_train'][:10000]]) from keras.models import Sequential, clone_model from keras.layers import Dense, Reshape from keras.optimizers import SGD m1 = Sequential() m1.add(Reshape((784,), input_shape=(28,28))) m1.add(Dense(30, activation='sigmoid')) m1.add(Dense(10, activation='softmax')) m1.compile(loss='categorical_crossentropy', optimizer=SGD(lr=2.0)) m2 = clone_model(m1) m2.compile(loss='categorical_crossentropy', optimizer=SGD(lr=2.0)) m3 = clone_model(m1) m3.compile(loss='categorical_crossentropy', optimizer=SGD(lr=2.0)) rec1 = m1.fit(x_train, y_train, epochs=100, batch_size=10) rec2 = m2.fit(x_train, y_train, epochs=100, batch_size=30) rec3 = m3.fit(x_train, y_train, epochs=100, batch_size=300) vep = np.linspace(1.,100.,100) fig = plt.figure(figsize=(6,6), dpi=80) plt.plot(vep,rec1.history['loss'], lw=3) plt.plot(vep,rec2.history['loss'], lw=3) plt.plot(vep,rec3.history['loss'], lw=3) plt.ylim(-0.05,0.5) plt.grid() plt.show()