
INTRODUCTION TO
NUMERICAL ANALYSIS
Lecture 3-4:  
Deep Structured Learning

1

Kai-Feng Chen
National Taiwan University

2019

2

We shall go deeper
this time!

RECALL FROM THE LAST
LECTURE…(AGAIN2!)
■ Last lecture we started to optimize our network with quite a few

tricks that are commonly introduced nowadays, including a
different choices of loss function, reducing the overtraining issue
by introducing the regularization or dropout, or trying a different
activation functions like ReLU which does not suffer from the slow
learning problem as the classical sigmoid function.

■ In the end we try to introduce a larger, complex network, with
some of the tricks enabled. We were able to reach the best testing
accuracy of 98.5%! Note this just reached the same performance as
the best nonlinear SVM can do.

■ Can we still further improve it by introducing a deeper network, or
a different structure, such as the convolutional neural network?

3

■ We have tested the network with more and more hidden
layers and turns out to be hard to improve it further.

■ The intrinsic problem is that the gradients are unstable
with deeper network. The classical network may still
work better but an effective training becomes difficult.

RECALL FROM THE LAST
LECTURE…(AGAIN2!)

4

Ending test accuracy
98.4%

Ending test accuracy
98.5%

784-(256x8)-10
train for 100 epochs

784-(256x4)-10
train for 40 epochs

Using a network with
different structure may

resolve the problem,
further improve the

performance!

5

Here comes the Convolutional Neural Network…

■ Up to now we are using a network first by “reshape” of the input
28×28 pixels into a flat input of 784 neurons. Although it works
rather well but we do not take into account the nature of images in
fact. The local information (of adjacent pixels) is lost.

■ The convolutional networks use a special architecture which is
particularly well-adapted to image recognition. The architecture of
convolutional network makes the training of deep, multi-layer
networks easier.

■ There are several ideas introduced for the convolutional neural
networks to be discussed in the following slides: local receptive
fields, shared weights, and the pooling.

CONVOLUTIONAL
NETWORK

6

■ In a typical convolutional network, the input layer is encoded in the
following structure. For example, instead of fully connected
network, one only has the first 5×5 block of neurons being connected
to one neuron in the first hidden layer, and next 5×5 block connected
to the second neuron…

LOCAL RECEPTIVE FIELDS

7

●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○○

●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○

○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

If we have 28×28 as the input image, and with a 5×5 local
representative field, the first hidden layer will be 24×24.

Input layer

first hidden layer

■ The second important feature is that the local representative fields
have a shared weights/bias through out the whole first hidden layer.
e.g. the same 5×5 weights and a common bias are shared by all of
the neurons on the first hidden layer.

SHARED WEIGHTS/BIAS

8

●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○○○○●●●●●○○○

●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Input layer

first hidden layer

�

0

@b+
4X

i=0

4X

j=0

wijvm+i,n+j

1

A

<latexit sha1_base64="ktgSMZqGjvnCWoCxR+BPyf2PpSE=">AAACQnicbZDLSgMxFIYz3q23qks3wSJUKmVGBN0Ioi5cKlgrdOqQSTNtapIZkjNKGeaFfA4fwK2+gOBO3LowvSy09UDg4z/X/GEiuAHXfXWmpmdm5+YXFgtLyyura8X1jRsTp5qyGo1FrG9DYpjgitWAg2C3iWZEhoLVw/uzfr7+wLThsbqGXsKakrQVjzglYKWgeO4b3pbEFyyCciHEFeybVAYZP3bzu4MhdweMH63azfFDkMkK31OVbl7wNW93YDcoltyqOwg8Cd4ISmgUl0Hx3W/FNJVMARXEmIbnJtDMiAZOBbNzU8MSQu9JmzUsKiKZaWaD3+Z4xyotHMXaPgV4oP7uyIg0pidDWykJdMx4ri/+l2ukEB01M66SFJiiw0VRKjDEuG8dbnHNKIieBUI1t7di2iGaULAG/9nSn61NZHLrjDfuwyTc7Fc9t+pdHZROTkceLaAttI3KyEOH6ARdoEtUQxQ9oRf0it6cZ+fD+XS+hqVTzqhnE/0J5/sHu+OwhQ==</latexit><latexit sha1_base64="ktgSMZqGjvnCWoCxR+BPyf2PpSE=">AAACQnicbZDLSgMxFIYz3q23qks3wSJUKmVGBN0Ioi5cKlgrdOqQSTNtapIZkjNKGeaFfA4fwK2+gOBO3LowvSy09UDg4z/X/GEiuAHXfXWmpmdm5+YXFgtLyyura8X1jRsTp5qyGo1FrG9DYpjgitWAg2C3iWZEhoLVw/uzfr7+wLThsbqGXsKakrQVjzglYKWgeO4b3pbEFyyCciHEFeybVAYZP3bzu4MhdweMH63azfFDkMkK31OVbl7wNW93YDcoltyqOwg8Cd4ISmgUl0Hx3W/FNJVMARXEmIbnJtDMiAZOBbNzU8MSQu9JmzUsKiKZaWaD3+Z4xyotHMXaPgV4oP7uyIg0pidDWykJdMx4ri/+l2ukEB01M66SFJiiw0VRKjDEuG8dbnHNKIieBUI1t7di2iGaULAG/9nSn61NZHLrjDfuwyTc7Fc9t+pdHZROTkceLaAttI3KyEOH6ARdoEtUQxQ9oRf0it6cZ+fD+XS+hqVTzqhnE/0J5/sHu+OwhQ==</latexit><latexit sha1_base64="ktgSMZqGjvnCWoCxR+BPyf2PpSE=">AAACQnicbZDLSgMxFIYz3q23qks3wSJUKmVGBN0Ioi5cKlgrdOqQSTNtapIZkjNKGeaFfA4fwK2+gOBO3LowvSy09UDg4z/X/GEiuAHXfXWmpmdm5+YXFgtLyyura8X1jRsTp5qyGo1FrG9DYpjgitWAg2C3iWZEhoLVw/uzfr7+wLThsbqGXsKakrQVjzglYKWgeO4b3pbEFyyCciHEFeybVAYZP3bzu4MhdweMH63azfFDkMkK31OVbl7wNW93YDcoltyqOwg8Cd4ISmgUl0Hx3W/FNJVMARXEmIbnJtDMiAZOBbNzU8MSQu9JmzUsKiKZaWaD3+Z4xyotHMXaPgV4oP7uyIg0pidDWykJdMx4ri/+l2ukEB01M66SFJiiw0VRKjDEuG8dbnHNKIieBUI1t7di2iGaULAG/9nSn61NZHLrjDfuwyTc7Fc9t+pdHZROTkceLaAttI3KyEOH6ARdoEtUQxQ9oRf0it6cZ+fD+XS+hqVTzqhnE/0J5/sHu+OwhQ==</latexit><latexit sha1_base64="ktgSMZqGjvnCWoCxR+BPyf2PpSE=">AAACQnicbZDLSgMxFIYz3q23qks3wSJUKmVGBN0Ioi5cKlgrdOqQSTNtapIZkjNKGeaFfA4fwK2+gOBO3LowvSy09UDg4z/X/GEiuAHXfXWmpmdm5+YXFgtLyyura8X1jRsTp5qyGo1FrG9DYpjgitWAg2C3iWZEhoLVw/uzfr7+wLThsbqGXsKakrQVjzglYKWgeO4b3pbEFyyCciHEFeybVAYZP3bzu4MhdweMH63azfFDkMkK31OVbl7wNW93YDcoltyqOwg8Cd4ISmgUl0Hx3W/FNJVMARXEmIbnJtDMiAZOBbNzU8MSQu9JmzUsKiKZaWaD3+Z4xyotHMXaPgV4oP7uyIg0pidDWykJdMx4ri/+l2ukEB01M66SFJiiw0VRKjDEuG8dbnHNKIieBUI1t7di2iGaULAG/9nSn61NZHLrjDfuwyTc7Fc9t+pdHZROTkceLaAttI3KyEOH6ARdoEtUQxQ9oRf0it6cZ+fD+XS+hqVTzqhnE/0J5/sHu+OwhQ==</latexit>

- This means all of the neurons of
the hidden layer can detect exactly
the same feature.

- The map from the input layer to
the hidden layer is usually called a
feature map.

- A feature map only keep 25
weights and 1 bias!

- The shared weights/bias are often
said to define a kernel or a filter.

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

■ And it is very common to build multiple feature maps, i.e.

FEATURE MAPS

9

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. Input
28×28

neurons

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

- For example here are the trained
16 feature maps (or kernels/
filters) in the next example.

- Basically each map supposes to
pick up a different feature from
the input images!

N×24×24
feature maps

■ In addition to the convolutional layers, a pooling layer is usually
added right after them. A pooling layer is to simplify the information
from the convolutional layer, for example a 2×2 pooling layer shrink
the input 24×24 feature map into a 12×12 units:

POOLING LAYERS

10

○○○○○○○○○○○○○○○○○○○○○○●●○○○○○○○○●●○○

○○○○○○○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○

output from the feature map

pooling units

- Max-pooling: simply outputs
the maximum activation value
in input region.

- L2 pooling: take the square
root of the quadrature sum of
the activations.

- No additional weight/bias but
just condensing information
from the convolutional layer.Usually this is applied to each  

feature map output layer

PUT ALL TOGETHER:
CONVOLUTIONAL NETWORK
■ Here we just draw the structure of a typical convolutional

network. And it will be implemented in our upcoming example
code. We construct the network with 16 filters:

11

○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. Input
28×28

neurons

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. 16×24×24
feature maps 16×12×12

pooling units

fully connected  
network

Although you may think this is a complicated model, but in
fact the total # of parameters are much smaller than our

previous example, only 23,466 weights/bias!

16���������	
��
������������������ x���������	
��
������������������ 26���������	
��
������������������ =���������	
��
������������������ 416���������	
��
������������������ parameters���������	
��
������������������

→0

→1

→2

→3

→4

→5

→6

→7

→8

→9

⋱ ⋱

■ Easy implementation with Keras:

PUT ALL TOGETHER (II)

12

.
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import Adadelta

model = Sequential()
model.add(Reshape((28,28,1), input_shape=(28,28)))
model.add(Conv2D(16, kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
 optimizer=Adadelta(),
 metrics=['accuracy'])
. l304-example-01.py (partial)

Just the model
discussed in the
previous page!

⇑ 5x5 convolutional layer
⇑ 2x2 pooling layer

■ And we can reach a very good performance already:  
 
 
 
 
 
 

■ A testing accuracy of 98.7% reached, only 126 images are mis-
identified. Remember we only put a layer of convolutional network
and # of parameters is reduced by a factor of 28 comparing to the
previous flat 784-512-512-10 network!

■ Can we do even better? Let’s try to add more layers!

PUT ALL TOGETHER (III)

13

.
Epoch 20/20
60000/60000 [===========] 13s 217us/step - loss: 0.0363 - acc: 0.9890
- val_loss: 0.0371 - val_acc: 0.9874
Performance (training)
Loss: 0.02537, Acc: 0.99267
Performance (testing)
Loss: 0.03712, Acc: 0.98740

HOW ABOUT ADDING MORE
FEATURES MAPS?
■ Let’s just double the feature maps? Can we improve the model?

14

○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

fully connected  
network

→0

→1

→2

→3

→4

→5

→6

→7

→8

→9

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. 32×24×24
feature maps 32×12×12

pooling units

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. Input
28×28

neurons

⋱ ⋱

Epoch 20/20
.
Performance (training)
Loss: 0.01816, Acc: 0.99518
Performance (testing)
Loss: 0.03244, Acc: 0.98900

- Now we reached 98.9%  
test accuracy, only 110 digits  
are wrongly tagged!

ADD ANOTHER HIDDEN
FULLY CONNECTED LAYER?
■ Let’s add another fully connected layer and see the performance?

15

512 hidden  
neurons

○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○○○○. . .○○○○○○

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

fully connected  
network →0

→1

→2
→3
→4

→5
→6
→7

→8
→9

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. 32×24×24
feature maps 32×12×12

pooling units

○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○.. Input
28×28

neurons

⋱ ⋱

Epoch 20/20
.
Performance (training)
Loss: 0.00094, Acc: 0.99988
Performance (testing)
Loss: 0.02896, Acc: 0.99230 - Now we go beyond 99.2%!

DOUBLED LAYERS!
■ Let’s config our model by two convolution+pooling layers, and

two fully connected layers. Then see how good can we do here?

.
model = Sequential()
model.add(Reshape((28,28,1), input_shape=(28,28)))
model.add(Conv2D(32, kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32, kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation=‘softmax'))
. l304-example-01a.py (partial)

Performance (training)
Loss: 0.00167, Acc: 0.99960
Performance (testing)
Loss: 0.01988, Acc: 0.99480

16

- Now we can almost reach 99.5%!

DOUBLED LAYERS! (II)

17

■ Now we only have 52
wrongly tagged images
(0.52% failed).

■ Some of them are also
difficult for real humans!

■ Remember the best
trained network (world
record) is with 0.21%
failure rate. Still rooms to
be improved!

The convolutional neural network is a kind of deep
network good for image recognition!

STRUCTURE DOES MATTER
■ It is very interesting that by changing the structure of network, it

contains a smaller number of tunable parameters, but also boost
the performance. This is due to the structure makes the network
easier to train and can reach a very good performance within a
limited training time.

■ In fact, by using classical multilayers of network, the performance
can be as good as CNN but the training can take a very long time
and a lot of tricks need to be adopted.

■ On the other hand, CNN is good for image recognition, but for
other topics, one may want to introduce a different structure, or
even different concepts to have a powerful ML program.

18

Let’s quickly comment on some modern networks
which has been developed for different topics!

OTHER DEEP NETWORKS &
IDEAS
■ Recurrent neural network (RNN):
- Up to now our network has a fixed flow throughout the

training, but what will happen if we allow the network to vary
itself along with time sequence?

- Unlike feedforward neural network, RNN can use their internal
state to process a sequence of inputs. This gives RNN a good
approach to the unsegmented data, for example, language/
speech recognition.

19

A Harry Potter
chapter “written” by

AI program…

OTHER DEEP NETWORKS &
IDEAS (II)
■ Generative adversarial network (GAN):
- The basic structure of GAN is to have two network “fighting”

with each other: one is to find “fake” images out of the pool,
another one is to generate fake images.

- Once it has been trained, you can use the generator to produce
lots of “nearly true”  
fake images, e.g.  
photo of a person  
who never exists in  
the real world, or  
convert your doodle  
to a fancy graph!

20

OTHER DEEP NETWORKS &
IDEAS (III)
■ Reinforcement Learning (RL):
- In our example network, the required responses of our model

are relatively simple (just which digit, 0-9). But in many
problems, for example, playing chess, this is not a simple task as
no clear classification of good/bad labels.

- Then the reinforcement learning is a kind of idea to build the
environment for your program to learn how to survive by itself
(only give it a goal to reach, e.g. beating the opponent, getting
higher scores etc). Let the environment to be the teacher.

- A famous example is the AlphaGoZero,  
which is trained without any prior  
knowledge of Go, but just let to  
figure out how to play Go by itself!

21

INTERMISSION

■ It is very interesting to see what are he feature maps looked like
exactly (an example has been shown in an earlier slide), since the
feature maps are kind of direct demonstration how the CNN
“look” at the input images.

■ This can be carried out by adding the following short code to the
end of training (following the model in l304-example-01.py):

22

.
fig = plt.figure(figsize=(8,8), dpi=80)
for i in range(16):
 plt.subplot(4,4,i+1)
 w = model.layers[1].get_weights()
 plt.imshow(w[0][:,:,0,i], cmap='Greys')
plt.show()

l304-example-01b.py (partial)

You may try
it now!

23

Let’s play with an
example RNN and an
example GAN here!

VANILLA RNN
■ Classical (“Vanilla”) RNN has a structure to connect the  

information from the previous time frame to the next, in  
addition to the regular inputs:  
 
 
 
 
 

■ Ideally the information can be passed to next time frame, but in
practical when training a vanilla RNN using back-propagation, the
gradients which are back-propagated can easily “vanish” (the network
tends to remember only recent frames) or “explode”.

■ At least the vanish gradient problem can be resolved by adding
“memory” capability.

24

RNN cellInputs

Outputs

in time  
sequence

WHY A MEMORY CELL IS
IMPORTANT?
■ Let’s take an analogy, by reading/examination the following short

story (suppose you are using a NN to process an article):

June was born in France. (…a long story and blah-blah…) Surely,
she can still speak nearly perfect French.

■ If there an memory cell, the important information (such as born in
France) can be kept and eventually it can build up a connection
with the French speaking capability in the end. But if a classic RNN is
deployed, the information given in the earlier lines will fade out
with time sequence due to the vanish gradient problem:

June was born in France. (…a long story and blah-blah…) Surely,
she can still speak nearly perfect French.  

25

It will be difficult to connect the key
information of the article with vanish gradients.

LONG SHORT-TERM
MEMORY
■ Long short-term memory (LSTM) is a kind of recurrent neural

network architecture. It has the capability to train long-term
dependencies. It was first introduced by Hochreiter &
Schmidhuber in 1997 and it is widely used in many different places
nowadays.

■ The key idea is to replace the classical RNN unit with the LSTM
unit, which consists of a memory cell + 3 “gates” (forget/input/
ouput).

26

ct: memory state

Input

forget gate

input gate output gate

Output

to  
next  
frame

from  
previous  
frame

ht: network state

LONG SHORT-TERM
MEMORY (II)
■ With such a structure, it will be easier for the network to remember

a long sequence of data, and keep/remember the key information.

■ It can be used to do language processing, music processing, as far
as we can convert the “words” or “notes” into input data.

■ With a trained model it can be also used to generate articles (as the
so-called “AI writer”) or music (“AI composer”).

■ For our amusement, let’s practice a simple LSTM model with
music data, and see if our simple model can remember (being
trained) and generate a nice piece of music or not!

27

28

Maybe we can build
an AI Mozart easily?

MUSIC DATA: DECODING

■ In fact it should not be too difficult to convert the music data (from
a MIDI file or so) into a sequence of data.

■ But a full song can be quite complicated! Let’s give up some of the
information at the first place –– the instrument, volume, and
tempo, tonality.

■ There are still pitches, duration, delay, etc. Just focus on the
CHORD/NOTE only for now and forget about everything else…

29

Allegretto

C3+C5, C4+C5, E4+G5, C4+G5, …

Just convert the sheet
music to an article,

where a “word” contains
a “chord/note”.

from mido import MidiFile, MidiTrack, Message, MetaMessage

def decode_midi(filename, maxnotes = 0):

 mid_in = MidiFile(filename)
 notes = []
 for track in mid_in.tracks:
 sum_of_ticks = 0
 pool = []
 for msg in track:
 sum_of_ticks += msg.time
 if msg.type=='note_on':
 for p in pool:
 if p[1]==msg.channel and p[2]==msg.note:
 if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]])
 pool.remove(p)
 break
 else: pool.append([sum_of_ticks, msg.channel, msg.note])
 if msg.type=='note_off':
 for p in pool:
 if p[1]==msg.channel and p[2]==msg.note:
 if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]])
 pool.remove(p)
 break
 for p in pool:
 if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]])

 notes = np.array(notes)
 ticks = np.unique(notes[:,0])

 pack = []
 for idx in range(len(ticks)-1):
 notes_at_ticks = np.unique(notes[notes[:,0]==ticks[idx]], axis=0)
 chord = str([p for p in notes_at_ticks[-maxnotes:,1]])
 pack.append(chord)
 return pack midi_phraser.py (partial)30

Not going into the details
how to phrase a MIDI file,
just show you a piece of
code which can analyze
the track and produce a
list “chords” with a tool

named mido.

MUSIC DATA: DECODING

⇐ loop over “tracks”

⇐ loop over “messages”
⇐ count “ticks”

interpret “note on/off” message

 output the “chords” 
 ⇐ as a list of strings

DECODING TEST

■ Let’s test this “decoding” with Mozart’s Violin Concerto No. 5:

31

Surely not from the real
music but from an

existing MIDI file…

DECODING TEST (II)

■ Decoding from a MIDI file (not the original concerto but a rearranged
version for violin & piano, but it does not matter here!)

32

from midi_phraser import *

data = decode_midi('mozk219a.mid')

for idx, chord in enumerate(data):
 print('#%d: %s' % (idx,chord))

encode_midi('test.mid', data)

l304-example-02.py

#0: [33, 45, 61, 64, 69]
#1: [45, 49, 52]
#2: [57]
#3: [45, 49, 52]
#4: [57]
#5: [45, 49, 52]
#6: [57]
#7: [45, 49, 52]
#8: [57]
#9: [45, 49, 52]
#10: [57]
#11: [45, 49, 52, 61]
#12: [57]
#13: [45, 49, 52]
#14: [57]
#15: [45, 49, 52, 64]
#16: [57]
.

These are the
pitch numbers
suppose to be

played at the same
time!

■ The frequency for each pitch
can be calculated by

fm = 2
m�69

12 ⇥ 440 Hz
<latexit sha1_base64="+os9305TX2vYxTpDoVZ30a6cd5c=">AAACKHicbVDLSgMxFM3UV62vqks3wSKIYJmpxcdCKLrpsoJ9QGcsmTTThiYzQ5IR6jB+g9/hB7jVT3An3brxN8y0XdjWC4HDOefmJMcNGZXKNEdGZml5ZXUtu57b2Nza3snv7jVkEAlM6jhggWi5SBJGfVJXVDHSCgVB3GWk6Q5uU735SISkgX+vhiFxOOr51KMYKU118ideh8NrWHqI+en5FbQDbYZWKbEV5UTCctl8jm3BYfUp6eQLZtEcD1wE1hQUwHRqnfyP3Q1wxImvMENSti0zVE6MhKKYkSRnR5KECA9Qj7Q19JFOdOLxnxJ4pJku9AKhj6/gmP27ESMu5ZC72smR6st5LSX/09qR8i6dmPphpIiPJ0FexKAKYFoQ7FJBsGJDDRAWVL8V4j4SCCtd40xKereQnkybseZ7WASNUtE6K5buyoXKzbSjLDgAh+AYWOACVEAV1EAdYPAC3sA7+DBejU/jyxhNrBljurMPZsb4/gWz6aVq</latexit>

def encode_midi(filename, data, tempo_set=500000):

 mid_out = MidiFile()
 track = MidiTrack()
 mid_out.tracks.append(track)

 track.append(Message('program_change', program=46, time=0))
 track.append(MetaMessage('set_tempo', tempo=tempo_set, time=0))
 for pack in data:

 chord = eval(pack)
 delay = 120
 for pit in chord:
 track.append(Message('note_on', note=pit, velocity=64, time=0))
 track.append(Message('note_off', note=chord[0], velocity=64, time=delay))
 for pit in chord[1:]:
 track.append(Message('note_off', note=pit, velocity=64, time=0))

 mid_out.save(filename) midi_phraser.py (partial)

DECODING+ENCODING
■ The question is –– are we giving up too much information

(remember we already dropped the duration, delay. etc!) at the first place
and the music does not sound like a song anymore?

■ Let’s simply pack it back to a MIDI file and check if the music still
sounds like a Mozart concerto?

33

⇓ set to ‘Harp’

 no idea about the duration
⇐ of each note, just set to 120

(not too bad?)

PREPARE THE DATA FOR
OUR NETWORK
■ In other to feed the music data we just extracted from MIDI file,

there is still one more step to map the chords to an index number.

■ This can be carried out with a small piece of code like this:

34

data = decode_midi('mozk219a.mid')

all_chords = sorted(set(data))
n_chords = len(all_chords)
chords_to_idx = dict((v, i) for i,v in enumerate(all_chords))
idx_to_chords = dict((i, v) for i,v in enumerate(all_chords))

print('Total # of chords:',n_chords)
for key in chords_to_idx:
 print(key,'==>',chords_to_idx[key])

l304-example-03.py (partial)

Total # of chords: 792
[100] ==> 0
[33, 45, 61, 64, 69, 81] ==> 1
[33, 45, 61, 64, 69] ==> 2
[36, 48, 60, 80] ==> 3  
.

By introducing such a dictionary, we
can further “encode” the music data

into a sequence of integers!

PREPARE THE DATA FOR
OUR NETWORK (II)
■ This would allowed us to convert the input music data into a very

compact sequence of numbers:

35

[33, 45, 61, 64, 69], [45, 49, 52], [57], [45, 49, 52], [57], [45, 49,
52], [57], [45, 49, 52], [57], [45, 49, 52], [57], [45, 49, 52, 61],
[57], [45, 49, 52], [57], [45, 49, 52, 64], [57],

2 47 434 47 434 47 434 47 434 47 434 36 434 47 434 39 434 …

sheet music /  
MIDI file

list of chords

Encoded data

INPUTS &  
EXPECTED OUTPUTS
■ The key point is to let the network to PREDICT the upcoming note

(chord) based on a sequence of input data. For example:

36

2 47 434 47 434 47 434 47

47 434 47 434 47 434 47 434

434 47 434 47 434 47 434 47

47 434 47 434 47 434 47 434

434

47

434

36

2 47 434 47 434 47 434 47 434 47 434 36 434 47 434 39 434 …

Network
Inputs:
x_train

Expected
output:  
y_train

37

length = 128
x_train, y_train = [], []

for idx in range(len(data)-length):
 sequence = data[idx:idx+length]
 next = data[idx+length]

 x_train.append([chords_to_idx[s] for s in sequence])
 y = np.zeros(n_chords)
 y[chords_to_idx[next]] = 1.
 y_train.append(y)

x_train, y_train = np.array(x_train), np.array(y_train)

from keras.layers import LSTM, Dropout, Dense
from keras.layers import Activation, Input, Embedding
from keras.models import Sequential, Model

model = Sequential()
model.add(Embedding(n_chords, 128, input_length=length))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(128))
model.add(Dropout(0.3))
model.add(Dense(n_chords))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

model.fit(x_train, y_train, epochs=200, batch_size=64)
model.save_weights('weights-ex04.h5')

l304-example-04.py (partial)

Prepare x_train, y_train

“Embedding” layer for converting
the input integers into dense vectors

⇐

Layers of LSTM

⇐ softmax + x-entropy

Put all together: unpack the data, create
the dictionary, prepare training data,
create LSTM model, and training…

TEST WITH A “SIMPLER”
SONG
■ Well, it turns out the Mozart concerto is rather

difficult to train. Let’s test the code with a
simpler song, e.g. the Prelude from the Final
Fantasy game series.

38

Total # of chords: 104
Total # of notes: 831
Epoch 1/200
703/703 [===============] - 20s 29ms/step - loss: 4.3044
Epoch 2/200
703/703 [===============] - 15s 22ms/step - loss: 4.0379
Epoch 3/200
703/703 [===============] - 16s 22ms/step - loss: 3.9926
Epoch 4/200
.
Epoch 199/200
703/703 [===============] - 16s 22ms/step - loss: 0.2531
Epoch 200/200
703/703 [===============] - 16s 22ms/step - loss: 0.2658

 

⇐ simpler & shorter…

MUSIC GENERATION
■ Now let’s try to use the trained model to generate some music!

■ The key idea is to load the model (instead of training), and use a
random sequence as a “seed” to feed into the network. Translate
the network output back to the selected chord, and encode it back
as a MIDI file. Done!

39

.
model.load_weights('weights-ex04.h5')

x_test = np.array([np.random.randint(0,n_chords,length)])
result = []
for seq in range(512):
 y_test = model.predict(x_test, verbose=0)[0]
 idx = np.argmax(y_test)
 result.append(idx_to_chords[idx])
 print('#%d: %s' % (seq,result[-1]))

 x_test[:,:-1] = x_test[:,1:]
 x_test[:,-1] = idx

encode_midi('test.mid', result)
l304-example-04a.py (partial)

⇐ let’s pick up a chord based on the output

⇐ seed of the song

⇐ “rolling” the inputs

MUSIC GENERATION (II)
■ This is what we can get:

40

#0: [86]
#1: [84]
#2: [79]
#3: [76]
#4: [74]
#5: [62, 72, 74, 77, 89]
#6: [67]
#7: [64]
#8: [62]
#9: [60]
#10: [55]
#11: [52]
#12: [50]
#13: [45, 45, 62, 69, 74, 77, 89]
#14: [47]
#15: [48, 64, 76, 79, 91]
#16: [52]
#17: [57, 60, 60, 64, 76, 88]
#18: [59]
#19: [60]
#20: [64]
.

but it sounds just like
repeating the input song...

COMMENT

■ This test clearly shows the capability of RNN/LSTM, which can
“remember” a given time-sequence data!

■ But obviously, by training the network with only one song, it
simply 100% remember the tune and repeat it as output –– typical
overtraining.

■ Another problem is the selected song has a very distinct structure.
When we just pick up the chord with highest score (this algorithm
is usually called as “greed search”), it simply loops over the same
tune. Not very optimal for music generation which requires some
“variation” effect.

■ Let’s improve the whole situation by switch back to our dear
Mozart concertos…

41

Simply include more songs, and a
different way of music generation!

INCLUDE MULTIPLE SONGS
AT ONES…
■ Let’s include all Mozart violin concerto No. 3/4/5 times 3

movements into the pool!

■ It is simple to add more MIDI files, but it also become very
complicated (too many different chords) in the end.

■ To be simplified (as for this lecture), we only take the highest two
notes from each chord to reduce the combinations. This also gives
a higher chance to “mix” the training data.

42

sources = ['mozk216a.mid','mozk216b.mid','mozk216c.mid',
 'mozk218a.mid','mozk218b.mid','mozk218c.mid',
 'mozk219a.mid','mozk219b.mid','mozk219c.mid']
all_data = []
for src in sources:
 data = decode_midi(src, 2)
 all_data.append(data)

all_chords = sorted(set([s for data in all_data for s in data])) 
. l304-example-05.py (partial)

⇐ only keep the highest 2 nodes

INCLUDE MULTIPLE SONGS
AT ONES (II)…
■ Surely, we also need a larger network to have better trained

performance, given the complicity of the input data…

43

.
for data_idx, data in enumerate(all_data):
 print('Song',data_idx,'- # of notes:',len(data))
 for idx in range(len(data)-length):
 sequence = data[idx:idx+length]
 next = data[idx+length]
.
x_train, y_train = np.array(x_train), np.array(y_train)
print('Total # of training samples:',len(x_train))
.
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256))
.

model.fit(x_train, y_train, epochs=150, batch_size=64)
model.save_weights('weights-ex05.h5')

l304-example-05.py (partial)

⇐ loop over 9 input MIDI files

⇐ enlarged network

This training will take a
lot of time! You may

want to get my trained
weight file and skip this.
It took me 48 hours on

12 CPUs…

MUSIC GENERATION (III)

■ In order to avoid repeating/looping, instead of the greed search,
here we just introduce a “temperature-controlled” random search.

.
x_test = np.array([np.random.randint(0,n_chords,length)])
result = []
temperature=0.5
for seq in range(512):
 y_test = model.predict(x_test, verbose=0)[0]

 repeats = [np.all(x_test[:,-n:]==x_test[:,-n*2:-n]) for n in [2,3,4]]
 if np.any(repeats): temperature *= 1.15
 else: temperature *= 0.95
 temperature = min(max(temperature, 0.2),5.0)

 y_test = y_test**(1./temperature)
 idx = np.random.choice(range(n_chords),p=y_test/y_test.sum())
 result.append(idx_to_chords[idx])
 print('#%d: %s' % (seq,result[-1]))

 x_test[:,:-1] = x_test[:,1:]
 x_test[:,-1] = idx

encode_midi('test.mid', result, 375000) l304-example-05a.py (partial)

44

we are using the “probability” 
interpretation of the softmax 
function + rescaling by the temperature

my own test code to raise  
the temperature if there are  
too many repeating/looping notes.

MUSIC GENERATION (IV)
■ This is what we can get:

45

#0: [64, 73], T=0.47
#1: [69, 81], T=0.45
#2: [66, 74], T=0.43
#3: [79], T=0.41
#4: [79], T=0.39
#5: [83], T=0.37
#6: [83], T=0.35
#7: [83], T=0.33
#8: [79], T=0.32
#9: [79], T=0.30
#10: [59, 74], T=0.28
#11: [57], T=0.27
#12: [59], T=0.26
#13: [62, 71], T=0.24
#14: [62], T=0.23
#15: [62, 67], T=0.22
#16: [74], T=0.21
#17: [62, 74], T=0.20
#18: [72], T=0.20
#19: [72], T=0.20
#20: [69], T=0.20
.

It sounds not too bad? 
But obvious not-so-Mozart!

Trial #1 Trial #2

COMMMENT:  
MUSIC GENERATION W/ RNN
■ Generating the music with RNN is kind of fun!

■ But surely we still have a lot of room for improvement ––
- We shall not drop the rhythm!
- One shall separate tune generation and chord matching!

Otherwise we are only generating the notes that have been used
by Mozart…

- Better selected data, better trained model, etc…

■ Leave all these points for your own study. Or you can check out
the projects which has been developed so far:
- Magenta (this is the actual project behind the “Bach doodle”):  

https://magenta.tensorflow.org
- AIVA (this is a commercial product):  

https://www.aiva.ai
46

https://magenta.tensorflow.org
https://www.aiva.ai

INTERMISSION

■ You may want to change the generation rules (greed search,
random search) in l304-example-04a.py and l304-example-05a.py
and see if you are able to come up with a different tune?
- There is another commonly introduced “beam search”, you can

try to implement one!

■ Surely, by replacing the training music data, the situation will
change dramatically. You may try to replace the input with your
own favorite song and see if you are able to come up with
something different?

47

GENERATIVE ADVERSARIAL
NETWORK
■ The name “GAN”, or the Generative Adversarial Network, was

first introduced by Ian Goodfellow in 2014. It is a very interesting
idea and became extremely popular in recent years.

■ As we already slightly mentioned earlier, the key setup is to have
two networks training against each other:
- discriminative network –– trained to distinguish the data

produced by the generator from the true data.
- generative network –– trained to map from a latent space to a

data distribution of interest; objective is to increase the error rate
(to fool) of the discriminator.

■ GAN is a kind of unsupervised learning, e.g. no needs of labeling
data by human beings!

48

GENERATIVE ADVERSARIAL
NETWORK (II)
■ The typical GAN network structure is arranged as following. The

generator and discriminator can be classical MLP or convolutional
network or any other variations.

■ If one replace the input noise with some other stuff (e.g. a doodle,
etc), it can be used to convert/modify images!

49

50

Face generation Style transfer

Convert doodle to photo Image upscaling

Many fancy stuffs you heard recently may all related to this type of network!

IMAGE GENERATION WITH
GAN
■ Let’s practice image generation with a

very simple GAN setup. All we need
to do is to prepare a collection of
images, train the generator and
discriminator, and use the generator
to produce some fake images.

■ One can simply collect some nice
photos, drawings, or whatever data to
do such a practice in fact!

■ In the following example, we are
going to ask GAN to generate some
Chinese characters which does not
exist so far!

51

How about an AI Cangjie?

FONT DATA
■ The given font_data.npy

stores the images (48×48) of
commonly used 4808
characters, defined by MOE!

■ Randomly pick up 100
characters and show!

52

import numpy as np
import matplotlib.pyplot as plt

data = np.load('font_data.npy')

fig = plt.figure(figsize=(10,10), dpi=80)
plt.subplots_adjust(0.05,0.05,0.95,0.95,0.1,0.1)
for i in range(100):
 plt.subplot(10,10,i+1)
 plt.axis('off')
 plt.imshow(data[np.random.randint(4808)], cmap='Greys')
plt.show()

l304-example-06.py

Yes, these are
clerical scripts!

CONSTRUCT A VANILLA
GAN
■ Construct a classical network as the discriminator,  

input = image / output = binary classifier

53

x_train = np.load('font_data.npy')
x_train = x_train/127.5-1.

latent_size = 128
img_shape = (48,48)

from keras.layers import Input, Dense, Reshape
from keras.layers import BatchNormalization, LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam

discriminator = Sequential()
discriminator.add(Reshape((np.prod(img_shape),),input_shape=img_shape))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU())
discriminator.add(Dense(256))
discriminator.add(LeakyReLU())
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy',
 optimizer=Adam(0.0002, 0.5),
 metrics=['accuracy'])

l304-example-07.py (partial)

discriminator model:
image ⇒ 512 ⇒ 256 ⇒ 1 nodes

⇐ loading images and scale to ±1

CONSTRUCT A VANILLA
GAN (II)
■ Generator is constructed also with a classical network,  

input = latent array (noise) / output = image

54

generator = Sequential()
generator.add(Dense(256, input_dim=latent_size))
generator.add(LeakyReLU())
generator.add(BatchNormalization())
generator.add(Dense(512))
generator.add(LeakyReLU())
generator.add(BatchNormalization())
generator.add(Dense(1024))
generator.add(LeakyReLU())
generator.add(BatchNormalization())
generator.add(Dense(np.prod(img_shape), activation='tanh'))
generator.add(Reshape(img_shape))

noise = Input(shape=(latent_size,))
img = generator(noise)
discriminator.trainable = False
validity = discriminator(img)
combined = Model(noise, validity)
combined.compile(loss='binary_crossentropy',
 optimizer=Adam(0.0002, 0.5)) l304-example-07.py (partial)

generator model
noise ⇒ 256 ⇒ 512 ⇒ 1024 ⇒ image

 (disable training for discriminator part)

⇐ combined model: noise input,  
 binary classifier output

CONSTRUCT A VANILLA
GAN (III)
■ Manual training steps: ask the discriminator to separate real/fake

images; ask the generator to generate cheat the discriminator.

.
batch_size = 32
for epoch in range(20001):

 imgs_real = x_train[np.random.randint(0, len(x_train), batch_size)]

 noise = np.random.randn(batch_size, latent_size)
 imgs_fake = generator.predict(noise)

 dis_loss_real = discriminator.train_on_batch(imgs_real, np.ones((batch_size,1)))
 dis_loss_fake = discriminator.train_on_batch(imgs_fake, np.zeros((batch_size,1)))
 dis_loss = np.add(dis_loss_real,dis_loss_fake)*0.5

 noise = np.random.randn(batch_size, latent_size)
 gen_loss = combined.train_on_batch(noise, np.ones((batch_size,1)))

 print("Epoch: %d, discriminator(loss: %.3f, acc.: %.2f%%), generator(loss: %.3f)" %
 (epoch, dis_loss[0], dis_loss[1]*100., gen_loss))

l304-example-07.py (partial)

55

Training the discriminator
with real & fake images

real images from input data; 
fake images from generator

training generator

RESULTS OF  
TRAINING

56

Epoch: 0, discriminator(loss: 0.710, acc.: 39.06%), generator(loss: 0.720)
......
Epoch: 100, discriminator(loss: 0.012, acc.: 100.00%), generator(loss: 4.221)
......
Epoch: 15000, discriminator(loss: 0.102, acc.: 96.88%), generator(loss: 4.796)
......
Epoch: 20000, discriminator(loss: 0.111, acc.: 96.88%), generator(loss: 5.076)

■ It does generate some
images which may “look
like” Chinese characters
(although one has to read
them from a long distance).

■ Surely none of them is
really readable!

GAN+CNN = DCGAN

■ Well, we do understand the convolutional network can be
outperforming for image processing problems.

■ If one replace the discriminator with a convolutional network, and
use a “deconvolution” network for the generator, it might be more
powerful than a vanilla GAN?

■ This is the basic idea of Deep Convolutional GAN, or DCGAN. It
adds convolutional layers for scaling up/down, and without max
pooling and fully connected layers.

57

CONSTRUCT A DCGAN

58

.
from keras.layers import Input, Dense, Reshape
from keras.layers import BatchNormalization, LeakyReLU
from keras.layers import Conv2D, Flatten, UpSampling2D
from keras.models import Sequential, Model
from keras.optimizers import Adam

discriminator = Sequential()
discriminator.add(Reshape(img_shape+(1,), input_shape=img_shape))
discriminator.add(Conv2D(32, kernel_size=6, strides=2))
discriminator.add(LeakyReLU())
discriminator.add(Conv2D(64, kernel_size=4, strides=2))
discriminator.add(BatchNormalization())
discriminator.add(LeakyReLU())
discriminator.add(Conv2D(128, kernel_size=4, strides=1))
discriminator.add(BatchNormalization())
discriminator.add(LeakyReLU())
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy',
 optimizer=Adam(0.0002, 0.5),
 metrics=['accuracy']) l304-example-08.py (partial)

discriminator model:
image ⇒ (conv)×3 ⇒ 1 binary node

■ Need to replace the discriminator:

CONSTRUCT A DCGAN (II)
■ Generator has to be replaced as well:

59

generator = Sequential()
generator.add(Dense(14*14*64, input_dim=latent_size,
activation='relu'))
generator.add(Reshape((14,14,64)))
generator.add(UpSampling2D())
generator.add(Conv2D(64, kernel_size=3, activation='relu'))
generator.add(BatchNormalization())
generator.add(UpSampling2D())
generator.add(Conv2D(64, kernel_size=3, activation='relu'))
generator.add(BatchNormalization())
generator.add(Conv2D(1, kernel_size=3, activation='tanh'))
generator.add(Reshape(img_shape))

noise = Input(shape=(latent_size,))
img = generator(noise)
discriminator.trainable = False
validity = discriminator(img)
combined = Model(noise, validity)
combined.compile(loss='binary_crossentropy',
 optimizer=Adam(0.0002, 0.5)) l304-example-08.py (partial)

generator model
noise ⇒ (up sampling⇒conv)×2 ⇒ conv ⇒ image

⇐ combined model is the same

all other parts are the same as the previous example!

Epoch: 0, discriminator(loss: 0.932, acc.: 42.19%), generator(loss: 0.426)
......
Epoch: 200, discriminator(loss: 0.466, acc.: 85.16%), generator(loss: 2.104)
......
Epoch: 2000, discriminator(loss: 0.086, acc.: 99.22%), generator(loss: 3.668)
......
Epoch: 3000, discriminator(loss: 0.092, acc.: 100.00%), generator(loss: 4.371)

RESULTS OF  
TRAINING (II)

60

■ Using DCGAN seems to
have “smoother” fonts
comparing to the
previous vanilla GAN.

■ As expected none of
them is really readable,
still!

COMMMENT

■ There are far more interesting applications constructed based on
the idea of GAN, as we already introduced some of the typical
(famous) use cases earlier.

■ Many of them do have example implementations. The following
git directory contains many example code based on Keras:  
https://github.com/eriklindernoren/Keras-GAN

■ If you are not satisfied with this, you may want to check the the
GAN Zoo (well, there might be too many!):  
https://github.com/hindupuravinash/the-gan-zoo

■ You may be able to think of a smart way of using such a network
structure to resolve the problems of your own research topic!

61

https://github.com/eriklindernoren/Keras-GAN
https://github.com/hindupuravinash/the-gan-zoo

62

Let’s discuss a
little bit regarding

the interplay
between ML and
(Particle) Physics!

FINAL COMMMENT:  
PHYSICIST’S ML
■ Physicists also use a lot of ML to solve the problems found in the

experiments or theories. But what are the core difference between a
physicists’ problem and a generic problem?

■ Surely I cannot comment for everyone –– but at least I can say the
particle physicists have a rather different prospective regarding ML
tools comparing to generic users.

■ The key point of particle physicists’ ML is about its statistical
interpretation: we do not just concern about if your ML tool is
working or not, we also worry about how correct it performs. e.g.
even if you know the accuracy of your network is 99.5%, we also
want to know the error of this value, e.g. 99.5±0.XX%, and also the
performance difference between the ideal situation and and real
application.

63

FINAL COMMMENT:  
PHYSICIST’S ML (II)
■ So unlike the generic problem (e.g. image recognition, etc.), we need

to find a way to preserve the information and still use it to present
physics results, instead of just dump everything into the network.
i.e.

64

0
1
2
⋮

Generic ML Solution

(Particle) Physics ML Solution

Preserved
physics
information

ML info.

So the (particle) physics ML solution is generally weaker than
the generic ML due to lack of key information in ML. But we

use it to do further statistical analysis afterwards.

input datainput data

HEP DATA

Cannot separate  
by the first look…

PIX2PIX EXAMPLE

One can tell  
by eyes quickly

 

65

HANDS-ON SESSION

■ Practice data:  
There is a data of 2 classes, stored in the l304practice.npz file
(can be downloaded from CEIBA or the lecture web). The
following piece of code can be used to load it:  
 
 
 
 
 
 
The x_train, y_train contains 6400 samples, and x_test,
y_test contains 3216 samples.

66

import numpy as np

data = np.load('l304practice.npz')
x_train = data['x_train']
y_train = data['y_train']
x_test = data['x_test']
y_test = data['y_test']

HANDS-ON SESSION

■ The x_train and x_test data
contains the images (also
48×48) as a mixture of two
different scripts of Chinese
characters.

■ The y_train and y_test data
contains the label: 1 = clerical
script, 2 = semi-cursive script.

67

>>> print (y_train[:100])
[1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 2 1 1 2 2 2 2 1 2 2 2 1 2 1 1 2 1
 1 1 2 1 1 2 2 1 1 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 1 2 1 1 2 2 1 1 2
 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1]

First 100 images in x_train

HANDS-ON SESSION

■ Practice 01:  
Take the l304-example-01.py (or l304-example-01a.py) as a
template code, replace the MNIST data with the data we just
provided, see if you can construct a CNN model to separate the two
different scripts of Chinese characters?

68

Performance (training):
0.xxxxx
Performance (testing):
0.yyyyy

1 1 1

1 1

11

2

2

2

2

2

HANDS-ON SESSION

■ Practice 02:  
Take the l304-example-08.py (or l304-example-07.py) as a
template code, replace the input data with the x_train images, and ㄎ
used to train a DCGAN(or GAN) model.

■ See if we can come up with a new style of Chinese font by mixing
clerical and semi-cursive scripts? Although we do not expect to
generate any readable fonts…

■ This will take a long time on your laptop, you may want to run it on
a better PC or at least find a power plug first…

69

＋ =?

