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We shall go deeper 
this time!



RECALL FROM THE LAST 
LECTURE…(AGAIN2!)
■ Last lecture we started to optimize our network with quite a few 

tricks that are commonly introduced nowadays, including a 
different choices of loss function, reducing the overtraining issue 
by introducing the regularization or dropout, or trying a different 
activation functions like ReLU which does not suffer from the slow 
learning problem as the classical sigmoid function. 

■ In the end we try to introduce a larger, complex network, with 
some of the tricks enabled. We were able to reach the best testing 
accuracy of 98.5%! Note this just reached the same performance as 
the best nonlinear SVM can do. 

■ Can we still further improve it by introducing a deeper network, or 
a different structure, such as the convolutional neural network?
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■ We have tested the network with more and more hidden 
layers and turns out to be hard to improve it further. 

■ The intrinsic problem is that the gradients are unstable 
with deeper network. The classical network may still 
work better but an effective training becomes difficult.

RECALL FROM THE LAST 
LECTURE…(AGAIN2!)
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Ending test accuracy
98.4%

Ending test accuracy
98.5%

784-(256x8)-10
train for 100 epochs

784-(256x4)-10
train for 40 epochs

Using a network with 
different structure may 

resolve the problem, 
further improve the 

performance!
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Here comes the Convolutional Neural Network…



■ Up to now we are using a network first by “reshape” of the input 
28×28 pixels into a flat input of 784 neurons. Although it works 
rather well but we do not take into account the nature of images in 
fact. The local information (of adjacent pixels) is lost.

■ The convolutional networks use a special architecture which is 
particularly well-adapted to image recognition. The architecture of 
convolutional network makes the training of deep, multi-layer 
networks easier. 

■ There are several ideas introduced for the convolutional neural 
networks to be discussed in the following slides: local receptive 
fields, shared weights, and the pooling.

CONVOLUTIONAL 
NETWORK
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■ In a typical convolutional network, the input layer is encoded in the 
following structure. For example, instead of fully connected 
network, one only has the first 5×5 block of neurons being connected 
to one neuron in the first hidden layer, and next 5×5 block connected 
to the second neuron…

LOCAL RECEPTIVE FIELDS
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If we have 28×28 as the input image, and with a 5×5 local 
representative field, the first hidden layer will be 24×24.

Input layer

first hidden layer



■ The second important feature is that the local representative fields 
have a shared weights/bias through out the whole first hidden layer. 
e.g.  the same 5×5 weights and a common bias are shared by all of 
the neurons on the first hidden layer. 

SHARED WEIGHTS/BIAS
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- This means all of the neurons of 
the hidden layer can detect exactly 
the same feature.

- The map from the input layer to 
the hidden layer is usually called a 
feature map.

- A feature map only keep 25 
weights and 1 bias!

- The shared weights/bias are often 
said to define a kernel or a filter.



○○○○○○. . . ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○..

■ And it is very common to build multiple feature maps, i.e. 

FEATURE MAPS
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- For example here are the trained 
16 feature maps (or kernels/
filters) in the next example.

- Basically each map supposes to 
pick up a different feature from 
the input images!

N×24×24
feature maps



■ In addition to the convolutional layers, a pooling layer is usually 
added right after them. A pooling layer is to simplify the information 
from the convolutional layer, for example a 2×2 pooling layer shrink 
the input 24×24 feature map into a 12×12 units:

POOLING LAYERS
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output from the feature map

pooling units

- Max-pooling: simply outputs 
the maximum activation value 
in input region.

- L2 pooling: take the square 
root of the quadrature sum of 
the activations.

- No additional weight/bias but 
just condensing information 
from the convolutional layer.Usually this is applied to each  

feature map output layer



PUT ALL TOGETHER:
CONVOLUTIONAL NETWORK
■ Here we just draw the structure of a typical convolutional 

network. And it will be implemented in our upcoming example 
code. We construct the network with 16 filters:
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Although you may think this is a complicated model, but in 
fact the total # of parameters are much smaller than our 

previous example, only 23,466 weights/bias!
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■ Easy implementation with Keras:

PUT ALL TOGETHER (II)
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. . . . . . 
from keras.models import Sequential 
from keras.layers import * 
from keras.optimizers import Adadelta 
   
model = Sequential() 
model.add(Reshape((28,28,1), input_shape=(28,28))) 
model.add(Conv2D(16, kernel_size=(5,5), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Flatten()) 
model.add(Dropout(0.2)) 
model.add(Dense(10, activation='softmax')) 
   
model.compile(loss='categorical_crossentropy', 
              optimizer=Adadelta(), 
              metrics=['accuracy']) 
. . . . . . l304-example-01.py (partial)

Just the model 
discussed in the 
previous page!

⇑ 5x5 convolutional layer
⇑ 2x2 pooling layer 



■ And we can reach a very good performance already:  
 
 
 
 
 
 

■ A testing accuracy of 98.7% reached, only 126 images are mis-
identified. Remember we only put a layer of convolutional network 
and # of parameters is reduced by a factor of 28 comparing to the 
previous flat 784-512-512-10 network!

■ Can we do even better? Let’s try to add more layers!

PUT ALL TOGETHER (III)
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. . . . . .  
Epoch 20/20 
60000/60000 [===========] 13s 217us/step - loss: 0.0363 - acc: 0.9890 
- val_loss: 0.0371 - val_acc: 0.9874 
Performance (training) 
Loss: 0.02537, Acc: 0.99267 
Performance (testing) 
Loss: 0.03712, Acc: 0.98740



HOW ABOUT ADDING MORE 
FEATURES MAPS?
■ Let’s just double the feature maps? Can we improve the model?
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Epoch 20/20 
. . . . . . . 
Performance (training) 
Loss: 0.01816, Acc: 0.99518 
Performance (testing) 
Loss: 0.03244, Acc: 0.98900

- Now we reached 98.9%  
test accuracy, only 110 digits  
are wrongly tagged!



ADD ANOTHER HIDDEN 
FULLY CONNECTED LAYER?
■ Let’s add another fully connected layer and see the performance?
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Epoch 20/20 
. . . . . . . 
Performance (training) 
Loss: 0.00094, Acc: 0.99988 
Performance (testing) 
Loss: 0.02896, Acc: 0.99230 - Now we go beyond 99.2%!



DOUBLED LAYERS!
■ Let’s config our model by two convolution+pooling layers, and 

two fully connected layers. Then see how good can we do here?

. . . . . . 
model = Sequential() 
model.add(Reshape((28,28,1), input_shape=(28,28))) 
model.add(Conv2D(32, kernel_size=(5,5), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Conv2D(32, kernel_size=(5,5), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Flatten()) 
model.add(Dropout(0.2)) 
model.add(Dense(512, activation='relu')) 
model.add(Dropout(0.2)) 
model.add(Dense(512, activation='relu')) 
model.add(Dropout(0.2)) 
model.add(Dense(10, activation=‘softmax')) 
. . . . . . l304-example-01a.py (partial)

Performance (training) 
Loss: 0.00167, Acc: 0.99960 
Performance (testing) 
Loss: 0.01988, Acc: 0.99480
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- Now we can almost reach 99.5%! 



DOUBLED LAYERS! (II)
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■ Now we only have 52 
wrongly tagged images 
(0.52% failed). 

■ Some of them are also 
difficult for real humans!

■ Remember the best 
trained network (world 
record) is with 0.21% 
failure rate. Still rooms to 
be improved!

The convolutional neural network is a kind of deep 
network good for image recognition! 



STRUCTURE DOES MATTER
■ It is very interesting that by changing the structure of network, it 

contains a smaller number of tunable parameters, but also boost 
the performance. This is due to the structure makes the network 
easier to train and can reach a very good performance within a 
limited training time.

■ In fact, by using classical multilayers of network, the performance 
can be as good as CNN but the training can take a very long time 
and a lot of tricks need to be adopted. 

■ On the other hand, CNN is good for image recognition, but for 
other topics, one may want to introduce a different structure, or 
even different concepts to have a powerful ML program. 
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Let’s quickly comment on some modern networks 
which has been developed for different topics!



OTHER DEEP NETWORKS & 
IDEAS
■ Recurrent neural network (RNN): 
- Up to now our network has a fixed flow throughout the 

training, but what will happen if we allow the network to vary 
itself along with time sequence?

- Unlike feedforward neural network, RNN can use their internal 
state to process a sequence of inputs. This gives RNN a good 
approach to the unsegmented data, for example, language/
speech recognition.

19

A Harry Potter 
chapter “written” by 

AI program…



OTHER DEEP NETWORKS & 
IDEAS (II)
■ Generative adversarial network (GAN): 
- The basic structure of GAN is to have two network “fighting” 

with each other: one is to find “fake” images out of the pool, 
another one is to generate fake images. 

- Once it has been trained, you can use the generator to produce 
lots of “nearly true”  
fake images, e.g.  
photo of a person  
who never exists in  
the real world, or  
convert your doodle  
to a fancy graph! 
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OTHER DEEP NETWORKS & 
IDEAS (III)
■ Reinforcement Learning (RL): 
- In our example network, the required responses of our model 

are relatively simple (just which digit, 0-9). But in many 
problems, for example, playing chess, this is not a simple task as 
no clear classification of good/bad labels. 

- Then the reinforcement learning is a kind of idea to build the 
environment for your program to learn how to survive by itself 
(only give it a goal to reach, e.g. beating the opponent, getting 
higher scores etc). Let the environment to be the teacher.

- A famous example is the AlphaGoZero,  
which is trained without any prior  
knowledge of Go, but just let to  
figure out how to play Go by itself! 

21



INTERMISSION

■ It is very interesting to see what are he feature maps looked like 
exactly (an example has been shown in an earlier slide), since the 
feature maps are kind of direct demonstration how the CNN 
“look” at the input images. 

■ This can be carried out by adding the following short code to the 
end of training (following the model in l304-example-01.py):
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. . . . . . . 
fig = plt.figure(figsize=(8,8), dpi=80) 
for i in range(16): 
    plt.subplot(4,4,i+1) 
    w = model.layers[1].get_weights() 
    plt.imshow(w[0][:,:,0,i], cmap='Greys') 
plt.show()

l304-example-01b.py (partial)

You may try 
it now!
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Let’s play with an 
example RNN and an 
example GAN here!



VANILLA RNN 
■ Classical (“Vanilla”) RNN has a structure to connect the  

information from the previous time frame to the next, in  
addition to the regular inputs:  
 
 
 
 
 

■ Ideally the information can be passed to next time frame, but in 
practical when training a vanilla RNN using back-propagation, the 
gradients which are back-propagated can easily “vanish” (the network 
tends to remember only recent frames) or “explode”.

■ At least the vanish gradient problem can be resolved by adding 
“memory” capability.

24

RNN cellInputs

Outputs

in time  
sequence



WHY A MEMORY CELL IS 
IMPORTANT?
■ Let’s take an analogy, by reading/examination the following short 

story (suppose you are using a NN to process an article):

June was born in France. (…a long story and blah-blah…) Surely, 
she can still speak nearly perfect French.

■ If there an memory cell, the important information (such as born in 
France) can be kept and eventually it can build up a connection 
with the French speaking capability in the end. But if a classic RNN is 
deployed, the information given in the earlier lines will fade out 
with time sequence due to the vanish gradient problem:

June was born in France. (…a long story and blah-blah…) Surely, 
she can still speak nearly perfect French.  

25

It will be difficult to connect the key 
information of the article with vanish gradients.



LONG SHORT-TERM 
MEMORY
■  Long short-term memory (LSTM) is a kind of recurrent neural 

network architecture. It has the capability to train long-term 
dependencies. It was first introduced by Hochreiter & 
Schmidhuber in 1997 and it is widely used in many different places 
nowadays.

■ The key idea is to replace the classical RNN unit with the LSTM 
unit, which consists of a memory cell + 3 “gates” (forget/input/
ouput). 
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ct: memory state

Input

forget gate

input gate output gate

Output

to  
next  
frame

from  
previous  
frame

ht: network state



LONG SHORT-TERM 
MEMORY (II)
■ With such a structure, it will be easier for the network to remember 

a long sequence of data, and keep/remember the key information.

■ It can be used to do language processing, music processing, as far 
as we can convert the “words” or “notes” into input data.

■ With a trained model it can be also used to generate articles (as the 
so-called “AI writer”) or music (“AI composer”). 

■ For our amusement, let’s practice a simple LSTM model with 
music data, and see if our simple model can remember (being 
trained) and generate a nice piece of music or not! 
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Maybe we can build 
an AI Mozart easily?



MUSIC DATA: DECODING

■ In fact it should not be too difficult to convert the music data (from 
a MIDI file or so) into a sequence of data.

■ But a full song can be quite complicated! Let’s give up some of the 
information at the first place –– the instrument, volume, and 
tempo, tonality.

■ There are still pitches, duration, delay, etc. Just focus on  the 
CHORD/NOTE only for now and forget about everything else…

29

Allegretto

C3+C5, C4+C5, E4+G5, C4+G5, …

Just convert the sheet 
music to an article, 

where a “word” contains 
a “chord/note”.



from mido import MidiFile, MidiTrack, Message, MetaMessage 
   

def decode_midi(filename, maxnotes = 0): 
   

    mid_in = MidiFile(filename) 
    notes = [] 
    for track in mid_in.tracks: 
        sum_of_ticks = 0 
        pool = [] 
        for msg in track: 
            sum_of_ticks += msg.time 
            if msg.type=='note_on': 
                for p in pool: 
                    if p[1]==msg.channel and p[2]==msg.note: 
                        if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]]) 
                        pool.remove(p) 
                        break 
                else: pool.append([sum_of_ticks, msg.channel, msg.note]) 
            if msg.type=='note_off': 
                for p in pool: 
                    if p[1]==msg.channel and p[2]==msg.note: 
                        if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]]) 
                        pool.remove(p) 
                        break 
        for p in pool: 
            if sum_of_ticks-p[0]>0: notes.append([p[0], p[2], sum_of_ticks-p[0]]) 
   

    notes = np.array(notes) 
    ticks = np.unique(notes[:,0]) 
   
    pack = [] 
    for idx in range(len(ticks)-1): 
        notes_at_ticks = np.unique(notes[notes[:,0]==ticks[idx]], axis=0) 
        chord = str([p for p in notes_at_ticks[-maxnotes:,1]]) 
        pack.append(chord) 
    return pack midi_phraser.py (partial)30

Not going into the details 
how to phrase a MIDI file, 
just show you a piece of 
code which can analyze 
the track and produce a 
list “chords” with a tool 

named mido.

MUSIC DATA: DECODING

⇐ loop over “tracks” 

⇐ loop over “messages” 
⇐ count “ticks”

interpret “note on/off” message

 output the “chords” 
      ⇐ as a list of strings



DECODING TEST

■ Let’s test this “decoding” with Mozart’s Violin Concerto No. 5:
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Surely not from the real 
music but from an 

existing MIDI file…



DECODING TEST (II)

■ Decoding from a MIDI file (not the original concerto but a rearranged 
version for violin & piano, but it does not matter here!)
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from midi_phraser import * 

data = decode_midi('mozk219a.mid') 

for idx, chord in enumerate(data): 
    print('#%d: %s' % (idx,chord)) 

encode_midi('test.mid', data) 

l304-example-02.py

#0: [33, 45, 61, 64, 69] 
#1: [45, 49, 52] 
#2: [57] 
#3: [45, 49, 52] 
#4: [57] 
#5: [45, 49, 52] 
#6: [57] 
#7: [45, 49, 52] 
#8: [57] 
#9: [45, 49, 52] 
#10: [57] 
#11: [45, 49, 52, 61] 
#12: [57] 
#13: [45, 49, 52] 
#14: [57] 
#15: [45, 49, 52, 64] 
#16: [57] 
. . . . . . 

These are the 
pitch numbers 
suppose to be 

played at the same 
time!

■ The frequency for each pitch 
can be calculated by

fm = 2
m�69

12 ⇥ 440 Hz
<latexit sha1_base64="+os9305TX2vYxTpDoVZ30a6cd5c="></latexit>



def encode_midi(filename, data, tempo_set=500000): 
   

  mid_out = MidiFile() 
  track = MidiTrack() 
  mid_out.tracks.append(track) 
   

  track.append(Message('program_change', program=46, time=0)) 
  track.append(MetaMessage('set_tempo', tempo=tempo_set, time=0)) 
  for pack in data: 
   

    chord = eval(pack) 
    delay = 120 
    for pit in chord: 
      track.append(Message('note_on', note=pit, velocity=64, time=0)) 
    track.append(Message('note_off', note=chord[0], velocity=64, time=delay)) 
    for pit in chord[1:]: 
      track.append(Message('note_off', note=pit, velocity=64, time=0)) 
   

  mid_out.save(filename) midi_phraser.py (partial)

DECODING+ENCODING
■ The question is –– are we giving up too much information 

(remember we already dropped the duration, delay. etc!) at the first place 
and the music does not sound like a song anymore?

■ Let’s simply pack it back to a MIDI file and check if the music still 
sounds like a Mozart concerto?
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⇓ set to ‘Harp’

     no idea about the duration    
⇐ of each note, just set to 120

(not too bad?)



PREPARE THE DATA FOR 
OUR NETWORK
■ In other to feed the music data we just extracted from MIDI file, 

there is still one more step to map the chords to an index number. 

■ This can be carried out with a small piece of code like this:
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data = decode_midi('mozk219a.mid') 
   

all_chords = sorted(set(data)) 
n_chords = len(all_chords) 
chords_to_idx = dict((v, i) for i,v in enumerate(all_chords)) 
idx_to_chords = dict((i, v) for i,v in enumerate(all_chords)) 
   

print('Total # of chords:',n_chords) 
for key in chords_to_idx: 
    print(key,'==>',chords_to_idx[key])

l304-example-03.py (partial)

Total # of chords: 792 
[100] ==> 0 
[33, 45, 61, 64, 69, 81] ==> 1 
[33, 45, 61, 64, 69] ==> 2 
[36, 48, 60, 80] ==> 3  
. . . . . .

By introducing such a dictionary, we 
can further “encode” the music data 

into a sequence of integers!



PREPARE THE DATA FOR 
OUR NETWORK (II)
■ This would allowed us to convert the input music data into a very 

compact sequence of numbers:
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[33, 45, 61, 64, 69], [45, 49, 52], [57], [45, 49, 52], [57], [45, 49, 
52], [57], [45, 49, 52], [57], [45, 49, 52], [57], [45, 49, 52, 61], 
[57], [45, 49, 52], [57], [45, 49, 52, 64], [57], . . . . . . 

2 47 434 47 434 47 434 47 434 47 434 36 434 47 434 39 434 …

sheet music /  
MIDI file

list of chords

Encoded data



INPUTS &  
EXPECTED OUTPUTS
■ The key point is to let the network to PREDICT the upcoming note 

(chord) based on a sequence of input data. For example:
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2 47 434 47 434 47 434 47

47 434 47 434 47 434 47 434

434 47 434 47 434 47 434 47

47 434 47 434 47 434 47 434

434

47

434

36

2 47 434 47 434 47 434 47 434 47 434 36 434 47 434 39 434 …

Network 
Inputs:
x_train

Expected 
output:  
y_train
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length = 128 
x_train, y_train = [], [] 
   

for idx in range(len(data)-length): 
    sequence = data[idx:idx+length] 
    next = data[idx+length] 
   

    x_train.append([chords_to_idx[s] for s in sequence]) 
    y = np.zeros(n_chords) 
    y[chords_to_idx[next]] = 1. 
    y_train.append(y) 
   

x_train, y_train = np.array(x_train), np.array(y_train) 
   

from keras.layers import LSTM, Dropout, Dense 
from keras.layers import Activation, Input, Embedding 
from keras.models import Sequential, Model 
   

model = Sequential() 
model.add(Embedding(n_chords, 128, input_length=length)) 
model.add(LSTM(128, return_sequences=True)) 
model.add(Dropout(0.3)) 
model.add(LSTM(128, return_sequences=True)) 
model.add(Dropout(0.3)) 
model.add(LSTM(128)) 
model.add(Dropout(0.3)) 
model.add(Dense(n_chords)) 
model.add(Activation('softmax')) 
model.compile(loss='categorical_crossentropy', optimizer='rmsprop') 
   

model.fit(x_train, y_train, epochs=200, batch_size=64) 
model.save_weights('weights-ex04.h5')

l304-example-04.py (partial)

Prepare x_train, y_train

“Embedding” layer for converting 
the input integers into dense vectors 

⇐

Layers of LSTM

⇐ softmax + x-entropy

Put all together: unpack the data, create 
the dictionary, prepare training data, 
create LSTM model, and training…



TEST WITH A “SIMPLER” 
SONG
■ Well, it turns out the Mozart concerto is rather 

difficult to train. Let’s test the code with a 
simpler song, e.g. the Prelude from the Final 
Fantasy game series.
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Total # of chords: 104 
Total # of notes: 831 
Epoch 1/200 
703/703 [===============] - 20s 29ms/step - loss: 4.3044 
Epoch 2/200 
703/703 [===============] - 15s 22ms/step - loss: 4.0379 
Epoch 3/200 
703/703 [===============] - 16s 22ms/step - loss: 3.9926 
Epoch 4/200 
. . . . . .  
Epoch 199/200 
703/703 [===============] - 16s 22ms/step - loss: 0.2531 
Epoch 200/200 
703/703 [===============] - 16s 22ms/step - loss: 0.2658

 

⇐ simpler & shorter…



MUSIC GENERATION
■ Now let’s try to use the trained model to generate some music!

■ The key idea is to load the model (instead of training), and use a 
random sequence as a “seed” to feed into the network. Translate 
the network output back to the selected chord, and encode it back 
as a MIDI file. Done!
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. . . . . . 
model.load_weights('weights-ex04.h5') 
   

x_test = np.array([np.random.randint(0,n_chords,length)]) 
result = [] 
for seq in range(512): 
    y_test = model.predict(x_test, verbose=0)[0] 
    idx = np.argmax(y_test) 
    result.append(idx_to_chords[idx]) 
    print('#%d: %s' % (seq,result[-1])) 
   

    x_test[:,:-1] = x_test[:,1:] 
    x_test[:,-1] = idx 
   

encode_midi('test.mid', result)
l304-example-04a.py (partial)

⇐ let’s pick up a chord based on the output

⇐ seed of the song

⇐ “rolling” the inputs



MUSIC GENERATION (II)
■ This is what we can get:
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#0: [86] 
#1: [84] 
#2: [79] 
#3: [76] 
#4: [74] 
#5: [62, 72, 74, 77, 89] 
#6: [67] 
#7: [64] 
#8: [62] 
#9: [60] 
#10: [55] 
#11: [52] 
#12: [50] 
#13: [45, 45, 62, 69, 74, 77, 89] 
#14: [47] 
#15: [48, 64, 76, 79, 91] 
#16: [52] 
#17: [57, 60, 60, 64, 76, 88] 
#18: [59] 
#19: [60] 
#20: [64] 
. . . . . . 

but it sounds just like 
repeating the input song...



COMMENT

■ This test clearly shows the capability of RNN/LSTM, which can 
“remember” a given time-sequence data!

■ But obviously, by training the network with only one song, it 
simply 100% remember the tune and repeat it as output –– typical 
overtraining.

■ Another problem is the selected song has a very distinct structure. 
When we just pick up the chord with highest score (this algorithm 
is usually called as “greed search”), it simply loops over the same 
tune. Not very optimal for music generation which requires some 
“variation” effect.

■ Let’s improve the whole situation by switch back to our dear 
Mozart concertos…
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Simply include more songs, and a 
different way of music generation!



INCLUDE MULTIPLE SONGS 
AT ONES…
■ Let’s include all Mozart violin concerto No. 3/4/5 times 3 

movements into the pool! 

■ It is simple to add more MIDI files, but it also become very 
complicated (too many different chords) in the end.

■ To be simplified (as for this lecture), we only take the highest two 
notes from each chord to reduce the combinations. This also gives 
a higher chance to “mix” the training data.
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sources = ['mozk216a.mid','mozk216b.mid','mozk216c.mid', 
           'mozk218a.mid','mozk218b.mid','mozk218c.mid', 
           'mozk219a.mid','mozk219b.mid','mozk219c.mid'] 
all_data = [] 
for src in sources: 
    data = decode_midi(src, 2) 
    all_data.append(data) 
    
all_chords = sorted(set([s for data in all_data for s in data])) 
. . . . . . l304-example-05.py (partial)

⇐ only keep the highest 2 nodes



INCLUDE MULTIPLE SONGS 
AT ONES (II)…
■ Surely, we also need a larger network to have better trained 

performance, given the complicity of the input data…
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. . . . . . 
for data_idx, data in enumerate(all_data): 
    print('Song',data_idx,'- # of notes:',len(data)) 
    for idx in range(len(data)-length): 
        sequence = data[idx:idx+length] 
        next = data[idx+length] 
. . . . . . 
x_train, y_train = np.array(x_train), np.array(y_train) 
print('Total # of training samples:',len(x_train)) 
. . . . . .  
model.add(LSTM(256, return_sequences=True)) 
model.add(Dropout(0.3)) 
model.add(LSTM(256, return_sequences=True)) 
model.add(Dropout(0.3)) 
model.add(LSTM(256)) 
. . . . . . 

model.fit(x_train, y_train, epochs=150, batch_size=64) 
model.save_weights('weights-ex05.h5')

l304-example-05.py (partial)

⇐ loop over 9 input MIDI files

⇐ enlarged network

This training will take a 
lot of time! You may 

want to get my trained 
weight file and skip this. 
It took me 48 hours on 

12 CPUs…



MUSIC GENERATION (III)

■ In order to avoid repeating/looping, instead of the greed search, 
here we just introduce a “temperature-controlled” random search.

. . . . . . 
x_test = np.array([np.random.randint(0,n_chords,length)]) 
result = [] 
temperature=0.5 
for seq in range(512): 
    y_test = model.predict(x_test, verbose=0)[0] 
   
    repeats = [np.all(x_test[:,-n:]==x_test[:,-n*2:-n]) for n in [2,3,4]] 
    if np.any(repeats): temperature *= 1.15 
    else: temperature *= 0.95 
    temperature = min(max(temperature, 0.2),5.0) 
   
    y_test = y_test**(1./temperature) 
    idx = np.random.choice(range(n_chords),p=y_test/y_test.sum()) 
    result.append(idx_to_chords[idx]) 
    print('#%d: %s' % (seq,result[-1])) 
   
    x_test[:,:-1] = x_test[:,1:] 
    x_test[:,-1] = idx 
   
encode_midi('test.mid', result, 375000) l304-example-05a.py (partial)
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we are using the “probability” 
interpretation of the softmax 
function + rescaling by the temperature

my own test code to raise  
the temperature if there are  
too many repeating/looping notes.



MUSIC GENERATION (IV)
■ This is what we can get:
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#0: [64, 73], T=0.47 
#1: [69, 81], T=0.45 
#2: [66, 74], T=0.43 
#3: [79], T=0.41 
#4: [79], T=0.39 
#5: [83], T=0.37 
#6: [83], T=0.35 
#7: [83], T=0.33 
#8: [79], T=0.32 
#9: [79], T=0.30 
#10: [59, 74], T=0.28 
#11: [57], T=0.27 
#12: [59], T=0.26 
#13: [62, 71], T=0.24 
#14: [62], T=0.23 
#15: [62, 67], T=0.22 
#16: [74], T=0.21 
#17: [62, 74], T=0.20 
#18: [72], T=0.20 
#19: [72], T=0.20 
#20: [69], T=0.20 
. . . . . . .

It sounds not too bad? 
But obvious not-so-Mozart!

Trial #1 Trial #2



COMMMENT:  
MUSIC GENERATION W/ RNN
■ Generating the music with RNN is kind of fun!

■ But surely we still have a lot of room for improvement ––
- We shall not drop the rhythm!
- One shall separate tune generation and chord matching! 

Otherwise we are only generating the notes that have been used 
by Mozart…

- Better selected data, better trained model, etc…

■ Leave all these points for your own study. Or you can check out 
the projects which has been developed so far:
- Magenta (this is the actual project behind the “Bach doodle”):  

https://magenta.tensorflow.org
- AIVA (this is a commercial product):  

https://www.aiva.ai
46

https://magenta.tensorflow.org
https://www.aiva.ai


INTERMISSION

■ You may want to change the generation rules (greed search, 
random search) in l304-example-04a.py and l304-example-05a.py 
and see if you are able to come up with a different tune?
- There is another commonly introduced “beam search”, you can 

try to implement one! 

■ Surely, by replacing the training music data, the situation will 
change dramatically. You may try to replace the input with your 
own favorite song and see if you are able to come up with 
something different?
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GENERATIVE ADVERSARIAL 
NETWORK
■ The name “GAN”, or the Generative Adversarial Network, was 

first introduced by Ian Goodfellow in 2014. It is a very interesting 
idea and became extremely popular in recent years.

■ As we already slightly mentioned earlier, the key setup is to have 
two networks training against each other: 
- discriminative network –– trained to distinguish the data 

produced by the generator from the true data.
- generative network –– trained to map from a latent space to a 

data distribution of interest; objective is to increase the error rate  
(to fool) of the discriminator.

■ GAN is a kind of unsupervised learning, e.g. no needs of labeling 
data by human beings! 

48



GENERATIVE ADVERSARIAL 
NETWORK (II)
■ The typical GAN network structure is arranged as following. The 

generator and discriminator can be classical MLP or convolutional 
network or any other variations. 

■ If one replace the input noise with some other stuff (e.g. a doodle, 
etc), it can be used to convert/modify images!

49



50

Face generation Style transfer

Convert doodle to photo Image upscaling

Many fancy stuffs you heard recently may all related to this type of network!



IMAGE GENERATION WITH 
GAN
■ Let’s practice image generation with a 

very simple GAN setup. All we need 
to do is to prepare a collection of 
images, train the generator and 
discriminator, and use the generator 
to produce some fake images.

■ One can simply collect some nice 
photos, drawings, or whatever data to 
do such a practice in fact! 

■ In the following example, we are 
going to ask GAN to generate some 
Chinese characters which does not 
exist so far!
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How about an AI Cangjie?



FONT DATA
■ The given font_data.npy 

stores the images (48×48) of 
commonly used 4808 
characters, defined by MOE!

■ Randomly pick up 100 
characters and show!
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import numpy as np 
import matplotlib.pyplot as plt 
   

data = np.load('font_data.npy') 
   

fig = plt.figure(figsize=(10,10), dpi=80) 
plt.subplots_adjust(0.05,0.05,0.95,0.95,0.1,0.1) 
for i in range(100): 
    plt.subplot(10,10,i+1) 
    plt.axis('off') 
    plt.imshow(data[np.random.randint(4808)], cmap='Greys') 
plt.show()

l304-example-06.py

Yes, these are 
clerical scripts!



CONSTRUCT A VANILLA 
GAN
■ Construct a classical network as the discriminator,  

input = image / output = binary classifier

53

x_train = np.load('font_data.npy') 
x_train = x_train/127.5-1. 
   

latent_size = 128 
img_shape = (48,48) 
   

from keras.layers import Input, Dense, Reshape 
from keras.layers import BatchNormalization, LeakyReLU 
from keras.models import Sequential, Model 
from keras.optimizers import Adam 
   

discriminator = Sequential() 
discriminator.add(Reshape((np.prod(img_shape),),input_shape=img_shape)) 
discriminator.add(Dense(512)) 
discriminator.add(LeakyReLU()) 
discriminator.add(Dense(256)) 
discriminator.add(LeakyReLU()) 
discriminator.add(Dense(1, activation='sigmoid')) 
discriminator.compile(loss='binary_crossentropy', 
                      optimizer=Adam(0.0002, 0.5), 
                      metrics=['accuracy'])

l304-example-07.py (partial)

discriminator model:
image ⇒ 512 ⇒ 256 ⇒ 1 nodes

⇐ loading images and scale to ±1



CONSTRUCT A VANILLA 
GAN (II)
■ Generator is constructed also with a classical network,  

input = latent array (noise) / output = image
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generator = Sequential() 
generator.add(Dense(256, input_dim=latent_size)) 
generator.add(LeakyReLU()) 
generator.add(BatchNormalization()) 
generator.add(Dense(512)) 
generator.add(LeakyReLU()) 
generator.add(BatchNormalization()) 
generator.add(Dense(1024)) 
generator.add(LeakyReLU()) 
generator.add(BatchNormalization()) 
generator.add(Dense(np.prod(img_shape), activation='tanh')) 
generator.add(Reshape(img_shape)) 
   

noise = Input(shape=(latent_size,)) 
img = generator(noise) 
discriminator.trainable = False 
validity = discriminator(img) 
combined = Model(noise, validity) 
combined.compile(loss='binary_crossentropy',  
                 optimizer=Adam(0.0002, 0.5)) l304-example-07.py (partial)

generator model
noise ⇒ 256 ⇒ 512 ⇒ 1024 ⇒ image

 (disable training for discriminator part)

⇐ combined model: noise input,  
     binary classifier output



CONSTRUCT A VANILLA 
GAN (III)
■ Manual training steps: ask the discriminator to separate real/fake 

images; ask the generator to generate cheat the discriminator.

. . . . . .  
batch_size = 32 
for epoch in range(20001): 
     

  imgs_real = x_train[np.random.randint(0, len(x_train), batch_size)] 
     

  noise = np.random.randn(batch_size, latent_size) 
  imgs_fake = generator.predict(noise) 
     

  dis_loss_real = discriminator.train_on_batch(imgs_real, np.ones((batch_size,1))) 
  dis_loss_fake = discriminator.train_on_batch(imgs_fake, np.zeros((batch_size,1))) 
  dis_loss = np.add(dis_loss_real,dis_loss_fake)*0.5 
     

  noise = np.random.randn(batch_size, latent_size) 
  gen_loss = combined.train_on_batch(noise, np.ones((batch_size,1))) 
     

  print("Epoch: %d, discriminator(loss: %.3f, acc.: %.2f%%), generator(loss: %.3f)" % 
        (epoch, dis_loss[0], dis_loss[1]*100., gen_loss))

l304-example-07.py (partial)
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Training the discriminator 
with real & fake images

real images from input data; 
fake images from generator

training generator



RESULTS OF  
TRAINING
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Epoch: 0, discriminator(loss: 0.710, acc.: 39.06%), generator(loss: 0.720) 
...... 
Epoch: 100, discriminator(loss: 0.012, acc.: 100.00%), generator(loss: 4.221) 
...... 
Epoch: 15000, discriminator(loss: 0.102, acc.: 96.88%), generator(loss: 4.796) 
...... 
Epoch: 20000, discriminator(loss: 0.111, acc.: 96.88%), generator(loss: 5.076)

■ It does generate some 
images which may “look 
like” Chinese characters 
(although one has to read 
them from a long distance).

■ Surely none of them is 
really readable!



GAN+CNN = DCGAN

■ Well, we do understand the convolutional network can be 
outperforming for image processing problems. 

■ If one replace the discriminator with a convolutional network, and 
use a “deconvolution” network for the generator, it might be more 
powerful than a vanilla GAN? 

■ This is the basic idea of Deep Convolutional GAN, or DCGAN. It 
adds convolutional layers for scaling up/down, and without max 
pooling and fully connected layers.

57



CONSTRUCT A DCGAN
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. . . . . . . 
from keras.layers import Input, Dense, Reshape 
from keras.layers import BatchNormalization, LeakyReLU 
from keras.layers import Conv2D, Flatten, UpSampling2D 
from keras.models import Sequential, Model 
from keras.optimizers import Adam 
    

discriminator = Sequential() 
discriminator.add(Reshape(img_shape+(1,), input_shape=img_shape)) 
discriminator.add(Conv2D(32, kernel_size=6, strides=2)) 
discriminator.add(LeakyReLU()) 
discriminator.add(Conv2D(64, kernel_size=4, strides=2)) 
discriminator.add(BatchNormalization()) 
discriminator.add(LeakyReLU()) 
discriminator.add(Conv2D(128, kernel_size=4, strides=1)) 
discriminator.add(BatchNormalization()) 
discriminator.add(LeakyReLU()) 
discriminator.add(Flatten()) 
discriminator.add(Dense(1, activation='sigmoid')) 
discriminator.compile(loss='binary_crossentropy', 
                      optimizer=Adam(0.0002, 0.5), 
                      metrics=['accuracy']) l304-example-08.py (partial)

discriminator model:
image ⇒ (conv)×3 ⇒ 1 binary node

■ Need to replace the discriminator:



CONSTRUCT A DCGAN (II)
■ Generator has to be replaced as well:
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generator = Sequential() 
generator.add(Dense(14*14*64, input_dim=latent_size, 
activation='relu')) 
generator.add(Reshape((14,14,64))) 
generator.add(UpSampling2D()) 
generator.add(Conv2D(64, kernel_size=3, activation='relu')) 
generator.add(BatchNormalization()) 
generator.add(UpSampling2D()) 
generator.add(Conv2D(64, kernel_size=3, activation='relu')) 
generator.add(BatchNormalization()) 
generator.add(Conv2D(1, kernel_size=3, activation='tanh')) 
generator.add(Reshape(img_shape)) 

noise = Input(shape=(latent_size,)) 
img = generator(noise) 
discriminator.trainable = False 
validity = discriminator(img) 
combined = Model(noise, validity) 
combined.compile(loss='binary_crossentropy',  
                 optimizer=Adam(0.0002, 0.5)) l304-example-08.py (partial)

generator model
noise ⇒ (up sampling⇒conv)×2 ⇒ conv ⇒ image

⇐ combined model is the same

all other parts are the same as the previous example!



Epoch: 0, discriminator(loss: 0.932, acc.: 42.19%), generator(loss: 0.426) 
...... 
Epoch: 200, discriminator(loss: 0.466, acc.: 85.16%), generator(loss: 2.104) 
...... 
Epoch: 2000, discriminator(loss: 0.086, acc.: 99.22%), generator(loss: 3.668) 
...... 
Epoch: 3000, discriminator(loss: 0.092, acc.: 100.00%), generator(loss: 4.371)

RESULTS OF  
TRAINING (II)
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■ Using DCGAN seems to 
have “smoother” fonts 
comparing to the 
previous vanilla GAN. 

■ As expected none of 
them is really readable, 
still!



COMMMENT

■ There are far more interesting applications constructed based on 
the idea of GAN, as we already introduced some of the typical 
(famous) use cases earlier. 

■ Many of them do have example implementations. The following 
git directory contains many example code based on Keras:  
https://github.com/eriklindernoren/Keras-GAN

■ If you are not satisfied with this, you may want to check the the 
GAN Zoo (well, there might be too many!):  
https://github.com/hindupuravinash/the-gan-zoo

■ You may be able to think of a smart way of using such a network 
structure to resolve the problems of your own research topic!
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https://github.com/eriklindernoren/Keras-GAN
https://github.com/hindupuravinash/the-gan-zoo
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Let’s discuss a 
little bit regarding 

the interplay 
between ML and 
(Particle) Physics!



FINAL COMMMENT:  
PHYSICIST’S ML
■ Physicists also use a lot of ML to solve the problems found in the 

experiments or theories. But what are the core difference between a 
physicists’ problem and a generic problem?

■ Surely I cannot comment for everyone –– but at least I can say the 
particle physicists have a rather different prospective regarding ML 
tools comparing to generic users. 

■ The key point of particle physicists’ ML is about its statistical 
interpretation: we do not just concern about if your ML tool is 
working or not, we also worry about how correct it performs. e.g. 
even if you know the accuracy of your network is 99.5%, we also 
want to know the error of this value, e.g. 99.5±0.XX%, and also the 
performance difference between the ideal situation and and real 
application.
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FINAL COMMMENT:  
PHYSICIST’S ML (II)
■ So unlike the generic problem (e.g. image recognition, etc.), we need 

to find a way to preserve the information and still use it to present 
physics results, instead of just dump everything into the network. 
i.e. 
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0
1
2
⋮

Generic ML Solution

(Particle) Physics ML Solution

Preserved 
physics 
information

ML info.

So the (particle) physics ML solution is generally weaker than 
the generic ML due to lack of key information in ML. But we 

use it to do further statistical analysis afterwards. 

input datainput data



HEP DATA

Cannot separate  
by the first look…

PIX2PIX EXAMPLE

One can tell  
by eyes quickly
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HANDS-ON SESSION

■ Practice data:  
There is a data of 2 classes, stored in the l304practice.npz file 
(can be downloaded from CEIBA or the lecture web). The 
following piece of code can be used to load it:  
 
 
 
 
 
 
The x_train, y_train contains 6400 samples, and x_test, 
y_test contains 3216 samples.

66

import numpy as np 
   
data = np.load('l304practice.npz') 
x_train = data['x_train'] 
y_train = data['y_train'] 
x_test = data['x_test'] 
y_test = data['y_test']



HANDS-ON SESSION

■ The x_train and x_test data 
contains the images (also 
48×48) as a mixture of two 
different scripts of Chinese 
characters.

■ The y_train and y_test data 
contains the label: 1 = clerical 
script, 2 = semi-cursive script.
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>>> print (y_train[:100]) 
[1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 2 1 1 2 2 2 2 1 2 2 2 1 2 1 1 2 1 
 1 1 2 1 1 2 2 1 1 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 1 2 1 1 2 2 1 1 2 
 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1]

First 100 images in x_train



HANDS-ON SESSION

■ Practice 01:  
Take the l304-example-01.py (or l304-example-01a.py) as a 
template code, replace the MNIST data with the data we just 
provided, see if you can construct a CNN model to separate the two 
different scripts of Chinese characters?
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Performance (training): 
0.xxxxx 
Performance (testing): 
0.yyyyy

1 1 1

1 1

11

2

2

2

2

2



HANDS-ON SESSION

■ Practice 02:  
Take the l304-example-08.py (or l304-example-07.py) as a 
template code, replace the input data with the x_train images, and ㄎ
used to train a DCGAN(or GAN) model. 

■ See if we can come up with a new style of Chinese font by mixing 
clerical and semi-cursive scripts? Although we do not expect to 
generate any readable fonts…

■ This will take a long time on your laptop, you may want to run it on 
a better PC or at least find a power plug first…
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